
Create a git-like
experience for Data
Lake analytics
October 2021, Itai Admi

Itai Admi
R&D Team Lead
Treeverse
 Tel Aviv, Israel

Data Lake Architecture Reference

Events Data

Operations Data

OBJECT
STORAGE

Data Processors

Analytics Engines

Data Viz

Data Exploration

1. Scalability and cost effectiveness

2. Accessibility and ease of use

3. High throughput

4. Rich application ecosystem

The Data Lake Advantage

1. In-ability to experiment, compare and reproduce
Example: add new metric for BI

2. Difficult to enforce data best practices
Example: schema, format enforcement

3. Hard to ensure high quality data
Example: validate statistical properties of the data

The Data Lake Challenge

we would manage data
from dev to production
the way we manage code

In a perfect world

Atomic versioned
data lake on top of
object storage

In a perfect world

Data ConsumptionData Sources

Object Store

Manageability & Reliability Layer

Versioning Engine
Transactional, atomic,
isolated

Git Terminology
Branch, commit, merge

API Compatibility
with object stores

How it works

How it works

Will create an external table using the same partitions and configurations
but pointing at paths under the new branch
Lakectl metastore copy \

=-from-table user_events \
=-to-branch dev-experiment-1

s3://data-bucket/collections/foo

s3://data-bucket/main/collections/foo

Integrates with your existing tools

Object Store

Streaming Data

Batch Jobs

Data Visualization

MLOps

Query Engines Data Quality

lakeFS can be used in any
stage of your data
development lifecycle

In Development
● Experiment - try new tools, upgrade versions, and evaluate code changes in

isolation.

● Debug - checkout specific commits in a repository’s commit history to
materialize consistent, historical versions of your data.

● Collaborate - leverage isolated branches managed by metadata (not copies of
files) to work in parallel.

Experiment Safely

Experimenting with Spark

 lakectl branch create \
 lakefs:=/example-repo@testing-spark-3 \
 =-source lakefs:=/example-repo@main
 # output:
 # created branch 'testing-spark-3.0', pointing to commit ID: 'd1e9adc71c10a’

 val dfExperiment1 = sc.read.parquet("s3a:=/example-repo/experiment-1/events/by-date")
 val dfExperiment2 = sc.read.parquet("s3a:=/example-repo/experiment-2/events/by-date")

 dfExperiment1.groupBy("==.").count()
 dfExperiment2.groupBy("==.").count() =/ now we can compare the properties of the data itself

Experimenting with Presto

 lakectl branch create \
 lakefs:=/example-repo@testing-spark-3 \
 =-source lakefs:=/example-repo@main
 # output:
 # created branch 'testing-spark-3.0', pointing to commit ID: 'd1e9adc71c10a’

CREATE TABLE master.request_logs (
 request_time timestamp,
 url varchar,
 ip varchar,
 user_agent varchar
)
WITH (
 format = 'TEXTFILE',
 external_location = 's3a:=/example/main/data/logs/'
);

During Deployment

● Data update safety - Ingest new data onto an isolated branch, perform data
validations, then add to production through a merge operation.

● Test - define pre-merge and pre-commit hooks to run tests that enforce schema
and validate properties of the data to catch issues before they reach production.

Enforce Best Practices

CI with PyArrow

import lakefs
import pyarrow.parquet as pq

Setup a PyArrow FileSystem that we can use to query data in the source ref
fs = lakefs.get_filesystem(repo, source_ref)

for change in lakefs.diff(repo, source_ref, target_branch, prefix='public/'):
 if not change.path.endswith('.parquet'):
 continue
 # Read Parquet column metadata
 schema = pq.read_schema(fs.open_input_file(change.path))
 if filter(lambda column: column.name == 'user_id', schema):
 raise ValidationError('user_id column not allowed')

Streaming Data with Kafka Connect

Commit metadata
topic_name = events
topic_offset = 1761348
job_git_commit = 60c3fa

main

stream-1

 In Production

● Roll Back - recover from errors by instantly reverting data to a former,
consistent snapshot of the data lake.

● Troubleshoot - investigate production errors by starting with a snapshot of the
inputs to the failed process.

● Cross-collection Consistency - provide consumers multiple synchronized
collections of data in one atomic, revertable action.

Troubleshoot - Reproduce a bug in production

Simplify workflows at each step of
the data lifecycle

Development
test new tools, upgrade versions,

and evaluate in isolation

Deployment
enforce best practices to catch
changes before they reach
production

Production
instantly recover from errors by

reverting data

lakeFS Architecture

Data != code

Code Data Lake

Amount of files tracked Thousands-3.5 million Millions-billions

File format Mutable text files Immutable binary data files,
unstructured data

Change velocity Hundreds of changes/day Potentially millions/day

Change resolution Lines in files files

Mode of operation Clone locally, push changes Unless you’re rich, you work
remotely

https://www.freecodecamp.org/news/the-biggest-codebases-in-history-a128bb3eea73/
https://www.techradar.com/news/at-100tb-the-worlds-biggest-ssd-gets-an-eye-watering-price-tag

Architecture

Data Format

Commit
Meta range ID: ...

Master
Commit ID: ...

8-12MB .sst files,
containing continuous
sorted keys

.sst file,
pointing to
range files

Further Reading

https://docs.google.com/document/d/1jzD7-jun-tdU5BGapmnMBe9ovSzBvTNjXCcVztV07A4/edit?usp=sharing

Demo

Additional Resources

Getting started

Check out the docs

Join the lakeFS Slack Channel

Contribute and star the repo

https://docs.lakefs.io/quickstart/
https://docs.lakefs.io/
https://join.slack.com/t/lakefs/shared_invite/zt-g86mkroy-186GzaxR4xOar1i1Us0bzw
https://github.com/treeverse/lakeFS
https://join.slack.com/t/lakefs/shared_invite/zt-g86mkroy-186GzaxR4xOar1i1Us0bzw
https://github.com/treeverse/lakeFS
https://docs.lakefs.io/
https://docs.lakefs.io/quickstart/

Thanks!

Join the community einat.orr@treeverse.ioGitHub

https://join.slack.com/t/lakefs/shared_invite/zt-fm6e2ncx-6wR3yW5jABXBuqN2NnLCDA
https://github.com/treeverse/lakeFS
https://join.slack.com/t/lakefs/shared_invite/zt-fm6e2ncx-6wR3yW5jABXBuqN2NnLCDA
https://github.com/treeverse/lakeFS

