“Simply reactive”

Vert.x, Mutiny, Hibernate Reactive and Quarkus

Julien Ponge

Principal Software Engineer

Reactive: resource
efficient by design

S

%

Agenda

A reactive continuum built by Red Hat

VERTX

A modern reactive
toolkit for the JVM

%

QUARKUS

Modern reactive
framework

¥y HIBERN MUTINY!

VERTX

Benefits of Reactive

Event-driven —? On event X Do Y

T B — e
‘ Use resources
Non-Blocking 1/0= > eFficiently aaa
$. uju]n —?
[aaag g
| thread = many
connections!

VERTX

Reactive SQL clients

7

O\

E]QUARKUS

MUTINY!
HIBERNAT

VERTX

Reactive SQL clients

2

MlITINV’

¥y HIBERN A

VERTX

Reactive SQL clients

Demo timel

Community

A vergat/‘/e fUO/k;f'/ Reactiverse

Eclipse Vert.x
Stack

(D =

Reactive database clients Messaging and Web APIs and clients Integration
event streams

Asynchrongys and Reactiye|

JU”(’ﬂP{)ngp
o 00

Clustering Micro-services and Security and
cloud native authentication

Taming
asynchronous
programming?

Red Hat

Why MUTINY!

0 MOre “Uonad-hell !

WebClient webClient = WebClient.create(vertx);
webClient
.get (3001, "localhost", "/ranking-last-24-hours")
.as(BodyCodec.jsonArray())
.rxSend()
.delay(5, TimeUnit.SECONDS, RxHelper.scheduler(vertx))
.retry(5)
.map(HttpResponse: :body)
.flattenAsFlowable(Functions.identity())
.cast(JsonObject.class)
.flatMapSingle(json -> whoOwnsDevice(webClient, json))
.flatMapSingle(json —-> fillWithUserProfile(webClient,
.subscribe(
this::hydrateEntryIfPublic,
err -> logger.error("Hydratation error", err),
() -> logger.info("Hydratation completed"));

=
1

-

pr

eventConsumer
.subscribe("incoming.steps")
.toFlowable()

‘m concatMapMaybeDelayError (Function<? super KafkaConsumerRe..

‘m concatMapMaybeDelayError (Function<? super KafkaConsumerge.,
‘m concatMapSingle (Function<? super KafkaConsumerRecord<Stri..
‘m concatMapSingle (Function<? super KafkaConsumerRecord<Stri..
‘m concatMapSingleDelayError (Function<? super KafkaConsumerRk..
‘m concatMapSingleDelayError (Function<? super KafkaConsumerR..
‘m concatMapSingleDelayError (Function<? super KafTkaConsumerg..
‘m concatWith (Completa.. Flowable<KafkaConsumerRecord<String,
m concatWith (Publishe.. Flowable<KafkaConsumerRecord<String,
‘m concatWith (MaybeSou.. Flowable<KafkaConsumerRecord<String,
‘m concatWith(SingleSo.. Flowable<KafkaConsumerRecord<String,
‘m contains (Object item)

‘m count ()

‘m debounce (long timeo.. Flowable<KafkaConsumerRecord<String,
‘m debounce (Long timeo.. Flowable<KafkaConsumerRecord<String,
‘m dehounce (Functinn<?.. Flowahle<KaftkaConsumerRecord<Strina.

/4 Results might be incomplete while indexing is in progress
JsonuUbject data = record.vatuve();

Flowable<R>
Flowable<R>
Flowable<R>
Flowable<R>
Flowable<R>
Flowable<R>
Flowable<R>
JsonObject>>
JsonObject>>
JsonObject>>
JsonObject>>

Single<Boolean>

Single<Long>
JsonObject>>
JsonObject>>
annnhienr>{

We need navigable APILs!

nsu

MUTINY!

service.order(order)
.onItem().transform(i -> process(i))
.onFailure().recoverWithItem(fallback)

.subscribe() .with(
item -> ...
)

Sub.

Analysing the Performance and Costs of Reactive

Programming

Julien Ponge
jponge@redhat.com
Red Hat
Lyon, France

Clément Escoffier
cescoffi@redhat.com
Red Hat
Valence, France

Abstract

Modern services running in cloud and edge environments
need to be resource-efficient to increase deployment density
and reduce operating costs. Asynchronous 1/O combined
with asynchronous programming provides a solid techni-
cal foundation to reach these goals. Reactive programming
and reactive streams are gaining traction in the Java ecosys-
tem. However, reactive streams implementations tend to be
complex to work with and maintain. This paper discusses
the performance of the three major reactive streams com-
pliant libraries used in Java applications: RxJava, Project
Reactor, and SmallRye Mutiny. As we will show, advanced
optimization techniques such as operator fusion do not yield
better performance on realistic 1/O-bound workloads, and
they significantly increase development and maintenance
costs.

CCS Concepts: « Software and its engineering;

Keywords: reactive programming, reactive streams, java,
benchmarking

ACM Reference Format:

Julien Ponge, Arthur Navarro, Clément Escoffier, and Frédéric Le
Mouél. 2021. Analysing the Performance and Costs of Reactive Pro-
gramming Libraries in Java. In Proceedings of the 8th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and
Systems (REBLS 21), October 18, 2021, Chicago, IL, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1 145/3486605.3486788

Libraries in Java

Arthur Navarro
arnavarr@redhat.com
Red Hat
Villeurbanne, France

Frédéric Le Mouél
frederic.le-mouel@insa—lyon.fr
Univ Lyon, INSA Lyon, Inria, CITL EA3720
Villeurbanne, France

1 Introduction

Modern applications are made by composing distributed
services that are developed in-house or taken from off-the-
shelve third-party vendors. Services are being increasingly
deployed and operated in Kubernetes clusters in cloud and
edge environments[4]. Micro-services recently became a pop-
ular architecture style where each service has a tight func-
tional scope, has data ownership and has its own release
life-cycle. Such services can be scaled up and down in a fine-
grained fashion to respond to fluctuating workloads. For
instance, a service may have 12 instances running at peak
time during the day and 0 at night when there is no traffic.
It is increasingly important to maximize deployment density
in such environments where costs are driven by resource
usage[21], hence deploy resource-efficient services[5].

One of the key ingredients for resource efficiency is to
move away from traditional software stacks where each net-
work connection is associated with a thread, and where I/ 0
operations are blocking[8]. By moving to asynchronous I/0,
one can multiplex multiple concurrent connection process-
ingona limited number of threads[7, 13], but this requires
abandoning familiar imperative programming constructs.

There is a great interest in the Java ecosystem for em-
bracing asynchronous 1/O and asynchronous programming,
with reactive streams[16] playing a pivotal role as a foun-
dation for higher-level programming models and middle-
ware[9, 17, 19, 20]. Still, reactive streams implementations
such as RxJava[19], Reactor[20] and Mutiny[17] are complex.
The maintenance of such libraries is expensive due to the
complexity of the reactive streams protocol. As reactive is

ncy

ncy Frequency Freque

Frequency Freque

N

o

o
1

o

N

o

o
i

o

N

o

o
!

Network requests - 1000 samples

190 200 210 220
ms/op (less is petter) - 100 bins

Bl Rxjava

. Reactor

pmm Baseline

230 240

10

n

Mutiny and the Vert.x SQL client

Demo timel

Hibernate goes
reactive!

Red Hat

¥\ HIBER

Mutiny

VERIX

SQL Client reactive drivers

PostgreSQL

MySQL

DB2

MS SQL

14

Vert.x + Mutiny + Hibernate Reactive

Demo timel

QUARKUS

Reactive

A stack to write J&ge#apps

-\ o
B o-0X;
\ 4

Cloud Native, Microservices, Serverless

15

Quarkus + Resteasy Reactive + Panache

Demo timel

17

A cohesive and comprehensive ecosystem

A reactive continuum built by Red Hat

ag

ag VERT.X [® QUARKUS
Reactive: resource - A modern reactive - Modern reactive
efficient by design toolkit for the JVM framework

¥y HIBERN MUTINY!

S

VERTX

:! g“ \ in linkedin.com/company/red-hat

B youtube.com/user/RedHatVideos
“Simply reactive”

Vert.x, Mutiny, Hibernate Reactive and Quarkus
f facebook.com/redhatinc

Julien Ponge

’ twitter.com/RedHat

