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Al literackl In K-12 education

(How | work with it)

Designing non-programming interfaces
(and activities) that make machine learning
more graspable and explorable.

Integrating machine learning tools and
methods into classroom practices and
elementary and high school subjects.

Disseminating new ways to engage with
machine learning technologies in
classrooms.




Computational empowerment - Sustaining students’ (and teachers’)
agency in an increasingly digitized and computationalized world.

Encoding

A

Students

Decoding

Dindler, C., Smith, R., & Iversen, O. S. (2020). Computational empowerment:
participatory design in education. CoDesign, 16(1), 66-80.



Machine learning ethics cards workshop

Imeracéons Daa Callection
- v
et WS aact Pmppery
[l aon i ot ota AI::'_““
v Por 1ER

43 Wy W 07 dun -

O e Wran? - o Ty ow":;?' o
Ay

©Q &""'"lom.
H o recre Nowwy
— . "

“An algorithm to plan
lessons and study trips in a
humane and stress-free

»

way

Bilstrup et al. 2020. Staging Reflections on Ethical Dilemmas in Machine Learning: A Card-
Based Design Workshop for High School Students. In Proceedings of the 2020 ACM
Designing Interactive Systems Conference (DIS '20).
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Scaffolding critical reflection on the ethics of
machine learning

“The more lonely they are, the more motivated they become to get

better recommendations” — Student designing an app to help lonely
peers

Coupling ethics to technology and implementation — being
constrained by the technology

Engaging with ethical dilemmas through design decisions nad
hands-on activities



Enacting Machine learning
practices in the classroom



Machine learning machine

[Kaspersen et al., The Machine Learning Machine: A Tangible
User Interface for Teaching Machine Learning, TEI 2021]
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Design rationale
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Unintended Biases
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Unintended Biases
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Data Representativeness
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Data Representativeness
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Limitations

Students found it difficult to relate
these experiences to the ML systems
they meet in their own lives

Became a ‘dance around black boxes’




Opening the black box
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[Bilstrup et al., The best of both worlds: Designing a tiered hybrid interface for
teaching machine learning in K-9 education, NordiCHI 2022]



Design for the classroom context:
ml-machine.org/

ML-Machine &

Data @

20

examples

[Bilstrup et al., Opportunities and Challenges of Teaching Machine Learning as a Design
Material with the micro:bit, NordiCHI 2022]



Design for the classroom context:
ml-machine.org/
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[Bilstrup et al., The ML-Machine Toolkit: Empowering Teachers
and Education Professionals to Explore Embodied Approaches to
Teaching Machine Learning, DIS 2025]



Demo

ml-machine.org/



Machine learning as a design material
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The future is now







Learning about machine learning
through embodied interaction

[Bilstrup et al., The ML-Machine Toolkit: Empowering Teachers and Education
Professionals to Explore Embodied Approaches to Teaching Machine Learning, DIS
2025]

Enacting ML
practices
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Working with multiple
representations and abstractions

Finding patterns in Train ML model to Redesign a physical
accelerometer data recognize bodily activity artefact with ML
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math.ml-machine.or
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createai.microbit.org/
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Building educational material around the
embodied activites
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[Bilstrup et al., ml-machine.org: Infrastructuring a Research Product to
Disseminate Al Literacy in Education, CHI 2024]



Unintentional bias




Data Representativeness

Self-driving cars




Enacting key challenges in developing and
Implementing machine learning systems

Unintended biases Data representativeness

Impact of parameters

Crltlcal data mterventlon

Karl-Emil Bilstrup. 2023. Embodied Computational Empowerment: Designing Educational
Tools for Critical Reflection on Computational Technologies
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DEMO DESIGN

In teaching machine learning

[Bilstrup et al., From Demo to Design in Teaching Machine Learning,
FAccT 2022]
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How does this relate to
chatbots?



Machine learning: Predict the next symbol




How do we choose the next word?
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Generating new sentences with our model

What is the next word in this =2 - book
is the next word in this book = — about
the next word in this book about 2 — physics

next word in this book about physics 2 2> ?

What is the next word in this book about physics?
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The Engine Room

maskinrummet.github.io/#/en

Connelly et al. 2025. Beyond LLMs as Black Boxes: Activities and an Educational Tool
\) Y. Supporting Unplugged and Digital Al Learning Activities for K-12 Classrooms. In Adjunct
- Proceedings of the Sixth Decennial Aarhus Conference: Computing X Crisis (AAR

Luke John Connelly  Adjunct'25).




Teaching natural language processing (NLP)




Teaching natural language processing (NLP

maskinrummet.github.io/#/en
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