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ABSTRACT
Learning to program is a challenging process, known to instill a
range of thoughts and feelings among learners. In particular, de-
bugging is known to evoke emotional reactions in learners who
struggle with it. While attitudes and emotions towards program-
ming have previously been investigated, few studies are focused at
the K-12 level, with even less specifically investigating the impor-
tant skill of debugging. This paper reports on an exploratory study
measuring the attitudes and emotions of K-12 students related to
debugging. 73 students debugged five erroneous Python programs
and answered questions on their perceived performance, attitudes,
emotions, and debugging strategies. Analysis of students’ survey
responses revealed self-efficacy in debugging to be strongly corre-
lated with gender, perceived performance, usefulness, and feelings
of anxiety, with other associations also present. These findings
contribute to our growing understanding of the challenges young
people face when solving errors in computer programs.
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1 INTRODUCTION
Debugging, the process of finding and fixing errors in a program,
is a skill of critical importance in programming. Not only is debug-
ging important to master to become a proficient programmer, it is
also a component of computational thinking [14]. Furthermore, de-
bugging can be considered an instance of troubleshooting [17, 21],
which some claim can be transferred to other subject domains [6].
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Despite its utility, debugging is generally a difficult process for
students to learn. This is made more difficult for secondary stu-
dents learning their first text-based programming language, whose
computing teacher may not be confident teaching programming
[31, 37] or feel challenged by having to provide troubleshooting
support to many students in the classroom [28]. Students’ difficulty
with solving errors may lead to emotional reactions [18] which in
turn can induce negative attitudes towards debugging [22]. If these
attitudes persist, the risk that young learners become disinterested
in programming arises.

It is important to capture attitudes towards debugging specif-
ically in order to improve how it is taught and perceived. To the
authors’ knowledge, attitudes and emotions towards debugging
have not been investigated at a lower secondary level, even though
many students around the world are now learning to program in a
text-based language.

This paper reports on part of a study that investigates the atti-
tudes and behaviours of lower secondary students towards debug-
ging. Students were presented with erroneous Python programs
that they attempted to debug then completed an online survey relat-
ing to their attitudes and emotions towards debugging. Exploratory
analysis of the survey responses is then reported and discussed.
The research questions for this paper are as follows:

• RQ1: What are the attitudinal factors (self-efficacy, useful-
ness, and general perceptions) of lower secondary students
towards debugging?

• RQ2: What emotions (anxiety, frustration, and joy) do lower
secondary students feel when debugging their code?

As well as furthering our understanding of the relations of at-
titudes and emotions towards debugging, the results of this study
can be used by teachers to adjust programming teaching practices
such that the attitudinal and emotional challenges of debugging are
tackled. This holds particular promise for less confident students.

2 RELATEDWORK
An attitude can be defined as an evaluative judgment about a par-
ticular phenomenon [24]. This is a complex concept containing
many interrelated components, such as the perceived usefulness
of a subject and self-efficacy, one’s belief that one can achieve an
outcome by successfully completing relevant tasks [1]. A learner’s
first experiences with a subject or skill are a significant determinant
of the attitudes they go on to form [22]. In particular, self-efficacy
is informed by the success and emotional load of these initial ex-
periences [1]. This is no different for learning to program, where
such experiences can be emotionally taxing if a learner finds the
content difficult to grasp [13, 28].
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Attitudes and emotions specifically towards debugging in K-
12 students are not well investigated. Chen et al. [7] studied the
debugging behaviour and attitudes of 72 grade 12 students, with
questionnaire responses revealing a general belief that debugging
proficiency was based on an individual’s ability and could not be
learnt. When interviewing 12 high school teachers about their
experiences of teaching debugging, Michaeli and Romeike [28]
found mentions of the feeling of helplessness that arose in ‘weaker’
students when encountering an error. Frustration in students strug-
gling to debug was also commonly referenced, often associated
with requesting support from the teacher. Emotional reactions to
debugging were also mentioned by five of the 12 undergraduate
students interviewed in Whalley et al. [36], with roughly half of
these mentions being negative reactions.

Studies that focus on attitudes and emotions towards program-
ming generally are more common. Kinnunen and Simon [18] inter-
viewed nine CS1 students about their emotional experiences with
assignments on their course. The frustration of being unable to
solve errors was associated with negative feelings such as despair
and inadequacy, with some students referring to a ‘hit by light-
ning’ experience when unexpectedly encountering an error. These
findings further highlight the link between early programming
experiences and strong emotions.

Building on Kinnunen and Simon [18], Lishinski et al. [23] cre-
ated a four-question survey to measure the emotions felt by un-
dergraduates over the duration of a CS1 course. Using path anal-
ysis, feelings of frustration were found to have both a short- and
long-term effect on students’ performance, with self-efficacy and
inadequacy also having longer-term impacts. Significant gender
differences were present, with girls reporting lower self-efficacy
and more feelings of frustration and anxiety [23]. However, the sur-
vey was not externally validated and only contained four questions,
meaning students’ actual emotions during the course may not have
been accurately captured.

Electrodermal activity, a measure of sweat production and a
proxy for emotional response, has also been used to investigate
emotions experienced when programming. Gorson et al. [13] used
this measure on CS1 undergraduates completing programming as-
signments, identifying 21 emotional triggers. Interestingly, two of
the five most cited triggers of negative emotions were both encoun-
tering and struggling to solve an error. Successful debugging was
mentioned as a source of positive emotion but was not referenced
as much as its negative counterparts. Despite not focusing on de-
bugging in particular, these studies still highlight the emotional
angst of solving errors for introductory programmers.

A summary of theoretical constructs on attitudes and emotions
developed in programming education is provided by Malmi et al.
[25]. Of the 50 constructs reviewed, 21 involved self-efficacy, 11
were instruments for measuring attitudes or emotions, but none
were specifically related to debugging, despite its emotional nature.

Prior literature has highlighted how debugging is an emotional
process, which has a significant influence on one’s experiences
of learning programming. If a learner’s initial experiences with
solving errors are frustrating and overwhelming [13, 18, 28], their
attitudes towards programming are likely to be negative [22]. This
in turn reduces the likelihood that a student will enjoy or engage
with programming, or perhaps computing, in the future.

3 METHOD
The study consisted of two main phases. Participants were first pre-
sented with five debugging exercises containing erroneous Python
programs and then completed a survey relating to their attitudes
and emotions towards debugging.

3.1 Participants
Computing teachers at schools local to the authors were invited
to conduct the study in their classrooms, of which three (from
two state-funded schools) accepted. In total, 75 lower secondary
students aged 12-14 (grades 7 and 8) participated. As two students
did not complete the study, the results of 73 students were analysed.

Students in each class were of a range of abilities and had been
learning Python for a few months to a year, with prior experience
with block-based languages. Gender was self-reported at the end
of the survey, with 36 males, 24 females, 3 reporting as other, and
10 preferring not to disclose their gender.

Approval to conduct the study was granted by the Department
of Computer Science and Technology ethics committee at the Uni-
versity of Cambridge. Before participating, consent of the student,
a parent or guardian, and their computing teacher was obtained.

3.2 Procedure and Data Collection
Students began the study by attempting five debugging exercises
in a web-based environment, an example of which is shown in
Figure 1. Each exercise consisted of a Python program containing
several errors, a description of the program’s expected behaviour,
and the number of errors in the program. The authors define de-
bugging as ‘the process of finding and fixing errors in a computer
program’, where errors may be syntactical or semantic. As a result,
the programs contained a range of syntax, runtime, and logical
errors commonly found in novices’ programs [19, 30, 33, 34]. The
exercises increased in difficulty and the number of errors. Addi-
tionally, edits made by the students to the programs were logged
and stored to analyse the patterns that students used to debug their
programs. These results will be reported in a future study.

Figure 1: A Programming Exercise Used in the Study

Students then completed an online survey containing statements
relating to attitudes and emotions that are typically associated
with debugging, responding on a five-point Likert scale. Two open-
ended questions relating to the students’ perceived performance
and debugging techniques employed were also included, as well
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as demographic questions on the student’s school, year group, and
gender. This survey was developed by the authors and partially
based on other validated surveys relating to computing [11, 32],
although the difference in granularity between debugging as a skill
and computing as a subject meant that some questions specifically
related to debugging were needed. Using a non-standardised instru-
ment allowed for more flexibility in the data collected, particularly
appropriate for exploratory research [26]. Two questions per at-
titude and emotion (henceforth referred to as ‘construct’) were
included; the survey had to be short enough to keep lower sec-
ondary students engaged and avoid spoiled responses, especially
as they would already have attempted the potentially challenging
debugging exercises prior to completing the survey.

3.3 Data Analysis
Due to the exploratory nature of the study, no hypotheses were
formulated, nor were there variables to compare the values of over
time. Rather, the study’s focus was on general patterns in the stu-
dents’ survey responses, which was done through the methods of
analysis detailed below. The statistical software package Stata was
used to store, structure, and perform the analysis.

For each statement with a Likert response, the skewness and
median response were calculated, with the median selected as the
preferred measure of central tendency for ordinal data [15].

Responses to the open-ended questions were coded and analysed
using qualitative content analysis [27] in the QDA software NVivo.
An inductive approach was used to iteratively code the data and
generate a set of themes representing students’ comments on their
performance and debugging strategies that they employed. The
second author also coded the responses using the codebook devised
by the first author, with an interrater reliability rating of 𝜅 = 0.79,
indicating substantial agreement [16].

A correlation matrix was generated to identify associations be-
tween survey itemswith a Likert response. This was done by pairing
survey items measuring the same construct, where the pair of items
had a Cronbach’s alpha value of above 0.7, as this suggests reli-
able items [8]. General perceptions and joy were not paired as a
result. Spearman’s rho was the chosen correlation measure as this
is commonly used for ordinal data [8].

Chi-square tests of independence were conducted between each
survey construct (including perceived performance) and the main
themes from the content analysis to explore whether any themes
mentioned in the free-text questions were related to attitudes and
emotions towards debugging. Themes from the free-text responses
were treated as binary variables based on whether a student men-
tioned them.

Hierarchical agglomerative cluster analysis with average linkage
was conducted to identify similar groups of responses among partic-
ipants. However, the clusters generated did not provide additional
insight to the correlation matrix, so these results are not reported.

3.4 Validity and Reliability
Feedback from the survey was obtained from several computing
education researchers to ensure the questions were worded ap-
propriately and measured what they intended to measure. One of
the teachers partaking in the study also provided feedback for the

debugging exercises and survey, which was acted upon to ensure
the study material was appropriate for lower secondary students.

The internal consistency of all 13 statements with a Likert scale
response was calculated using Cronbach’s alpha, resulting in a
value of 𝛼 = 0.806, indicating highly reliable items [8]. To cor-
rect for the multiple correlations calculated between the survey
constructs, 𝑝-values were adjusted using the Benjamini-Hochberg
procedure [3, 39]. Different correction methods, such as Bonferroni
correction, were considered but not used due to concerns of being
too conservative given the size of the correlation matrix [35].

4 RESULTS
Of the 13 survey items with Likert responses (see Table 1), 7 con-
tained a non-neutral median response, with some of these ques-
tions illustrating skewed distributions. Statements 7, 9, and 11 each
had a median response of ‘Disagree’. Statements 7 and 11 had a
|𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 | of above 0.5, indicating a non-symmetrical distribution.
On the contrary, statements 4, 6, and 12 had both negatively skewed
distributions and amedian response of ‘Agree’. Statement 12, a state-
ment regarding the enjoyment of debugging, had a skewness of
-1.111, indicating a highly skewed distribution.

4.1 Correlation Analysis
4.1.1 Correlation of Emotions and Attitudes. The correlation ma-
trix for the constructs and questions in the survey is displayed in
Figure 2. Effect sizes are reported as per Cohen’s [9] effect sizes for
Spearman’s rho. Note ‘perceived performance’ refers to the first
question on the survey, which students answered on a scale of 1-5.

The matrix illustrates several significant correlations of varying
strengths between the constructs. Notably, students’ perceived per-
formance and self-efficacy had statistically significant correlations
with all other paired constructs aside from frustration. The strongest
correlation (𝑟𝑠 = 0.872, 𝑝 < .001) was between students’ perceived
performance on the debugging exercises and their self-efficacy in
debugging, with a large effect size. The strongest negative correla-
tion (𝑟𝑠 = −0.490, 𝑝 < .001) existed between feelings of anxiety and
perceived performance, with self-efficacy having an almost identi-
cal relationship (𝑟𝑠 = −0.481, 𝑝 < .001). Both of these correlations
had moderate effect sizes, indicating that students who reported
higher levels of anxiety tended to report lower levels of perceived
performance and self-efficacy.

Feelings of frustration and anxiety when debugging were also
positively correlated with a large effect size (𝑟𝑠 = 0.684, 𝑝 =< 0.001),
indicating that the more frustrated a student feels when debugging,
the more anxious they feel. In contrast, very little correlation is
present between all other pairs of constructs.

4.1.2 Gender Correlations. Analysis of the subset of students re-
porting their gender as either male or female was used (𝑛 = 60)
to explore correlations between gender and the constructs in the
survey. The resulting correlations are displayed in Figure 3. The
Benjamini-Hochberg procedure was again used to adjust the 𝑝-
values associated with the elements in the matrix.

The strongest correlation involving gender was a negative corre-
lation with self-efficacy with amoderate effect size (𝑟𝑠 = −0.417, 𝑝 =

0.009). In other words, girls reported having lower levels of self-
efficacy in debugging than boys. A negative correlation of medium
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Table 1: Constructs and Statements Included in the Survey

# Construct Statement Median Response Skewness

1 Perceived Per-
formance

“How well do you feel you performed when solving the errors in the
programming exercises?”

OK -0.058

2 Self-efficacy Q1 “When I get an error in a program, I am confident that I can solve it.” Neither agree nor disagree -0.127
3 Self-efficacy Q2 “I am good at solving errors in computer programs.” Neither agree nor disagree 0.031
4 Usefulness Q1 “Being able to solve errors in computer programs helps me to solve

problems in other subjects.”
Agree -0.261

5 Usefulness Q2 “Knowing how to solve errors in a computer program will help me
later in life.”

Neither agree nor disagree -0.653

6 General Percep-
tions Q1

“To be good at debugging, you need to be good at programming.” Agree -0.542

7 General Percep-
tions Q2

“Errors in programs should be rare if you are good at programming.” Disagree 0.668

8 Anxiety Q1 “When I have to fix an error in a program, I feel anxious.” Neither agree nor disagree 0.335
9 Anxiety Q2 “I feel afraid to debug a program as I’m worried I might add more

errors.”
Disagree 0.326

10 Frustration Q1 “When I am struggling to solve an error in a program, I get frustrated.” Neither agree nor disagree -0.273
11 Frustration Q2 “Having to debug errors in a program makes me angry.” Disagree 0.660
12 Joy Q1 “When I solve an error, I feel happy with myself.” Agree -1.111
13 Joy Q2 “I enjoy solving errors when I am programming.” Neither agree nor disagree -0.088

Figure 2: Correlation Matrix Showing Statements and Consistent Constructs (Key for Boxes: Top Value: 𝑟𝑠 , Bottom Value: 𝑝)

effect size (𝑟𝑠 = −.340, 𝑝 = .027) also existed between gender and
statement (13), but the two questions on joy did not present a suffi-
cient Cronbach’s alpha value to be combined.

Although not statistically significant, other correlations of in-
terest include a negative correlation with perceived performance
(𝑟𝑠 = −0.291, 𝑝 = .064) and a positive correlation with feelings of
anxiety (𝑟𝑠 = 0.283, 𝑝 = .071), both with small effect sizes. That is,

girls tended to report more feelings of anxiety when debugging
than boys did and vice versa for perceived performance.

4.2 Free-Text Responses
Tables 2 and 3 show the codebooks for the free-text questions in the
survey. Here the strategies self-reported by students are described.

Students often referenced the use of multiple techniques for de-
bugging their code, some of which indicated effective or ineffective
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Figure 3: Correlation Matrix Including Gender (𝑛 = 60, 1
represents male and 2 represents female, Key for Boxes: Top
Value: 𝑟𝑠 , Bottom Value: 𝑝)

debugging behaviour. The most commonly mentioned strategy was
the running of the code, usually at the start of the exercise for the
purpose of obtaining the error message the code editor presented
(34 mentions).

“I ran the code and looked at the error messages then
focused on those lines to find and fix the errors.”

The repeated running of code was a strategy mentioned 10 times,
sometimes with the implication that no or little changes were made
between the runs, suggesting a misunderstanding of the determin-
istic nature of imperative programming.

“I ran the code multiple times to pick up any syntax
errors.”

Other frequently mentioned strategies included the inspection
of code at varying levels of granularity. Some students made the
effort to inspect every line of code, while others seemed to generally
inspect the whole program to see if anything ‘stood out.’

“I looked for out of the normal pieces of code.”

On the other hand, some performed more targeted inspections of
particular lines of code, sometimes informed by the error message.

“Check the lines of code where a bug is more likely first.”

Similar to these non-systematic methods, trial and error was
mentioned by 10 students with a range of perceived performances.
Some students were also able to debug their code by relying on
their own programming knowledge, though these responses were
often vague in describing how this knowledge was applied.

Finally, external resources proved favourable for some students,
which mainly comprised of online sites (five mentions), a ‘cheat
sheet’ (three mentions), or a ‘knowledge organiser’ (two mentions),
the latter two likely provided by their teacher in previous lessons.

Table 2: Codebook for Responses to the Question “Why do
you feel you performed this well?”

Name Count

Progress on debugging exercises 37
Indicators of positive debugging behaviour 35
Null/low-information responses 23
Self-efficacy-related reasons 11
General performance on debugging exercises 10
Mention of programming knowledge 4
Time spent on debugging exercises 3
Missing small details 2
Trying hard 2

Table 3: Codebook for Responses to the Question “What tech-
niques did you use to find and fix the errors in the program-
ming exercises?”

Name Count

Running of code 57
Inspection of code 25
Null/low-information responses 23
Use of external resources 12
Trial and error 10
Use of personal programming knowledge 6
Evidence of testing 2

4.3 Mapping of Free-Text Responses to
Attitudes

Several relations between the themes in Tables 2 and 3 and the
survey constructs were found. In terms of debugging strategies,
the mention of ‘running of code’ was found to be associated with
perceived performance (𝜒2 (1) = 18.08, 𝑝 = .001) and self-efficacy
(𝜒2 (1) = 27.70, 𝑝 = .001). Students who mentioned running code, at
the beginning of the exercise or otherwise, generally answeredmore
positively towards the questions on perceived performance and self-
efficacy compared with those who did not mention such a strategy.
Interestingly, the use of external resources was found to be related
to self-efficacy (𝜒2 (1) = 15.94, 𝑝 = .043) and anxiety (𝜒2 (1) =

17.37, 𝑝 = .027). Students who explicitly referred to consulting
external resources generally felt less confident and more anxious
debugging compared to those who did not mention this strategy. No
significant associations for other strategies were present, perhaps
due to the small number of students who cited them.

When describing how students felt they performed, the mention
of positive debugging indicators, such as the ability to identify er-
rors or understand the error messages, was related to perceived per-
formance (𝜒2 (1) = 34.17, 𝑝 < .001), self-efficacy (𝜒2 (1) = 26.11, 𝑝 =

.001), and frustration (𝜒2 (1) = 16.81, 𝑝 = .032). Students mention-
ing positive debugging behaviour tended to report higher levels of
perceived performance, self-efficacy, and lower levels of frustration.
Additionally, the mention of one’s self-efficacy within the program-
ming domain or more generally, which was always in a negative
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fashion, had a significant association with perceived performance
(𝜒2 (1) = 18.91, 𝑝 = .001) and self-efficacy (𝜒2 (1) = 20.44, 𝑝 = .009),
reporting lower levels of both.

5 DISCUSSION
The results presented reveal relations between different attitudes
and emotions towards debugging. In particular, the prominence of
self-efficacy and one’s perceived performance is highlighted, with
significant correlations to the majority of other consistent con-
structs. As mentioned, two of the four determinants for self-efficacy
originally proposed by Bandura [1] are performance accomplish-
ment and emotional arousal in early experiences of trying a new
skill. Therefore, if novice programmers struggle to successfully
debug, they will tend to form a negative self-efficacy around debug-
ging. This is more likely to be the case given the emotional reactions
often associated with unsuccessful debugging [13, 18, 28]. The link
between frustration and anxiety is further established by Lishin-
ski et al. [23] and their strong correlation in the survey responses.
Such experiences are not unlikely when students are first learning
to debug in a text-based programming language, especially due
to the lack of confident computing teachers in many schools [31]
who sometime must rush between students [28]. Due to the central
role that debugging plays when learning to program, confidence
in debugging is likely to be related to confidence in programming
generally, meaning that initial struggles with debugging may also
affect attitudes aside from those explored in the survey.

The significantly lower levels of self-efficacy in debugging re-
ported by girls corroborates with previous findings on gender dis-
parities in attitudes towards computing [4, 20] and programming
[23]. Discussions around improving girls’ emotional experiences
with programming [10] and sense of belonging in computing [2, 29]
are well underway. The pertinence of this disparity in attitudes
within the more fine-grained skill of debugging may be the case
within other areas of typical computing curricula. If one considers
debugging to be an instance of troubleshooting [17, 21], a differ-
ence in attitudes towards troubleshooting, a skill extending beyond
computing, may also exist.

The range of debugging strategies mentioned by students is not
surprising and some have indeed been mentioned by undergraduate
novices in previous studies. The inspection of code has been referred
to by students in [12], while trial and error has been mentioned by
students in [7] and observed by researchers in [38]. Trial and error in
particular has been deemed as ineffective and time-consuming [5],
making successful debugging less likely. However, no associations
were found between this strategy and the attitudes and emotions
included in the survey, perhaps due to the low number of students
whomentioned it.When comparing other strategies with the survey
constructs, the use of external resources was the only one that was
negatively related to any of the survey constructs, while mentions
of running the code were associated with higher self-efficacy and
perceived performance. However, it is important to bear in mind
that some strategies were only cited by a few students and it is
unlikely that students mentioned every strategy they used.

Other free-text responses were found to be related to some of
the emotions and attitudes that students reported. Some students
mentioned their lack of self-efficacy in computing more generally,

which, unsurprisingly, was linked with their self-efficacy and per-
ceived performance.

5.1 Limitations
The main limitation of this study was that the survey used was not
externally validated. Although the decision to create a survey was
appropriately justified (see Section 3.2), some parts of it yielded
low internal consistency, which impacted the degree of analysis.
Additionally, the survey only contained two questions per construct
it was aiming to measure. More questions may have improved the
overall internal consistency of these constructs.

Despite the results revealing some correlations between students’
attitudes and emotions, the number of participants was too low
for other exploratory analysis methods, such as factor or cluster
analysis, to be successfully employed, instead yielding clusters
that were consistent with the correlation matrix. The sample of
participants was also skewed in terms of gender, further limiting the
conclusions that can be made about the gender-related correlations.

Finally, responses to the free-text questions were typically a
sentence in length. It is likely that students in this age bracket are
not able to fully nor accurately express their debugging behaviour,
meaning they were not all-encompassing responses.

6 CONCLUSIONS AND FUTUREWORK
This paper has investigated the attitudes and emotions that lower
secondary students have towards debugging. Results of the ex-
ploratory analysis on a survey answered by 73 students indicated
that thoughts and feelings towards debugging are, similar to pro-
gramming, interlinked, making it a somewhat polarising skill to
learn. Self-efficacy and perceived performance on the debugging ex-
ercises were found to be correlated with multiple other constructs,
highlighting the important role of self-efficacy in relation to other
attitudes in debugging. Additionally, female students reported lower
levels of self-efficacy when debugging, corroborating with findings
from related studies. Students also reported a range of debugging
strategies, with some initial associations between certain strategies
and attitudes and emotions towards debugging found.

This research has further emphasised the attitudinal and emo-
tional struggles of debugging for introductory programmers [13,
18, 28, 36]. Future research must consider how to teach debugging
in a way that effectively manages the harmful emotions that school
and university students so often experience. Other future work
includes the validation of the survey presented in this paper, which
is important for measuring attitudes and emotions surrounding
debugging in future and more large-scale studies. The next phase of
the study will involve analysing the log data generated by students
when attempting the debugging exercises, to investigate students’
debugging behaviour in more detail.
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