

Release multiple times per day

Continuously deploy to production

New features are created in a separate branch

Master

Hotfix

Release

Dev

Feature A

Feature B

Time

Team uses long lived branches

Harder to merge

Feature can only be released
when complete

Dev

Feature A

Feature B

if (feature.IsEnabled("NewSearchPage"))
{

// New feature implementation
}

Features in a different way

Back to “trunk based development”
Push functionality when and to whom you want

Decouple release from deployment
Expand or “rollback“ without redeployment

Code branch management

Other reasons include

Decoupling deployment from release

New feature is
included and
replaces old

Requires a rollback
to revert to original
code

All or nothing releases

If statement
evaluates state
of feature flag

First always off Incomplete
feature can be

still be deployed

aka Toggle Router and
Feature Toggle

There might not be an
original feature

Original featureOriginal feature

New feature is
ready for release

Flag logic
chooses when to

route flow to
new feature

Flags are released three times

Flag logic needs
to be removed

Release Operations Experiment Permission

• Performance
related

• Manual circuit
breakers

Short
to long-lived

• On/Off
Kill-switch

• Testing
scenarios

• Dynamic

Short lived

• Percentage

• Time Window

• Deploy
incomplete
code

• Time release

Short-lived

• On

• Off

• Percentage

• Targeted users

• Defining
cohorts

User or
request based

• Claims

• Cookies

• Tenant

Rules and settings for evaluation in flag router

Application
Logic

Rules

Evaluates and
filters on
certain
conditions

Settings

Determines
flag state
Multiple
parameters

Named key-value pairs

Different per environment
Feature Value

LeaderboardListLimit On

APIv2 Parameters

BetaWebsite Opt-in

Feature Value

LeaderboardListLimit Off

APIv2 Off

BetaWebsite Opt-in

Feature Value

LeaderboardListLimit On

APIv2 Off

BetaWebsite Opt-in

In process service for evaluation

Externalized storage of key/value pairs

Microsoft .NET Core Feature Management

RimDev.AspNetCore.FeatureFlags

NFeature (GPL)

Feature Toggle (Apache 2.0)

Feature Switcher (Apache 2.0)

FlipIt (Apache 2.0)

Software as a Service Application Frameworks

Esquio

Platform as a Service

https://github.com/microsoft/FeatureManagement-Dotnet
https://andrewlock.net/alternatives-to-microsoft-featuremanagement/#rimdev-aspnetcore-featureflags
https://github.com/benaston/NFeature
https://github.com/jason-roberts/FeatureToggle
https://github.com/mexx/FeatureSwitcher
https://github.com/timscott/flipit

Feature
management is

injected in
application logic

Might be a
cached snapshot
or refreshed

All configuration
sources are available

Register service

Uses configuration values

services.AddFeatureManagement();

"FeatureManagement": {
"Feature1": false,
"Feature2": true,
"Feature3": {
"EnabledFor": [{

"Name": "AlwaysOn"
}

]
},
"Feature4": {
"EnabledFor": [{

"Name": "Microsoft.Percentage",
"Parameters": {
"Value": 50

}
}

]
}

}

Implementations of IFeatureFilter

Provided out of the box

Other filters:

public interface IFeatureFilter
{

bool Evaluate(FeatureFilterEvaluationContext context);
}

ASP.NET Core

FeatureGate

Middleware

Routing

Tag Helper

Disabled

feature

handler

Action

Filters

Features in ASP.NET Core

Deep integration into
application framework

NuGet package
Microsoft.FeatureManagement.AspNetCore

Azure App Configuration

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)
{
app.UseAzureAppConfiguration();

builder.AddAzureAppConfiguration(options => {
options.Connect(configuration["ConnectionStrings:AppConfig"]);
options.Use(KeyFilter.Any);
options.UseFeatureFlags();

});

Demo
Feature flags on Microsoft
platform

ASP.NET Core Feature Management
Azure App Configuration

Health and metrics

Telemetry is crucial to know about system stability

Essential to monitor your solution when toggling

PASS

PASS PASS PASS PASS FAIL

PASS PASS PASS

FAIL FAIL FAIL FAIL

FAIL

FAIL FAIL

Gates indicate success

Deployment still rejected

Gate 1

Gate 2

Gate 3

Stabilization time Timeout

Sampling interval

PASS

PASS

Approve

PASS

Essential to monitor your solution when toggling

PASS

PASS PASS PASS PASS FAIL

PASS PASS PASS

FAIL FAIL FAIL FAIL

FAIL

FAIL FAIL

Reject
Gates indicate success

Deployment still rejected

Gate 1

Gate 2

Gate 3

Stabilization time Timeout

Sampling interval

PASS

FAIL FAIL FAIL FAIL

PASS

PASS PASS

PASS

PASS

PASS

PASS

PASS

PASS

Deploy Release

Gives more autonomy

Flags introduce technical debt

Rings

Gradually increase blast radius

Deployment:

Feature:

Cohorts

Different size groups

Can offer opt-in model

Early Adopters

Canary

Progressively reveal and expose features using flags

Same principles as deployment

Gates

Check performance
metrics and alerts
Allow or disallow
next stage by
approval

Gates

Check performance
metrics and alerts

Demo
Continuous release

Azure Pipelines

Unit testing as usual: test both implementations

Integration testing permutations doesn’t work

New strategy:

A|B testing Dark launching Canary releases

Testing in production

Making it real

QA and UAT
where it
matters

A|B testing (aka split testing)

Combine feature flag with experiment led by hypothesis
Increase percentage that has feature enabled

Measure results, outcome and gather feedback

Previously Routing to two different implementations

Now Percentage filter in single implementation

Lifecycle of flag

Remove

Too many flags

Flags used in multiple places

Fine grained toggles

Toggling business value vs
technical capabilities

Pitfalls

Combine feature toggles

Complexity
Dependent flags (one flag depends on other one)

Long lived

Launching in the blind (no monitoring)

Unseparated control

Don’t describe what toggle does

Repurposing feature flags

Avoid flags as long-lived functionality

Separate flag management from app

Monitor usage of flags

Enable just one toggle at a time

Add hardcoded fallback

Start with master flags and add smaller flags later

Define naming convention for flags

Questions and Answers

Resources

https://martinfowler.com/articles/feature-toggles.html

https://opensource.com/article/18/2/feature-flags-ring-deployment-model

https://docs.microsoft.com/en-us/azure/devops/migrate/phase-features-with-feature-flags

https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

https://featureflags.io/

https://github.com/microsoft/FeatureManagement-Dotnet

https://github.com/alexthissen/featuremanagement

https://github.com/Azure/AppConfiguration

https://docs.microsoft.com/en-us/azure/azure-app-configuration/use-feature-flags-dotnet-core

https://martinfowler.com/articles/feature-toggles.html
https://opensource.com/article/18/2/feature-flags-ring-deployment-model
https://docs.microsoft.com/en-us/azure/devops/migrate/phase-features-with-feature-flags?view=azure-devops
https://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/
https://featureflags.io/
https://github.com/microsoft/FeatureManagement-Dotnet
https://github.com/alexthissen/featuremanagement
https://github.com/Azure/AppConfiguration
https://docs.microsoft.com/en-us/azure/azure-app-configuration/use-feature-flags-dotnet-core

