
Feedback Literacy: Holistic Analysis of Secondary Educators’
Views of LLM Explanations of Program Error Messages

Veronica Cucuiat
veronica.cucuiat@raspberrypi.org

Raspberry Pi Foundation
Cambridge, United Kingdom

Jane Waite
jane.waite@raspberrypi.org
Raspberry Pi Foundation

Cambridge, United Kingdom

ABSTRACT
The implications of using large language model (LLM) tools for
learning to program at secondary school level are largely unknown,
and yet there is pressure for teachers to engage with these. To
start addressing this gap, we investigated: RQ1: What are secondary
educators’ views on the potential classroom use of LLM program
error message explanations? RQ2: In what ways can a feedback liter-
acy perspective support the analysis of educators’ views of potential
classroom use of LLM program error message explanations? The re-
sponses of eight expert secondary school educators were gathered
during a semi-structured, activity-based interview and qualitatively
analysed. Fifteen themes were derived from their commentary,
of which ten corresponded to enhanced program error message
(PEM) guidelines. Yet, all themes correlated to feedback literacy
theory, providing a more holistic view. The analysis revealed that
educators preferred LLM explanations to guide and develop under-
standing rather than tell, that students should be supported tomake
judgements and action LLM-generated feedback. Combining PEM
guideline and feedback literacy findings, we suggest augmented
IDEs should be designed with educators and students in mind,
and teacher professional development (PD) is needed. Research is
needed to compare our findings with a wider range of educators and
investigate what feedback literacy means for resource design, PD,
and classroom practice in secondary and undergraduate contexts.

CCS CONCEPTS
• Social and professional topics→ K-12 education; • Software
and its engineering → Integrated and visual development
environments.

KEYWORDS
AI, ML, IDE, K-12 education, feedback literacy

ACM Reference Format:
Veronica Cucuiat and Jane Waite. 2024. Feedback Literacy: Holistic Analysis
of Secondary Educators’ Views of LLM Explanations of Program Error
Messages. In Proceedings of the 2024 Innovation and Technology in Computer
Science Education V. 1 (ITiCSE 2024), July 8–10, 2024, Milan, Italy. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3649217.3653595

ITiCSE 2024, July 8–10, 2024, Milan, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in Proceedings of the
2024 Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2024), July
8–10, 2024, Milan, Italy, https://doi.org/10.1145/3649217.3653595.

1 INTRODUCTION
The use of large language models (LLMs) to support learning to
program has generated ideas and debate in the computer science
education research community [30], in IT developer discussions
[37], and emerging classroom practice advice [35]. This reveals a
complex landscape for educators to navigate and heralds potential
changes of what might be taught and how. Academic research has
used LLM tools, for example, to generate code explanations for use
in teaching activities [21], to assist beginner programmers’ trou-
bleshooting requests [13], and to create enhanced programming
error messages [20]. Much of this work has focused on undergrad-
uate settings, with limited research on school educators’ views of
the use of LLMs in teaching programming in secondary classrooms
(US Grades 6–10). In 2023, we started to address this gap in a pilot
study in England by asking two research questions: RQ1: What are
secondary educators’ views on the potential classroom use of LLM
program error message explanations? RQ2: In what ways can a feed-
back literacy perspective support the analysis of educators’ views of
potential classroom use of LLM program error message explanations?

2 PRIORWORK
A large language model (LLM) is “a complex mathematical repre-
sentation of language that is based on very large amounts of data
and allows computers to produce language that seems similar to
what a human might say" [7]. How LLMs might be best used to
support the teaching and learning of programming has yet to be
agreed upon [3]. At an undergraduate level, studies examining how
LLMs can generate code explanations to assist student code com-
prehension show significant potential [21, 34]. In one study with
1000 undergraduate students, LLM code explanations were rated as
more accurate and easier to understand than student explanations
[19]. Strengths and weaknesses have been highlighted in the output
generated by LLMs in response to undergraduate beginner program-
mers’ troubleshooting requests. For example, in one study, the LLM
mostly generated sensible recommendations but was sometimes
unreliable, and always included a solution even when explicitly
prompted not to [13]. University-level educators’ views, gathered
from 20 programming instructors across nine countries on working
with AI tools, range from banning them to integrating them to
prepare students for future jobs [18]. For younger novice program-
mers, aged 10 to 17 years old, code-authoring performance has
been cited to improve through using LLM tools [15]. Competencies
students and educators need to use LLMs have been suggested,
such as critically evaluating their output and potential biases [14].
Furthermore, questions remain on how LLMs can best support the
needs of learners, the impact on students’ learning and reliance on
such tools [41].

https://orcid.org/0009-0003-7714-6155
https://orcid.org/0000-0002-0270-2124
https://doi.org/10.1145/3649217.3653595
https://doi.org/10.1145/3649217.3653595


ITiCSE 2024, July 8–10, 2024, Milan, Italy Veronica Cucuiat and Jane Waite

A way of using LLMs is to enhance existing programming error
messages (PEMs). PEMs represent diagnosticmessages generated by
compilers or interpreters when the code violates the specifications
of the programming language [20]. They can help users progress
towards a working program and support them in understanding
the cause of the problem [22]. However, PEMs are often difficult
to decipher [20] due to poor readability, including length, poor
vocabulary, lack of sentence structure, and use of jargon [10].

Research efforts are ongoing to improve PEMs. In 2019, ten en-
hanced PEM guidelines were proposed from a synthesis of PEM
research studies, including increased readability, reduced cognitive
load, providing context for errors, using a positive tone, showing
solutions or hints, and providing scaffolding for the user [1]. For ex-
ample, increasing readability by avoiding jargon and using common
vocabulary was one of the design principles applied in one study,
which led to significantly shorter debugging times and higher self-
reported scores of message usefulness for over 700 undergraduate
students learning C [10]. Providing context for errors by linking
the messages to programming concepts has been shown to help
undergraduate students understand the cause of errors in a 13-week
study, using a purpose-built programming tool [38]. In another un-
dergraduate study, 100 students were presented with the original
and enhanced error messages side-by-side, in a pedagogic Java edi-
tor, with no evidence that students were confused by seeing two
versions of the same message [2]. Enhancing messages by using
a positive tone has been recommended from a human-computer
interaction perspective [39].

The inclusion of a possible solution in the enhanced message
is debated [1]. Some suggest that distinct levels of help should be
provided, from hints to solutions to accommodate different skills
and needs [39]. The enhanced PEMs’ role in scaffolding learners’
knowledge has been disputed, due to the difficulty in identifying the
underlying misconceptions which lead to students making errors
[24]. However, efforts to improve the detection of misconceptions
are ongoing, with one study developing SIDE-lib, a standalone,
task-independent library to detect symptoms of misconceptions to
support novice Python programmers into mainstream IDEs [11].
Overall, there is a lack of agreement on what makes a good PEM
[22] and limited learning-theory-based research to investigate ways
enhanced PEMs might be used for scaffolding learning [1].

Recently, researchers have evaluated LLM PEMs as being poten-
tially effective, novice-friendly, more easy to interpret and action
than the original PEMs [20]. PEMs play an important role in of-
fering students immediate and consistent feedback [32], akin to
formative assessment. Black and Wiliam[2010] argue in their semi-
nal general education work on formative assessment that feedback
provided by teachers has the most impact on student work if it in-
cludes guidance that students can engage with and practically use
[4]. Scholars have been re-positioning the role of feedback in the
context of higher education, from a transmission cognitive-based
model which conceptualises feedback as information delivered to
students [12], towards a learner-centred view which positions feed-
back as a process including the design of feedback and students’
competencies to effectively engage with and utilise it [26].

McLean et al. [2015] in general education theory define four
feedback types: a) telling, unidirectional ’correct’ information to
be packaged and transmitted from experts to passive students; b)

guiding, as students begin to think about feedback as a two-way
event in which the feedback acts as a pointer in the right direction;
c) developing understanding, in which explanatory information is
used by students for their own learning to understand what they are
doing and why, beyond their immediate context; d) opening up new
perspectives, making sense of information open to interpretation
and critique to inform students’ views [25].

Learner-centred feedback processes entail the development of
student feedback literacy [8], defined as students’ ability to com-
prehend, use and benefit from feedback processes [26], and teacher
feedback literacy [9], in which effectiveness depends on what the
learners bring, what the curriculum promotes, and what the envi-
ronment affords [5]. Student feedback literacy encompasses stu-
dents’ capabilities and dispositions required to understand and
use feedback in a way that is useful to them, encompassing four
interrelated dimensions: appreciating feedback processes, making
judgements, taking action and managing affect [8]. Teacher feed-
back literacy refers to teachers’ abilities to design and implement
feedback as a process that serves cognitive, pedagogical and social
purposes [9]. Teacher feedback literacy concerns three dimensions:
the design of learning materials to supports student feedback lit-
eracy; the relational support teachers provide students through
emotional sensitivity, empathy and trust; and the pragmatic di-
mension that considers the inherent compromises involved in how
teachers manage feedback practices [9].

3 METHOD
A free and publicly available interactive development environment
(IDE) was augmented to support this study [31]. The augmented
IDE was only available for the study, and it called the OpenAI GPT-
3.5 LLM [28] to generate explanations of the IDE program error
messages. Explanations were accessible to users via a question
mark next to the standard error message and were displayed in a
pop-up window. OpenAI GPT-3.5 was chosen as it was easy to set
up, publicly available, and low-cost at the time of the study.

The prompt supplied to the LLM to generate the error message
explanation was “You are a teacher talking to a 12-year-old child.
Explain the error {error} in the following Python code: {code}”. The
prompt was simple; our focus was to investigate the educators’
views of an LLM output, not to evaluate prompt performance.

A teaching activity was selected for educators to follow as they
used the augmented IDE. The activity was a publicly available,
secondary-level Python programming task, that requires learners
to adapt a program which prompts the input to a very simple “guess
a lucky number” game [31]. Python was the chosen programming
language, as it was the most used language for examinations at the
time of the study [27]. Python is also popular in software engineer-
ing, making it likely that high volumes of Python code would have
been used to train the OpenAI GPT-3.5 LLM [29].

Ethics approval was obtained in line with institutional and BERA
guidelines [6]; related consent and data procedures were followed.

As this was a pilot study, expert educators were recruited to ex-
plore the feasibility of the study approach and to investigate more
experienced educators’ views. Eight educators active in computer
science program education and known by the authors from pre-
vious collaborations were invited by email to take part. All eight



Feedback Literacy and Secondary Educators’ Views of LLM Explanations of PEMs ITiCSE 2024, July 8–10, 2024, Milan, Italy

participants were from England, four identified as male and four
as female. The participants’ length of time teaching computing at
secondary level spanned from six to more than ten years.

Each educator was separately interviewed online, for between 30
minutes and one hour. Interviewswere semi-structured and activity-
based following a protocol of a) an introduction to the project; b)
exploratory questions about the educator’s thoughts on the use
of LLM for learning to program; c) educator’s experimentation of
the IDE using the selected programming activity (and follow-up
questions); d) questions on selected LLM-generated explanations
(providing consistency across participants); e) general demographic
questions; and f) final Q&A.

Interviews were transcribed using a professional service and
uploaded to NVivo for analysis. Analysis followed a thematic quali-
tative approach [16]. High-level categories were deduced from the
research questions and knowledge of the field [16, 23], then the text
was coded, developing categories that were added, amended, or
merged inductively [16, 23]. The first author coded all interviews
and the second re-coded 25% of the data. The two authors resolved
any differences, resulting in a consensus of themes and their def-
initions [16], with a Cohen’s Kappa reliability score of 0.80 [17],
which is considered high. The correlation of themes to feedback
literacy theory was done jointly by both authors. Study resources
and anonymised data are available on the study website [31].

4 RESULTS
Fifteen themes were derived from the data analysis and have been
grouped into five reporting groups (Table 1). Overall, the educators’
views of the LLM feedback were that, for the most part, a sensible
explanation of the error messages was produced. All educators
experienced at least one example of an invalid content, either when
exploring the augmented IDE explanations or in the selected ex-
emplar LLM responses (steps c) and d) of the interview protocol
Section 3). Also, despite this not being prompted, a code solution
was always included by the LLM in the explanation.

4.1 Content of explanations
All educators debated the implications of including a possible code
solution in the explanation (theme 1). Mostly, they were concerned
about students copying the code solution without understanding.
On the other hand, some educators discussed the potential ben-
efits students can derive from analysing a correct answer, with
four educators suggesting a two- (or more) stepped approach in
which the solution is only shown after the students have had one
or more attempts at solving the error using only an explanation.
All educators emphasised the importance of using key concept
words consistently with students to support the development of
discipline-related vocabulary (theme 2). Educators highlighted ex-
amples where they felt appropriate vocabulary was generated, as
well as examples which lacked teaching-aligned terms:

“Also, it doesn’t use the words or the expression ‘data
type’, which is quite key for us when we’re teaching.
[..] I think there is some importance on it using the
terminology that we use in education.” [Educator 2]

All educators were positive about the more detailed LLM expla-
nation than the original error message (theme 3):

“But I do like that it doesn’t just say what the correct
answer is, it tries to explain why that’s the right answer.”
[Educator 4]

In addition, the educators positively commented on the clear pre-
sentation of the explanation, avoiding jargon, which they felt the
students would more easily understand. Educators highlighted the
different parts of the LLM output: a prediction of the students’ goal;
an explanation of why the current code was incorrect or incom-
patible with the goal; and why a certain fix might be applicable.
However, educators identified inconsistencies with the parts of the
explanation included and their sequence in different examples.

4.2 Format and style of explanations
Educators commented on how easy or difficult the explanations
were to read for themselves or their students. For example, mention-
ing explanations being too verbose, spotting repetition, redundancy
or too much information (theme 4). All but one educator said it was
difficult to distinguish between code and text in the explanation, as
both were displayed in the same font (theme 5):

“It mixes code and text in a way that is sometimes
confusing. It’s all in quotation marks. Do we know if the
quotation marks are part of the code? Could it format
them differently in a monospace font?” [Educator 4]

Educators commented that the explanation tone was positive and
encouraging (theme 6).

Five educators suggested that the feedback could be reformatted
to highlight a before-after comparison (theme 7), to help students
more clearly see the difference between the original code and that
suggested in the explanation.

4.3 Validity of explanations
Educators’ observations of the explanation’s validity included that
the LLM had ‘made things up’ by either introducing new syntax
errors that didn’t already exist (theme 8) or pointed out erroneous
errors which did not appear in the code:

“And it’s trying to fix something that doesn’t need fix-
ing.” [Educator 8]

Educators raised the detrimental impact of invalid explanations on
students, such as confusing students or leading to misconceptions:

“They’ll end up with misconceptions about the model,
also about the code that they’re trying to do, and just
generally be confused and frustrated.” [Educator 8]

Educators highlighted explanations that were valid but that did
not address the main learning objective related to the error, in that
explanations were inconsistent in how accurately they identified
the crux of the issue for students to resolve, pointing instead to
other valid, but less relevant aspects of the code (theme 9).

4.4 How the learning process might be affected
Educators repeatedly emphasised the relationship between where
students are on their learning journey versus student interest and
motivation, as well as student ability to effectively use the feed-
back provided (theme 10). This included the knowledge required
to understand and analyse the feedback, as well as the motivation
required for students to use the messages effectively.



ITiCSE 2024, July 8–10, 2024, Milan, Italy Veronica Cucuiat and Jane Waite

Table 1: Themes - Educators’ practical considerations on using LLM explanations of program error messages

Reporting
Groups

Themes Cases
(n=8)

Number of
coded segments

Content of
explana-
tions

1. Possible code solution is always included 8 80
2. Key concept words are generated inconsistently 8 43
3. The explanation is detailed and avoids jargon 8 30

153

Format and
style

4. Lengthy and verbose explanation 8 46
5. Program language elements are hard to distinguish from explanation 7 30
6. Tone is positive and encouraging 7 30
7. Student and explanation code solution should be displayed side-by-side 5 14

120

Validity
8. Occasional invalid explanation could negatively affect students 8 80
9. Explanation learning objectives are not always related to the error 7 28

108

Learning
process

10. Explanation effectiveness depends on student level and motivation 8 41
11. Explanations are better than original PEMs but may cause dependency 8 38
12. Students may fix more errors independently 5 12

91

Teaching
process

13. Educator PD needed on how LLMs work and implications for classroom use 8 35
14. Opportunities for additional debugging teaching 7 18
15. Student-educator interactions may be reduced 5 15

68

Educators compared the program error message and the expla-
nation, as well as the students’ transition from one to the other
(theme 11). Overall, the educators considered the explanation more
helpful and meaningful than the program error message. However,
the educators said it was important that the explanations should not
replace the error message and that students needed support to be
able to eventually transition to only using program error messages.

Five educators raised that some students might be able to fix
their errors more independently using explanations than by using
error messages (theme 12):

“I think what this enables me to do is to create that
independent learning environment that gives a bit more
information to those children that I would set indepen-
dent learning tasks.” [Educator 5]

4.5 How the teaching process might be affected
All educators expressed the need to understand how explanations
are generated, and as a consequence, what this might mean in how
they should be used with students (theme 13):

“A summary flowchart of what data is sent, where it’s
sent to, how it’s processed, how it’s stored, what format it
comes back in, and what the limitations and advantages
are, would be really helpful.” [Educator 4]

Educators recognised opportunities to use the explanations to teach
about debugging, for example using invalid explanations to discuss
the criteria for good explanations and error messages (theme 14).
Five educators highlighted that using explanations might reduce
the time they spend helping students fix syntax errors (theme 15).
On one hand, this can help save educators time:

“Oh, well, it definitely frees me up. It helps because it
puts the onus back onto them to improve themselves
and not just be reliant on me.” [Educator 7]

On the other hand, they expressed concern about reduced oppor-
tunities to interact with students and a negative effect on their
understanding of student progress and reduced formative assess-
ment. To mitigate against this, they emphasised the importance of
being able to see student errors and explanations:

“If it’s an online model, it’s got to be a two-way street.
The AI has to work for the teacher as well as the pupil. So,
I need to know what are the error messages that they’re
getting, where are the pupils struggling.” [Educator 2]

We found that, for the most part, educators were excited about
the potential of using LLMs to help explain error messages to learn-
ers, and most educators reported they would use them in their
classrooms. However, perhaps as expected, using LLMs is unlikely
to be a silver bullet in students’ understanding of error messages,
offering benefits and challenges in their current form.

5 DISCUSSION
5.1 An enhanced program error message lens
To answer RQ1:What are secondary educators’ views on the potential
classroom use of LLM program error message explanations?, we cor-
related the themes derived from the educators’ commentary to the
enhanced program error message (PEM) guidelines by Becker et al.
[2019] and related literature. Six of the guidelines were discussed
as practical considerations by the educators in our study (Table 2)

Firstly, the guideline of increased readability of PEMs [1]
correlates with educators’ comments on how the LLM explanations



Feedback Literacy and Secondary Educators’ Views of LLM Explanations of PEMs ITiCSE 2024, July 8–10, 2024, Milan, Italy

Table 2: Correlation of PEM guidelines [1] to themes

Guideline [1] Themes (Table 1)
Increased readability 3, 5
Reduce cognitive load 4, 7

Provide context to the error 8, 9, 11
Use a positive tone 6

Show solutions or hints 1
Provide scaffolding for user 2

were more readable, detailed and used plain English compared to
standard PEMs (theme 3), but that readability was hindered as it
was hard to distinguish between explanation text and program
language elements (theme 5). The use of a common vocabulary
and avoiding jargon is highlighted in the literature as an important
aspect of improving PEM readability (e.g. [10]).

The guideline to reduce cognitive load can be correlated to
educators’ commentary on verbose explanations (theme 4) and the
side-by-side comparison between student and solution code (theme
7). The educators commented that verbose feedback was, in part,
caused by repetitive or redundant parts, which breaks the guideline
of reducing cognitive load. To help students analyse the solution
in a way which helps their understanding, educators proposed
displaying students’ code side-by-side with the solution code to
highlight differences, which has been suggested to help reduce
cognitive load [1] and found to not be confusing for students [2].

The provide context to the error guideline is reflected in the
educators’ discussions on instances in which the LLM explanations
were either invalid (theme 8) or referred to unrelated learning objec-
tives (theme 9), as well as when the educators debated the dangers
of students’ over-reliance on the LLM explanations (theme 11). The
lack of accuracy and precision in PEMs is already heavily discussed
in existing literature [39]. However, invalid LLMs can generate
hallucinations which are entirely unrelated to the error, requiring
further research into how students respond to invalid feedback.
Building knowledge of core programming concepts by relating the
explanations to learning objectives has been previously reported as
helpful towards understanding the cause of the error [38]. To avoid
over-reliance on LLM feedback, the educators’ preference was for
the explanations to be shown alongside the original error messages,
something that has been suggested by others (e.g., [2]). Educators
mentioned that LLM explanations were positive and encouraging
(theme 6), adhering to the guideline of using a positive tone.

The guideline to show solutions or hints is reflected in theme
1 on the inclusion of a code solution. However, this was highly
debated by educators, mirrored in literature (e.g., [1]). This high-
lights nuances around how a solution is offered to students, with
educators and researchers suggesting a stepped approach [39].

The guideline of PEMs providing scaffolding for learners [1]
is captured in the educators’ comments on the inconsistent use
of key concept words (theme 2). Whether LLMs can be useful to
support existing efforts to identify students’ misconceptions [11], or
to enhance feedback using learning theories like semantic waves to
scaffold learners’ knowledge [40], remain areas of further research.

Table 3: Correlation of feedback theories to themes

Feedback theory Themes (Table 1)
Feedback types [25]

Telling 1, 5, 7
Guiding 1, 3, 4, 5, 7

Developing understanding 2, 3, 4, 5, 8, 9
Opening up new perspectives 8, 9
Student feedback literacy[8]
Appreciating feedback process 1, 10

Making judgements 1, 2, 3, 5, 7, 8, 9, 10,11
Taking action 5, 7, 8, 9, 10, 11
Managing affect 6, 8, 10, 11, 12

Teacher feedback literacy[9]
Design dimension 13,14

Relational dimension 15
Pragmatic dimension 15

What is significant as we look across the PEM guidelines/theme
correlations is that not all themes have been allocated. Educators
raised comments about the dependency of explanation effectiveness
on the wider learning and teaching process that we found more
difficult to correlate to the PEM guidelines.

5.2 A feedback theory lens
To answer RQ2: In what ways can a feedback literacy perspective
support the analysis of educators’ views of potential classroom use
of LLM program error message explanations?, we correlated the
educators’ themes to feedback types [25], student feedback literacy
[8], and teacher feedback literacy theory [9] (Table 3).

5.2.1 Feedback types. The LLM explanations in our study activities
were, in the majority, telling, providing students with the final code
straight away (theme 1). The majority of educators in our study
preferred that this should not be so, rather that the explanation
should guide and develop understanding, and if a final solution
was to be given, it should be after several attempts of fixing the
error without it. On guiding feedback, educators highlighted that
error explanations should be detailed and jargon-free (theme 3),
distinguish between program language elements and explanation
text (theme 5), and use concept keywords (theme 2) tomove towards
developing understanding, enabling students to “feedforward”
[40] for when they encounter future similar errors.

To develop student understanding, educators commented
that there were significant risks when invalid LLM feedback was
provided (theme 8), or when the learning objective addressed by the
explanation was unrelated to the error the students made (theme
9). However, educators also saw these risks as opportunities for
students, as students might be helped to take an active role in
interpreting whether the feedback was correct and to open up
new perspectives, using their previous knowledge or seeking
alternative sources to scrutinise the explanation.

5.2.2 Student feedback literacy. Concerning student feedback
literacy [8], educators commented on all four dimensions (Table 3,



ITiCSE 2024, July 8–10, 2024, Milan, Italy Veronica Cucuiat and Jane Waite

Section 2), with a focus on the content, validity and learning process
reporting groups. Educators’ prediction that feedback effectiveness
depends on students’ knowledge and attitudes (theme 10) correlates
to all four aspects of student feedback literacy.

Concerning students’ appreciation of feedback, including a
solution in the feedback (theme 1) risks inhibiting students from
taking responsibility for developing their own understanding and
reducing learner agency [8]. Conversely, several educators men-
tioned that a solution can offer students actionable information on
why their code is broken. Further investigation is required into the
ways students might access a solution that helps their understand-
ing without reducing their agency.

The educators highlighted the importance of helping students
make judgements about the LLM feedback, directly relating to
their observations around the use of key-concept vocabulary (theme
2), detailed explanations avoiding jargon (theme 3), and invalid ex-
planations (theme 8) or explanations unrelated to the errors made
(theme 9). An important part of feedback literacy is helping stu-
dents develop the language and concepts required to effectively
participate in the discipline [36]. We argue that inconsistent use
of key-concept words can hinder this development. In addition,
students need extended opportunities to self-evaluate to develop
their evaluative judgment [8]. We suggest jargon-free, detailed ex-
planations offer such an opportunity in a way that is accessible to
students to understand.

On students taking action to fix their code, educators predicted
that when the feedback was invalid (theme 8) or the learning ob-
jective was unrelated to the error, this could hinder students from
making sense of the error and cause them to take unhelpful action,
potentially leading to increased frustration, or decreased confidence
in themselves or the feedback received (theme 9).

In relation to students’ capability tomanage affect, educators
predicted that the encouraging tone (theme 6) may help students
feel more positively towards the feedback and more likely to engage
with it, aligning directly with general feedback recommendations
[8]. Also, educators highlighted the increased levels of control stu-
dents may feel as a result of accessing a jargon-free explanation
presented in an encouraging tone, that they can action indepen-
dently (theme 12), echoing findings that learner independence may
encourage learner agency [33].

5.2.3 Teacher feedback literacy. All themes relating to teacher
feedback literacy [9] are found under the teaching process report-
ing group (Table 3). On the design dimension of teacher feedback
literacy, educators requested professional development to learn
about LLMs and how to use them in class (theme 13) and men-
tioned there would be opportunities to design classroom activities
to teach debugging using LLMs (theme 14).

A specific set of comments aligned with the relational and prag-
matic dimensions of teacher feedback literacy was that student-
educator interactions may be reduced (theme 15). Using LLM ex-
planations could serve a time-saving function, should it materialise
in practice. Contrarily, educators voiced concerns about the detri-
mental impact on their relationship-building with students. Fewer
interactions could limit the opportunities educators have to pro-
vide formative assessment and connect with students, negatively
impacting their confidence and professional development (PD).

5.3 Combined lens
We suggest that combining enhanced PEMguidelines (a programming-
specific lens) with feedback literacy theory (a general education
lens) to analyse educators’ views provides a new and more holistic
approach to investigating the purpose and pedagogy of using LLM
explanations in the teaching of programming.

From our combined view, we recommend that LLM content
should be: encouraging, detailed, jargon-free, use keywords con-
sistently, be in line with learning objectives, and a solution code
should not be included or delayed. IDE design should ensure that
educators can see how their students use LLM explanations, and
enable users to manage invalid or unrelated explanations. To opti-
mise programming teaching using LLMs, professional development
and student learning materials combining feedback literacy, PEMs
and LLMs should be researched, co-created and delivered.

6 LIMITATIONS AND FUTUREWORK
Only eight purposively sampled expert secondary computer science
educators from England took part in this pilot and they predicted
what their students might think. These participants’ views may
be biased. Therefore, future studies would benefit from widening
the pool of educators and working directly with students. The per-
formance of the AI model was not evaluated for the task, and the
model prompt was simple, without much experimentation. Investi-
gation of LLM prompts and tuning approaches to generate good
explanation structures, such as semantic waves [40], and create
tailored content and format of feedback is needed.

7 CONCLUSION
In this pilot study, we explored the views of eight experienced
secondary educators on the use of LLM explanations of Python
program error messages (PEM) for classroom use. Findings corre-
lated with PEM guidelines on readability, reduced cognitive load,
providing context to the error, using a positive tone, showing solu-
tions or hints and providing scaffolding for the user. However, the
PEM guidelines did not cover all the teacher-reported requirements,
whereas feedback literacy theories did. Feedback type analysis re-
vealed that educators preferred the LLM explanations to fulfil a
guiding and developing understanding role of feedback rather than
telling. Student feedback literacy highlighted that students need
help to make judgements and take action with LLM explanations.
For teacher feedback literacy, educators raised the importance of de-
signing feedback with teachers as well as student feedback literacy
in mind, and the need for professional development.

Incorporating feedback literacy when designing and using LLM
explanations helps develop the content of the explanations, as well
as the skills required by students and teachers to make effective
use of these explanations, and focuses on the overall interaction. A
combined feedback literacy and PEM guideline approach will be
important for researchers and teachers to consider as LLMs become
more prevalent in teaching and learning both in computer science
and beyond.

ACKNOWLEDGMENTS
Thank you to the Raspberry Pi Foundation digital team for the
development of the augmented IDE.



Feedback Literacy and Secondary Educators’ Views of LLM Explanations of PEMs ITiCSE 2024, July 8–10, 2024, Milan, Italy

REFERENCES
[1] Brett Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Dennis Bouvier,

Brian Harrington, Amir Kamil, Amey Karkare, Chris Mcdonald, Peter-Michael Os-
era, Janice Pearce, and James Prather. 2019. Compiler Error Messages Considered
Unhelpful: The Landscape of Text-Based Programming Error Message Research.
In Proceedings of the Working Group Reports on Innovation and Technology in
Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE-WGR ’19). ACM,
New York, NY, USA, 177–210. https://doi.org/10.1145/3344429.3372508

[2] Brett Becker, Graham Glanville, Ricardo Iwashima, Claire Mcdonnell, Kyle Goslin,
and Catherine Mooney. 2016. Effective compiler error message enhancement
for novice programming students. Computer Science Education 26, 2-3 (09 2016),
148–175. https://doi.org/10.1080/08993408.2016.1225464

[3] Brett A. Becker, Paul Denny, James Finnie-Ansley, Andrew Luxton-Reilly, James
Prather, and Eddie Antonio Santos. 2023. Programming Is Hard - Or at Least It
Used to Be: Educational Opportunities and Challenges of AI Code Generation. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). ACM, New York, NY, USA, 500–506.
https://doi.org/10.1145/3545945.3569759

[4] Paul Black and Dylan Wiliam. 2010. Inside the Black Box Raising Stan-
dards Through Classroom Assessment. 80 (09 2010). https://doi.org/10.1177/
003172171009200119

[5] David Boud and Elizabeth Molloy. 2013. Rethinking models of feedback for
learning. Assessment & Evaluation in higher education 38, 6 (2013), 698–712.

[6] British Educational Research Association. 2018. Ethical guidelines for educational
research (4 ed.). British Educational Research Association, London. https:
//www.bera.ac.uk/resources/all-publications/resources-for-researchers

[7] Cambridge University Press. [n. d.]. LLM. Cambridge Dictionary. Accessed 26-03-
2024. https://dictionary.cambridge.org/dictionary/english/large-language-model

[8] David Carless and David Boud. 2018. The development of student feedback liter-
acy: enabling uptake of feedback. Assessment & Evaluation in Higher Education
43, 8 (2018), 1315–1325. https://doi.org/10.1080/02602938.2018.1463354

[9] David Carless and Naomi Winstone. 2023. Teacher feedback literacy and its
interplay with student feedback literacy. Teaching in Higher Education 28, 1
(2023), 150–163.

[10] Paul Denny, James Prather, and Brett A. Becker. 2020. Error Message Readability
and Novice Debugging Performance. In Proceedings of the 2020 ACMConference on
Innovation and Technology in Computer Science Education (Trondheim, Norway)
(ITiCSE ’20). ACM, New York, NY, USA, 480–486. https://doi.org/10.1145/3341525.
3387384

[11] Abigail Evans, Zihan Wang, Jieren Liu, and Mingming Zheng. 2023. SIDE-Lib:
A Library for Detecting Symptoms of Python Programming Misconceptions. In
Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1 (Turku, Finland) (ITiCSE 2023). ACM, New York, NY, USA,
159–165. https://doi.org/10.1145/3587102.3588838

[12] John Hattie and Helen Timperley. 2007. The power of feedback. Review of
educational research 77, 1 (2007), 81–112.

[13] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää, and
Juha Sorva. 2023. Exploring the Responses of LLMs to Beginner Programmers’
Help Requests. In Proceedings of the 2023 ACM Conference on International Com-
puting Education Research V.1 (Chicago, IL, USA) (ICER ’23). ACM, New York, NY,
USA, 93–105. https://doi.org/10.1145/3568813.3600139

[14] Enkelejda Kasneci, Kathrin Seßler, Stefan Küchemann, Maria Bannert, Daryna
Dementieva, Frank Fischer, Urs Gasser, Georg Groh, Stephan Günnemann, Eyke
Hüllermeier, and et al. 2023. ChatGPT for Good?OnOpportunities and Challenges
of LLMs for Education. Learning and Individual Differences 103, 102274 (Jan 2023).
https://doi.org/10.35542/osf.io/5er8f

[15] Majeed Kazemitabaar, Justin Chow, Carl Ma, Barbara Ericson, David Wein-
trop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Ham-
burg, Germany) (CHI ’23). ACM, New York, NY, USA, Article 455, 23 pages.
https://doi.org/10.1145/3544548.3580919

[16] Udo Kuckartz. 2022. Qualitative Text Analysis: A Guide toMethods, Practice &Using
Software. Sage Publications, London. https://doi.org/10.4135/9781446288719

[17] J Richard Landis and Gary G Koch. 1977. The measurement of observer agreement
for categorical data. Biometrics 33, 1 (1977), 159–174.

[18] Sam Lau and Philip Guo. 2023. From "Ban It Till We Understand It" to "Resistance
is Futile": How University Programming Instructors Plan to Adapt as More
Students Use AI Code Generation and Explanation Tools such as ChatGPT and
GitHub Copilot. In Proceedings of the 2023 ACM Conference on International
Computing Education Research - Volume 1 (Chicago, IL, USA) (ICER ’23). ACM,
New York, NY, USA, 106–121. https://doi.org/10.1145/3568813.3600138

[19] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and LLMs. In Proceedings of the 2023 Conference on Innovation and
Technology in Computer Science Education V. 1 (Turku, Finland) (ITiCSE 2023).
ACM, New York, NY, USA, 124–130. https://doi.org/10.1145/3587102.3588785

[20] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James Prather,
and Brett A. Becker. 2022. Using LLMs to Enhance Programming Error Mes-
sages. In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (Toronto ON, Canada) (SIGCSE 2023). ACM, New York, NY, USA,
563–569. https://doi.org/10.1145/3545945.3569770

[21] StephenMacNeil, Andrew Tran, DanMogil, Seth Bernstein, Erin Ross, and Ziheng
Huang. 2022. Generating Diverse Code Explanations Using the GPT-3 LLM. In
Proceedings of the 2022 ACM Conference on International Computing Education
Research - Volume 2 (Lugano and Virtual Event, Switzerland) (ICER ’22). ACM,
New York, NY, USA, 37–39. https://doi.org/10.1145/3501709.3544280

[22] Guillaume Marceau, Kathi Fisler, and Shriram Krishnamurthi. 2011. Measur-
ing the Effectiveness of Error Messages Designed for Novice Programmers. In
Proceedings of the 42nd ACM Technical Symposium on Computer Science Ed-
ucation (Dallas, TX, USA) (SIGCSE ’11). ACM, New York, NY, USA, 499–504.
https://doi.org/10.1145/1953163.1953308

[23] Philipp Mayring. 2000. Qualitative Content Analysis. In Forum Qualitative
Sozialforschung / Forum: Qualitative Social Research,. Vol. 1 (2). Online. Issue
Art.20. https://doi.org/10.17169/fqs-1.2.1089 Accessed 14-11-2022.

[24] Davin McCall and Michael Kölling. 2019. A New Look at Novice Programmer
Errors. ACM Trans. Comput. Educ. 19, 4, Article 38 (jul 2019), 30 pages. https:
//doi.org/10.1145/3335814

[25] Angela J McLean, Carol H Bond, and Helen D Nicholson. 2015. An anatomy
of feedback: a phenomenographic investigation of undergraduate students’
conceptions of feedback. Studies in Higher Education 40, 5 (2015), 921–932.
https://doi.org/10.1080/03075079.2013.855718

[26] Elizabeth Molloy, David Boud, and Michael Henderson. 2020. Developing a
learning-centred framework for feedback literacy. Assessment & Evaluation in
Higher Education 45, 4 (2020), 527–540.

[27] OCR. 2023. GCSE Computer Science: What programming language should I use
for GCSE. Online. https://support.ocr.org.uk/hc/en-gb/articles/10066252791698-
GCSE-Computer-Science-What-programming-language-should-I-use-for-
GCSE- Accessed 19-12-2023.

[28] OpenAI. 2023. GPT-3.5. https://platform.openai.com/docs/models/gpt-3-5
[29] OpenAI. 2023. How ChatGPT and Our Language Models Are Devel-

oped. https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-
language-models-are-developed

[30] James Prather, Paul Denny, Juho Leinonen, Brett A. Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, Stephen MacNeil, Andrew Petersen, Raymond Pettit, Brent N. Reeves,
and Jaromir Savelka. 2023. The Robots Are Here: Navigating the Genera-
tive AI Revolution in Computing Education. In Proceedings of the 2023 Work-
ing Group Reports on Innovation and Technology in Computer Science Educa-
tion (Turku,Finland) (ITiCSE-WGR ’23). ACM, New York, NY, USA, 108–159.
https://doi.org/10.1145/3623762.3633499

[31] Raspberry Pi Foundation. 2023. Using large language models to explain program-
ming error messages research study website. http://rpf.io/llm-pem-pilot

[32] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education 13,
2 (2003), 137–172.

[33] Tracii Ryan, Michael Henderson, Kris Ryan, and Gregor Kennedy. 2023. Identify-
ing the components of effective learner-centred feedback information. Teaching
in Higher Education 28, 7 (2023), 1565–1582.

[34] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic
Generation of Programming Exercises and Code Explanations Using LLMs. In
Proceedings of the 2022 ACM Conference on International Computing Education
Research - Volume 1 (Lugano and Virtual Event, Switzerland) (ICER ’22). ACM,
New York, NY, USA, 27–43. https://doi.org/10.1145/3501385.3543957

[35] Cory Stig. 2023. Can Generative AI Teach You to Code? It’s Complicated. https:
//www.codecademy.com/resources/blog/can-chatgpt-ai-teach-you-to-code/

[36] Paul Sutton. 2012. Conceptualizing feedback literacy: knowing, being, and acting.
Innovations in Education and Teaching International 49 (02 2012), 31–40. https:
//doi.org/10.1080/14703297.2012.647781

[37] The Chartered Institute for IT. 2023. Will AI replace software engi-
neers? https://www.bcs.org/articles-opinion-and-research/will-ai-replace-
software-engineers/

[38] Warren Toomey. 2011. Quantifying the incidence of novice programmers’ errors.
School of IT, Bond University (2011). https://api.semanticscholar.org/CorpusID:
14453637

[39] V. Javier Traver. 2010. On Compiler Error Messages: What They Say and What
They Mean. Adv. in Hum.-Comp. Int. 2010, Article 3 (jan 2010), 26 pages. https:
//doi.org/10.1155/2010/602570

[40] Jane Waite, Eirini Kolaiti, Meurig Thomas, and Karl Maton. 2023. Constructing
feedback for computer science MCQ wrong answers using semantic profiling.
In Proceedings of the 23rd Koli Calling International Conference on Computing
Education Research. ACM, New York, NY, USA.

[41] C. Zastudil, M. Rogalska, C. Kapp, J. Vaughn, and S. MacNeil. 2023. Generative AI
in Computing Education: Perspectives of Students and Instructors. In 2023 IEEE
Frontiers in Education Conference (FIE). IEEE Computer Society, Los Alamitos,
CA, USA, 1–9. https://doi.org/10.1109/FIE58773.2023.10343467

https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1080/08993408.2016.1225464
https://doi.org/10.1145/3545945.3569759
https://doi.org/10.1177/003172171009200119
https://doi.org/10.1177/003172171009200119
https://www.bera.ac.uk/resources/all-publications/resources-for-researchers
https://www.bera.ac.uk/resources/all-publications/resources-for-researchers
https://dictionary.cambridge.org/dictionary/english/large-language-model
https://doi.org/10.1080/02602938.2018.1463354
https://doi.org/10.1145/3341525.3387384
https://doi.org/10.1145/3341525.3387384
https://doi.org/10.1145/3587102.3588838
https://doi.org/10.1145/3568813.3600139
https://doi.org/10.35542/osf.io/5er8f
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.4135/9781446288719
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3587102.3588785
https://doi.org/10.1145/3545945.3569770
https://doi.org/10.1145/3501709.3544280
https://doi.org/10.1145/1953163.1953308
https://doi.org/10.17169/fqs-1.2.1089
https://doi.org/10.1145/3335814
https://doi.org/10.1145/3335814
https://doi.org/10.1080/03075079.2013.855718
https://support.ocr.org.uk/hc/en-gb/articles/10066252791698-GCSE-Computer-Science-What-programming-language-should-I-use-for-GCSE-
https://support.ocr.org.uk/hc/en-gb/articles/10066252791698-GCSE-Computer-Science-What-programming-language-should-I-use-for-GCSE-
https://support.ocr.org.uk/hc/en-gb/articles/10066252791698-GCSE-Computer-Science-What-programming-language-should-I-use-for-GCSE-
https://platform.openai.com/docs/models/gpt-3-5
https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-language-models-are-developed
https://help.openai.com/en/articles/7842364-how-chatgpt-and-our-language-models-are-developed
https://doi.org/10.1145/3623762.3633499
http://rpf.io/llm-pem-pilot
https://doi.org/10.1145/3501385.3543957
https://www.codecademy.com/resources/blog/can-chatgpt-ai-teach-you-to-code/
https://www.codecademy.com/resources/blog/can-chatgpt-ai-teach-you-to-code/
https://doi.org/10.1080/14703297.2012.647781
https://doi.org/10.1080/14703297.2012.647781
https://www.bcs.org/articles-opinion-and-research/will-ai-replace-software-engineers/
https://www.bcs.org/articles-opinion-and-research/will-ai-replace-software-engineers/
https://api.semanticscholar.org/CorpusID:14453637
https://api.semanticscholar.org/CorpusID:14453637
https://doi.org/10.1155/2010/602570
https://doi.org/10.1155/2010/602570
https://doi.org/10.1109/FIE58773.2023.10343467

	Abstract
	1 Introduction
	2 Prior work
	3 Method
	4 Results
	4.1 Content of explanations
	4.2 Format and style of explanations
	4.3 Validity of explanations
	4.4 How the learning process might be affected
	4.5 How the teaching process might be affected

	5 Discussion
	5.1 An enhanced program error message lens
	5.2 A feedback theory lens
	5.3 Combined lens

	6 Limitations and Future work
	7 Conclusion
	Acknowledgments
	References

