
Choreography vs Orchestration
in serverless microservices

Mete Atamel
Developer Advocate at Google
 @meteatamel
 atamel.dev
speakerdeck.com/meteatamel

Guillaume Laforge
Developer Advocate at Google
 @glaforge
 glaforge.appspot.com

Choreography vs Orchestration

CHOREOGRAPHY ORCHESTRATION

Imagine a simple e-commerce transaction

Services calling each other directly

Frontend
App Engine

Order request

Payment Processor
Cloud Run

Authorize & charge CC

Shipper
Cloud Functions

Prepare & ship items

Notifier
Cloud Run

Notify user

Simple REST: Pros and Cons

Pros

➕ Better than a single monolith

➕ Easy to implement: Services

simply call each other

Cons

➖ Too much coupling between all
the services

➖ Each service can be a SPOF

➖ Each service needs its own error /
retry / timeout logic

➖ Who ensures the whole
transaction is successful?

Choreography (event-driven)

Event-driven services

Frontend
App Engine

Order request

Payment Processor
Cloud Run

Authorize & charge CC

Shipper
Cloud Functions

Prepare & ship items

Notifier
Cloud Run

Notify user

Message Broker

Imagine a more complex transaction

Choreography: Pros and Cons

Pros

➕ Services are loosely coupled,

➕ Services can be changed
independently

➕ Services can be scaled
independently

➕ No single point of failure

➕ Events are useful to extend the
system beyond the current domain

Cons

➖ Difficult to monitor the whole system

➖ Errors / retries / timeouts are
problematic

➖ The business flow is not captured
explicitly

➖ Who ensures the whole transaction is
successful?

Orchestration

Orchestrated services

Frontend
App Engine

Order request

Payment Processor
Cloud Run

Authorize & charge CC

Shipper
Cloud Functions

Prepare & ship items

Notifier
Cloud Run

Notify user

Orchestrator

Orchestration: Pros and Cons

Pros

➕ Business flow captured centrally
and source controlled

➕ Each step can be monitored

➕ Errors / retries / timeouts are
centralized

➕ Use simple REST, no need for
events

➕ Services are independent

Cons

➖ A new orchestrator service to worry
about

➖ Orchestrator could be a single point
of failure

➖ Reliance on REST means more
tight-coupling

Which one is better?

Choreography or
Orchestration?

It depends...

Choreography

Services are not closely related

Services can exist in different

bounded contexts

Multiple bounded contexts

communicating via events

Orchestration

Can you describe the business logic

in a flow chart?

Are services closely related in a

bounded context?

Do you want to stay in REST?

Hybrid approach

Orchestrated bounded contexts communicating via events

Orchestrated
Bounded
Context

Message Broker

Orchestrated
Bounded
Context

Orchestrated
Bounded
Context

Landscape

Choreography (event-driven)

AWS: SQS, SNS, EventBridge

Azure: Event Grid, Event Hubs, Service Bus

Google Cloud: Pub/Sub, Eventarc

Other: Kafka, Pulsar, Solace PubSub+, RabbitMQ, NATS...

Orchestration

AWS: Step Functions

Azure: Logic Functions

Google Cloud: Workflows, Cloud Composer

Other: Apache Airflow

Serverless Workflow Specification
serverlessworkflow.io

A sandbox-level project at CNCF for a specification

Defines a declarative and domain-specific workflow

language for orchestrating events and services

https://serverlessworkflow.io

Serverless Workflow Specification
serverlessworkflow.io

Workflow projects need to implement & support the spec

Spec doesn’t necessarily cover all aspects of a product and

not all products cover the whole specification

Services need to be described with OpenAPI

https://serverlessworkflow.io

Orchestration:
Google Cloud Workflows

Serverless
Compute

External
API’s

Google
API’s

etc...

Workflows - orchestrate & integrate

SaaS
API’s

Private
API’s

Other
Clouds

- processPayment:

 params: [paymentDetails]

 call: http.post

 args:

 url: https://payment-processor.run.app/...

 body:

 input: ${paymentDetails}

 result: processResult

- shipItems:

 call: http.post

 args:

 url: https://.../cloudfunctions.net/ship

 body:

 input: ${processResult.body}

 result: shipResult

- notifyUser:

 call: http.post

 ...

Payment Processor
Cloud Run

Authorize & charge CC

Notifier
Cloud Run

Notify user

Shipper
Cloud Functions

Prepare & ship items

YAML or JSON syntax

Payment Processor
Cloud Run

Authorize & charge CC

Notifier
Cloud Run

Notify user

Shipper
Cloud Functions

Prepare & ship items

Payment Processor
Cloud Run

Authorize & charge CC

Notifier
Cloud Run

Notify user

Shipper
Cloud Functions

Prepare & ship items

WAIT

Payment Processor
Cloud Run

Authorize & charge CC

Notifier
Cloud Run

Notify user

Shipper
Cloud Functions

Prepare & ship items

shipmentDetails

userDetails

Step Sequencing Serverless Pause
Variable passing

JSON Parsing

Steps

Errors and retries

Payment Processor
Cloud Run

Authorize & charge CC

Notifier
Cloud Run

Notify user

Shipper
Cloud Functions

Prepare & ship items

MAX: 5 times
BACKOFF

Payment Processor
Cloud Run

Authorize & charge CC

Notifier
Cloud Run

Notify user

Shipper
Cloud Functions

Prepare & ship items

Pager
Cloud Run

Escalate to support

SUCCESS ERROR

Configurable retries Configurable exception handling

Conditionals and 3rd party calls

Notifier
Cloud Run

Notify user

Shipper
Cloud Functions

Prepare & ship items

Pager
Cloud Run

Escalate to support

SUCCESSERROR

Out of
Stock?

No

Request from the
supplier

Yes

Read inventory

Inventory DB

Update inventory

Inventory DB

Supplier API

Other useful features

Subworkflows

to encapsulate common reusable flows

Connectors ßeta

to connect to other Google Cloud APIs

Deploy, execute, manage workflows

Deploy a workflow

Execute a workflow

See the result

Case study: Pic-a-daily,
A microservice-based
picture sharing application

Pic-a-daily: A photo sharing application
g.co/codelabs/serverless-workshop

Choreographed (event-driven) architecture

3 different event handling approaches

Orchestrated architecture

Lessons learned

Lessons Learned

➕ Simple REST was refreshing (vs. 3 eventing formats)

➕ Less code (eg. no event parsing, no Image Analysis &

Garbage Collector functions)

➕ Less setup (eg. no Pub/Sub, no Scheduler, no Eventarc)

➕ Easier error handling (eg. the whole chain stops on error)

Lessons Learned

➖ New service to learn with its quirks and limited docs

➖ Code vs. YAML, in a single YAML file

(code is easier to write and test than YAML!)

➖ Debugging / testing / logging is not mature, no IDE support

➖ Lost parallelism

➖ Loss of eventing flexibility

Cloud Workflows Cloud Workflows tips
cloud.google.com/workflows bit.ly/gcw-tips

Quickstart
cloud.google.com/workflows/docs/quickstarts

Codelab: Intro to serverless orchestration with Workflows
codelabs.developers.google.com/codelabs/cloud-workflows-intro

Thank you

Mete Atamel
@meteatamel
atamel.dev
speakerdeck.com/meteatamel

Guillaume Laforge
@glaforge
glaforge.appspot.com

