i Choreography vs Orchestration I]
INn serverless microservices

Mete Atamel Guillaume Laforge
Developer Advocate at Google Developer Advocate at Google
W @meteatamel y @glaforge

@ atamel.dev @ glaforge.appspot.com

speakerdeck.com/meteatamel

=

Choreography vs Orchestration

Google Cloud

54

Imagine a simple e-commerce transaction

Services calling each other directly

& Google Cloud

. Frontend Payment Processor () Shipper Notifier
App Engine 5 J¥ cloud Run Cloud Functions J¥ cloud Run

A4

Order request Authorize & charge CC Prepare & ship items Notify user

Simple REST: Pros and Cons

Pros
= Better than a single monolith

- Easy to implement: Services

simply call each other

Cons

== Too much coupling between all
the services

== Fach service can be a SPOF

== F3ch service needs its own error /
retry / timeout logic

== \\'hO ensures the whole
transaction is successful?

Choreography (event-driven)

Event-driven services

& Google Cloud

B Frontend Payment Processor () Shipper Notifier
App Engine J¥ cCloud Run Cloud Functions J¥” cloudRun
Order request Authorize & charge CC Prepare & ship items Notify user

Message Broker

Imagine a more complex transaction

Read & lock inventory |[<——» e

Inventory DB

;—N Yes—l
Prepare order Request backfill from a »
confirmation message supplier

Supplier's API

y

Prepare "we're sorry"
message

Update inventory and
order
Inventory/Order DB

Notify Customer -
SendGrid

No. Order > $1k Vesj
N)
Notify Sales Rep q 3

J Slack API

End

Choreography: Pros and Cons

Pros

= Services are loosely coupled,

Services can be changed
independently

Services can be scaled
independently

No single point of failure

= Events are useful to extend the
__?«system beyond the current domain

Cons
== Difficult to monitor the whole system

== Frrors / retries / timeouts are
problematic

== The business flow is not captured
explicitly

== \\Vho ensures the whole transaction is
successful?

Orchestration

Orchestrated services

& Google Cloud

B Frontend Payment Processor () Shipper Notifier
App Engine J¥ cCloud Run Cloud Functions J¥” cloudRun

Order request Authorize & charge CC Prepare & ship items Notify user

Orchestrator

Orchestration: Pros and Cons

Pros Cons

= Business flow captured centrally | == A new orchestrator service to worry

and source controlled about
~ Each step can be monitored == QOrchestrator could be a single point
of failure

Errors / retries / timeouts are
centralized == Reliance on REST means more

Use simple REST, no need for tight-coupling

events

Services are independent

Which one is better?

Choreography or
Orchestration?

i

It depends...

Choreography
Services are not closely related

Services can exist in different

bounded contexts

Multiple bounded contexts

communicating via events

Orchestration

Can you describe the business logic

in a flow chart?

Are services closely related in a

bounded context?

Do you want to stay in REST?

Hybrid approach

Orchestrated bounded contexts communicating via events

Orchestrated
Bounded
Context

Orchestrated
Bounded
Context

Orchestrated
Bounded
Context

llZl IZIT lIZI IIZI

Message Broker

Landscape

Google Cloud

Choreography (event-driven)

AWS: SQS, SNS, EventBridge
Azure: Event Grid, Event Hubs, Service Bus
Google Cloud: Pub/Sub, Eventarc

Other: Kafka, Pulsar, Solace PubSub+, RabbitMQ), NATS...

—-“!/

Orchestration

AWS: Step Functions
Azure: Logic Functions
Google Cloud: Workflows, Cloud Composer

Other: Apache Airflow

Serverless Workflow Specification

serverlessworkflow.io

A sandbox-level project at CNCF for a specification

Defines a declarative and domain-specific workflow

language for orchestrating events and services

W,

https://serverlessworkflow.io

Serverless Workflow Specification

serverlessworkflow.io

Workflow projects need to implement & support the spec

Spec doesn’t necessarily cover all aspects of a product and

not all products cover the whole specification

Services need to be described with OpenAPI

W,

https://serverlessworkflow.io

Orchestration:
Google Cloud Workflows

Google Cloud

a

Serverless Google External
Compute API's API's

SaaS
®0 (=
Private
00 U=
o - KB

Zlolv

Workflows - orchestrate & integrate

Payment Processor
Cloud Run

Authorize & charge CC

Shipper
Cloud Functions

Prepare & ship items

Notifier
Cloud Run

Notify user

[paymentDetails]
http.post

https://payment-processor.run.app/...

: ${paymentDetails}

processResult
http.post
https://.../cloudfunctions.net/ship

: S{processResult.body}
shipResult

http.post

Steps

Variable passing

Serverless Pause
JSON Parsing

Payment Processor Payment Processor

|/ 4 Cloud Run 17 Cloud Run

Authorize & charge CC

Authorize & charge CC

l l shipmentDetails

Step Sequencing
Payment Processor
I” CloudRun
Authorize & charge CC
() Shipper

Cloud Functions

Prepare & ship items

;

Notifier
Cloud Run

Notify user

() Shipper () Shipper
Cloud Functions Cloud Functions
Prepare & ship items Prepare & ship items
l @ WAIT l userDetails
Notifier Notifier
I” Cloud Run v Cloud Run
Notify user Notify user

Errors and retries

Configurable retries Configurable exception handling

Payment Processor

Payment Processor
I” cloudRun I” cloudRun
Authorize & charge CC Authorize & charge CC
l—» L MAX: 5 times
BACKOFF
() Shipper () Shipper
Cloud Functions Cloud Functions
Prepare & ship items Prepare & ship items
l SUCCESS ERROR
Notifier Notifier Pager
Cloud Run 17 cloud Run I7 cioud Run
Notify user Notify user Escalate to support

Conditionals and 3rd party calls

Read inventory

No Out of
Stock?

Shipper
Cloud Functions

Prepare & ship items

ERROR SUCCESS

s

Pager
I cloud Run

Escalate to su

pport

~
_—
~

Inventory DB
Yes
y
Request from the -y \
supplier W
Supplier API
\ / ~
Update inventory —_— \

}

Notifier
w Cloud Run

Notify user

»

Inventory DB

Other useful features

Subworkflows

to encapsulate common reusable flows

Connectors Pete

to connect to other Google Cloud APIs

Deploy, execute, manage workflows

Deploy a workflow

gcloud beta workflows deploy my-workflow --source=workflow.yaml
Execute a workflow

gcloud beta workflows execute my-workflow

See the result

gcloud beta workflows executions
describe <your-execution-id>
--workflow my-workflow

Google Cloud Platform orkflows-atamel

5 Workflows & Edit Workflow SYNTAX REFERENCE Visualization

MAIN
@& Configure — @ Define workflow

START
© Use Workflows syntax to define a workflow. Please refer to the syntax reference and sample workflows . DISMISS
1 # Copyright 2028 Google LLC
2. #
3 # Licensed under the Apache License, Version 2.0 (the "License”);
4 # you may not use this file except in compliance with the License. 0 randomgenFunction
5 # You may obtain a copy of the License at call
6 #
7 # http://www.apache.org/licenses/LICENSE-2.0
8 #
9 # Unless required by applicable law or agreed to in writing, software
1@ # distributed under the License is distributed on an "AS IS" BASIS,
1 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.) " z

3 i multiplyFunction

12 # See the License for the specific language governing permissions and
13 # limitations under the License. call
14 - randomgenFunction:
15 call: http.get
16 args:
17 url: https://us-centrall-workflows-atamel.cloudfunctions.net/randomgen
18 result: randomgenResult
19 - multiplyFunction: ® logFunction
20 call: http.post
21 args: call
22 url: https://us-centrall-workflows-atamel.cloudfunctions.net/multiply
23 body:
24 input: ${randomgenResult.body.random}
25 result: multiplyResult
26 - logFunction:
27 call: http.get ® floorFunction
28 args: call
29 url: https://api.mathjs.org/v4/
360 query:
31 expr: ${"log(" + string(multiplyResult.body.multiplied) + ")"}
32 result: logResult
33 - floorFunction:
34 call: http.post v returnResult
35 args:
36 url: https://floor-wvdgéhhtla-ew.a.run.app return
37 auth:
38 type: 0IDC
39 body:
490 input: ${logResult.body}
4 result: floorResult
42 - returnResult:

END

43 return: ${floorResult}

Case study: Pic-a-daily,
A microservice-based
picture sharing application

Google Cloud

Pic-a-daily: A photo sharing application

g.co/codelabs/serverless-workshop

@ Picadaily Serverless Workshop

4 Home & Collage 2 Upload

M Dish M Holy places M Road

M Food M Architecture M Lane

M Cuisine M Ceiling M Infrastructure
M Ingredient M Byzantine architecture M Thoroughfare
M Orange chicken M Arch M Horizon

M Produce M Building M Road surface

M Landmark

M Tower

M Sky

W Monument
M Spire

M Architecture

Choreographed (event-driven) architecture

) Google Cloud Platform

> Thumbnail service

. L)
Collage service ey Time
;. Cloud Run Cloud Run trigger
; Cloud Scheduler
' Store metadata
Q: Fetch g

Store Store
Cloud l
Pub/Sub 4

Query
| Picture buckets | File cregtionevent | : Image analysis
L= Cloud Storage Cloud Functions
A
. Analyse picture
Upload Store metadata
Eventarc Delete thumbnail

° : e Picture metadata

H 3 Cloud Firestore
‘ — @ ELOD"EP;PE : Fetch picture metadata———————>» e Viscl‘o"n“i =

App Engin : A
)

'
»
‘
\

3 Image GC service
> o Cloud Run —Delete metadata

3 different event handling approaches

exports.vision_analysis = async (event, context) => {

const filename = event.name;

const filebucket = event.bucket;

app.post('/"',
const
const
const

app.post('/',
const
const
const
const
const

async (req, res) => {

pubSubMessage = req.body;

eventType = pubSubMessage.message.attributes.eventType;

fileEvent = JSON.parse(Buffer.from(pubSubMessage.message.data, 'base64').toString().trim());

async (req, res) => {

cloudEvent = HTTP.toEvent({ headers: req.headers, body: req.body });
logEntryData = tolLogEntryData(cloudEvent.data);

tokens = logEntryData.protoPayload.resourceName.split('/");

bucket = tokens[3];

objectName = tokens[5];

Orchestrated architecture

) Google Cloud Platform

‘ I Fetch picture metadata ¢
ol lfrontend Upload/List > Ffictu;g‘buckets ¢ RictU(e metadata
App Engine Cloud Storage Cloud Firestore
b

_________________ File creation/deletion | _T ~—
: Delete thumbnail
; < - N
: Image GC Image GC Delete
Gcs \ Firestore J Tiethdath Store metadata Fetch Query metadata
& I Store |
OBJECT .
Trigger Workflow DELETE e Vision Vision Transform Fetch Thumbnail Collage
Cloud Functions API Cloud Functions Store Cloud Run Cloud Run
+
Analyse picture
OBJECT
Image Analysis i;’:;:’ggg Store metadata Thumbnail Call Collage Call

UNKNOWN NO
l | ‘/Ejnd R

| essons learned

Google Cloud

Lessons Learned

Simple REST was refreshing (vs. 3 eventing formats)

Less code (eg. no event parsing, no Image Analysis &

Garbage Collector functions)
- Less setup (eg. no Pub/Sub, no Scheduler, no Eventarc)

Easier error handling (eg. the whole chain stops on error)

Lessons Learned

— New service to learn with its quirks and limited docs

— Code vs. YAML, in a single YAML file
(code is easier to write and test than YAML!)

— Debugging / testing / logging is not mature, no IDE support
— Lost parallelism

— Loss of eventing flexibility

Thank you C—
! -

Cloud Workflows Cloud Workflows tips
cloud.google.com/workflows bit.ly/gcw-tips
Quickstart

cloud.google.com/workflows/docs/quickstarts

Codelab: Intro to serverless orchestration with Workflows
codelabs.developers.google.com/codelabs/cloud-workflows-intro

Mete Atamel Guillaume Laforge
@meteatamel yJ @glaforge
& atamel.dev & glaforge.appspot.com

W
speakerdeck.com/meteatamel ._T ﬂ

