
How should we teach 
debugging to secondary 
school students?

Laurie Gale

July 2024



Programming is not always plain sailing



Debugging is necessary

MILLIONS will learn text-based programming at 
secondary school

MILLIONS will be exposed to errors



Debugging is…

Necessary if we want meaningful programs

A useful practice of troubleshooting

An enjoyable/infuriating challenge



Debugging is challenging

“Everyone knows that debugging is twice as hard as 

writing a program in the first place. So if you’re as clever 

as you can be when you write it, how will you ever debug 

it?” - Kernighan's Law



The challenges of learning to debug

Cognitive 
challenges

Affective 
challenges

Part I: 
Debugging 

strategy

Part II: 
Attitudes and 

Emotions

In-class 
challenges



Part I: Debugging 
Strategy



Lots to think about when programming

Program 
syntax

Sequential 
execution

Control 
structures

Managing 
variables

Interaction of 
programming 
concepts

Design of the 
program Using built-in 

functions



Learners have misconceptions

Sequential 
execution

“Several lines of a (simple non-
concurrent) program can be 
simultaneously active.”1, p. 261



Learners have misconceptions

Managing 
variables

a = "Hello world" 
"Hello world" = a

1, p. 261



Error messages are confusing



Learning to debug is HARD

Cognitive 
challenges

Presence of 
misconceptions

Lots to store in 
working memory

Lack of necessary 
knowledge & 
experience

Hard to interpret 
error messages

Ineffective 
debugging 

strategy

What do these 
look like for school 
students learning 

Python?

How can we 
improve them?



Investigating debugging behaviours

What behaviours do lower secondary students 
exhibit when debugging?



Study outline

73 lower secondary 
students

Debugging 
exercises

Survey Analysis



The debugging exercises

Exercise 
description

Buggy 
program

Code editor



Results



The results in numbers

WIDE RANGE of debugging behaviours

346
exercise 
attempts

7,247
runs

40% were successfully completed

36% of students didn’t successfully 
complete any

73
students



An overview

Less successful students…

• Often added errors

• Tinkered/used trial and error

• “Spammed run” More successful students…

• Made less changes with (seemingly) 

more intentionality

• Got their code running quicker

• Didn’t run their code as much



Introducing some students

Alessia
What would you rate your performance on the exercise? 3/5
What debugging techniques did you use? “I ran the code so I 
could see where and what line was wrong”

Gabriel
What would you rate your performance on the exercise? 4/5
What would you rate your performance on the exercise? 
“Looked through line by line and used the error message”



What Alessia did

1. Ran program before making changes 

(95% of students did this)…

… after 22 seconds (5 seconds longer 
than the average)



What Alessia did

2. Made changes on the line the error 
message was pointing to (97% of 
students did this)



What Alessia did

3. Added multiple syntax errors (86% of 
students did this)



What Alessia did

4. “Spammed run” while program had 
errors (74% of students did this, with 
the median time between runs being 
0.379 seconds)



What Alessia did

5. Ended program with more errors than 
she started with

(program had errors in every run – same 
as min. 34% of exercises)



A comparison of their behaviours

Ran code after 22 
seconds

Ran code after 26 
seconds



A comparison of their behaviours

(Potentially) used 
error message for 
guidance

(Potentially) resolved 
logical errors through 
testing



A comparison of their behaviours

Made no corrective 
changes

Made several corrective 
changes



A comparison of their behaviours

Added several syntax 
errors

Added one syntax error, 
which was resolved 
straightaway



A comparison of their behaviours

Ended exercise in 
correct state

Ended with 3 syntax 
errors and 3 logical 
errors



What’s stopping more students debugging successfully?

1. Knowledge of Python syntax

2. Time taken to get program successfully executing

3. Affective factors – motivation, resilience, mindset 

towards errors?



How can this help teachers and students?

Suggestions

More explainable 
error messages

Syntax-related 
tooling

Systematic 
debugging 
processes

Teaching 
effective 

debugging

Discourage 
ineffective 

debugging?

Frame-based 
editing

With LLMs?

Live coding



Frame-based editing

https://strype.org/ 

https://strype.org/


3



4



The challenges of learning to debug in K-12

Cognitive 
challenges

Affective 
challenges

Part I: 
Debugging 
strategy

Part II: 
Attitudes and 
Emotions



Part II: Attitudes and 
Emotions Towards 
Debugging



Struggling when debugging

After “being hit” [encountering an error], 
students are dazed, with little sense of what 

to do next … These experiences left 
students puzzled, confused,

frustrated, overwhelmed, and annoyed.5, p. 81



Struggling when debugging

“The majority of emotional consequences 
of encountering a problem are negative –
though this can range from confusion and 

puzzlement to much more anguished 
frustration, anger, and sense of “oh no, 

not again.”5, p. 81



Struggling when debugging

“It’s just a let down, as I said. It’s a confidence 
roller coaster. Hitting that compile button”6, p.113 



The consequences of debugging struggle

Cognitive 
challenges Formation 

of attitudesEmotional 
challenges



Struggling when debugging

“Every time after I type code and I run it for
the first time, I expect it to fail.” 6, p. 115



What attitudes and emotions do lower secondary 
students have towards debugging?

(and how can these be improved?)



The study outline (again)

73 lower secondary 
students

Debugging 
exercises

Survey Analysis



The many correlations between attitudes

Self-efficacyGender

Anxiety Usefulness

Frustration

Treated as a binary 
variable where:
   Male = 1
   Female = 2

Perceived 
performance



Key finding

Attitudes and emotions towards debugging are 

interlinked – important to bear in mind



How can this help teachers and students?

Some 
suggestions 

from teachers

Positive 
error culture

Normalise 
errors

Celebrate the 
effort as well as 

the outcome

Give chances to 
successfully debug 

early on

“Stump the 
teacher”7

Encourage 
sabotage

Scaffolded 
debugging 
exercises



A quote from a brilliant teacher

“Spectacular failures. I want those 
reported and celebrated as well. If 
something should have gone right and went 
badly wrong but somebody found something 

interesting on the way…you celebrate it. Take 
the fear out of it.”



Some Takeaways



Lessons learnt

Debugging is a powerful and challenging skill to learn

Some students resort to ineffective debugging strategies

These can easily have emotional consequences

But there’s lots of tools/pedagogies that can help!



Some questions to ponder

How do these findings compare 
to your experiences with 
novice debugging?

Have you found any effective 
approaches for teaching 
debugging? If so, what are 
they?

What role does GenAI have to 
play in all of this?



Thanks for listening!



References

1. Sorva, J. (2018). Misconceptions and the Beginner Programmer. In Computer Science Education: Perspectives on Teaching and 
Learning in School Bloomsbury Academic. 

2. David Perkins and Fay Martin. 1985. Fragile Knowledge and Neglected Strategies in Novice Programmers. Technical Report. 
Educational Center for Technology, Cambridge, MA. 1–35 pages. https://eric.ed.gov/?id=ED295618 

3. Sharon M Carver and Sally C Risinger. 1987. Improving children’s debugging skills. In Empirical studies of programmers: second 
workshop. AblexPublishing Corp., Norwood, New Jersey, 147–171. https://www.researchgate.net/publication/262311647

4. Tilman Michaeli and Ralf Romeike. 2019. Improving debugging skills in the classroom - The effects of teaching a systematic 
debugging process. In WiPSCE’19: Proceedings of the 14th Workshop in Primary and Secondary Computing Education. 
Association for Computing Machinery, New York NY, USA, 1–7. https://doi.org/10.1145/3361721.3361724

5. Paivi Kinnunen and Beth Simon. 2010. Experiencing programming assignments in CS1: the emotional toll. In Proceedings of the 
Sixth international workshop on Computing education research (ICER '10). Association for Computing Machinery, New York, NY, 
USA, 77–86. https://doi.org/10.1145/1839594.1839609

6. Jamie Gorson, Kathryn Cunningham, and Marcelo Worsley. 2022. Using Electrodermal Activity Measurements to Understand 
Student Emotions While Programming. In ICER ’22: Proceedings of the 2022 ACM Conference on International Computing 
Education Research. Association for Computing Machinery, New York, 105–119. https://doi.org/10.1145/3501385.3543981

7. Chris Kerslake. 2024. Stump-the-Teacher: Using Student-generated Examples during Explicit Debugging Instruction. In 
Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024). Association for 
Computing Machinery, New York, NY, USA, 653–658. https://doi.org/10.1145/3626252.3630934 

Thanks to FLATICON for all the nifty icons used in the presentation, they look really cool (in my opinion)

https://eric.ed.gov/?id=ED295618
https://www.researchgate.net/publication/262311647
https://doi.org/10.1145/3361721.3361724
https://doi.org/10.1145/1839594.1839609
https://doi.org/10.1145/3501385.3543981
https://doi.org/10.1145/3626252.3630934
https://www.flaticon.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

