
JJaavva Ea Evvolutionolution

▪ Cay Horstmann
▪ Author of Core Java (11 editions since 1996), Java for the

Impatient, etc.

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

WhWhy Cary Care about Ee about Evvolutionolution??

▪ “There are two kinds of programming languages: the ones people
complain about, and the ones that nobody has heard of.”—Bjarne
Stroustrup

▪ Java was designed as a “blue-collar” language
• Easy to learn
• Unsurprising

▪ Java has a vast standard library
• Mostly of high quality

▪ Java is incredibly backwards-compatible
▪ For many years, evolution was managed by a deliberative and formal process

• Java Community Process
• Java Specification Requests

▪ The process has changed
• How well is it working?
• What can/should developers do?

A BA Brief Hrief Hististory oory of Jf Jaavvaa

Version Year New Language Features Number of Classes and Interfaces
1.0 1996 The language itself 200
1.1 1997 Inner classes 418
1.2 1998 The strictfp modifier 1,588
1.3 2000 Nothing at all 1,883
1.4 2002 Assertions 2,696

5.0 2004 Generic classes, “for each” loop, varargs, autoboxing, metadata, enumerations,
static import 3,551

6 2006 Nothing at all 4,069
7 2011 Switch with strings, diamond operator, binary literals, exception handling enhancements 4,509
8 2014 Lambda expressions, interfaces with default methods 4,733
9 2017 Modules 6,603
10 2018 var 6,599 (!)

11 2018 Nothing at all
4,910 (!!)—Java FX, JNLP, Java EE overlap, CORBA
removed

12 2019 switch expression preview 4,935
13 2019 Text blocks preview 4,904

TThe Rhe Relelease Cadencease Cadencee

PPrrojects, JEPojects, JEPs, Is, Incubancubation, Ption, Prreeviewview

▪ Projects
• Amber: Small productivity-oriented language features
• Valhalla: Value types and generic specialization
• Loom: Fibers and continuations
• Many others: Graal, Panama, Kulla, Sumatra, ...

▪ JEP = Java Enhancement Proposal
• De facto managed by Oracle
• Participants must sign Oracle Contributor Agreement
• Tracked on JDK bug system
• Discussed on openjdk mailing lists

▪ Incubator module (JEP 11): Non-final API
▪ Preview feature (JEP 12): Non-final language/VM feature

FFilile API Ee API Evvolutionolution

▪ Bug report JDK-8183743—Umbrella: add overloads that take a
Charset parameter

▪ Java 7 introduces StandardCharsets subclass of Charset
▪ StandardCharsets.UTF_8 can be autocompleted, don't have to ponder
"UTF-8" vs "UTF8" vs "UTF_8"

▪ Java 7 makes use of it: Files.newBufferedReader(Path, Charset)
▪ Bug JDK-8183743 says “what about the rest of the API?”
▪ Java 10 adds constructors Scanner(..., Charset charset) and PrintWriter(..., Charset charset)
▪ Java 11 does the same for FileReader, FileWriter
▪ Hooray!
▪ For similar enhancements, search for CSR in https://bugs.openjdk.java.net

https://bugs.openjdk.java.net/browse/JDK-8183743
https://bugs.openjdk.java.net/

HHttpttpClienClientt

▪ 2012 “Http Client API for JDK 8” announced on openjdk-net-dev
mailing list

• Replacing crufty HttpURLConnection
▪ 2014 JEP 110 “HTTP/2 Client (Incubator)” expands scope to HTTP/2

and WebSocket
▪ 2015 API review on mailing list, first prototype (HTTP/1.1 only)

available
▪ 2016 Minor API revisions

• Build a client:

HttpClient client = HttpClient.newBuilder()
.followRedirects(HttpClient.Redirect.ALWAYS)
.build();

• Build a request:

HttpRequest request = HttpRequest.newBuilder()
.uri(new URI("http://horstmann.com"))
.GET()
.build();

• Get and handle response:

HttpResponse<String> response = client.send(request, HttpResponse.BodyHandler.asString());

HHttpttpClienClientt

▪ Asynchronous processing:

client.sendAsync(request, HttpResponse.BodyHandler.asString())
.completeOnTimeout(errorResponse, 10, TimeUnit.SECONDS)
.thenAccept(response -> ...);

▪ 2017 HttpClient released with JDK 9 in module
jdk.incubator.httpclient

▪ 2017 JEP 321: HTTP Client (Standard)
▪ 2018 HttpClient moved to module java.net.http, with very minor API

changes
• Ex. HttpRequest.BodyProcessor.fromString(data) → HttpRequest.BodyPublishers.ofString(data)

HHttpttpClienClientt

▪ So, it should be perfect now, right?
▪ No body publishers for form data, file upload

• It's 2019, and we still need to mess with URLEncloder, MIME multipart

▪ No JSON body publisher, processor
• JSON not part of the core platform

▪ No automatic compression handling
▪ No way of controlling high-volume concurrent requests (Bug

JDK-8183743)
▪ Which executor runs the thenAccept lambda?

ExecutorService pool = Executors.newFixedThreadPool(NTHREADS);
HttpClient.newBuilder()

.followRedirects(HttpClient.Redirect.NORMAL)

.executor(pool)

.build()

.sendAsync(request, HttpResponse.BodyHandlers.ofString())

.thenAccept(response -> . . .);

• The docs say pool
• In fact, it's the standard fork-join pool (Bug JDK-8204339)

▪ Takeaway: Don't expect miracles from the incubation process

https://bugs.openjdk.java.net/browse/JDK-8183743
https://bugs.openjdk.java.net/browse/JDK-8204339

RRaaw Sw String Littring Litereralsals

▪ Jan. 2018 JEP 326
▪ Goals:

• Foreign strings without escapes
• Multiline strings

▪ Non-goals:
• String interpolation
• Postprocessing

▪ Simple and ingenious: One more backtick than the contents

String markdown = ````Writing about JavaScript
```
alert("JavaScript");
```
in Markdown````

▪ Teensy problem: The string cannot start with a backtick.
• Why not start literal with ```` followed by newline?

String markdown = ````
```
alert("JavaScript");
```
````



Off the DOff the Deep Eeep Endnd

▪ Not blending in:

...
String myNameInABox = `

+-----+
| Cay |
+-----+`;

▪ Remedy: Stripping common whitespace prefix:

String myNameInABox = `
+-----+
| Cay |
+-----+

`;

▪ What about tabs?
• Started out with: Every prefix has to be the same sequence of tabs/spaces
• Later changed to: Every Unicode white space character counts as with 1

▪ Discussion went back and forth over hundreds of messages, including this beauty: “You are correct. I
thought I caught all the stray cases, but... The examples should have indentations that are multiples
of 4. The issue with pasting from IDEs to mailers. ”

http://mail.openjdk.java.net/pipermail/amber-dev/2018-July/003255.html


TTeext Bxt Bllocksocks

▪ JEP 326 withdrawn before JDK 12 shipped
• `` could be confused with empty string
• Can't have raw string start with `
• Waste of backtick character, ` hard to see, hard to type
• “Any number of quotes” confusing for IDEs

▪ Next up: JEP 355 Text Blocks
• Multiline strings
• Not raw, but medium rare—not too many escape sequences

String myFaceInASCII = """
""\"""\"""
| o  o |
|  ==  |
\\------/
""";

▪ Newline after initial """ required
▪ Must escape backslash, at least one " in """
▪ Prefix and trailing spaces stripped

• Want more control over stripping? CSR JDK-8227870 proposes \newline and \s
▪ Ships with JDK 13

Multiline Raw Interpolation Postprocessing

Yes No No No

http://mail.openjdk.java.net/pipermail/jdk-dev/2018-December/002402.html
https://bugs.openjdk.java.net/browse/JDK-8227870


Scala PScala Paattttern Mern Maattchingching

▪ A better switch

str(i) match {
case '+' | '-' => sign = 44 - ch
case ch if Character.isDigit(ch) => digit = Character.digit(ch, 10)
case SPACE => -1 // Uppercase for constants
case _ => sign = 0

}

▪ Type patterns

obj match {
case x: Int => x
case s: String => Integer.parseInt(s)
case _: BigInt => Int.MaxValue // Caution: not case BigInt
case _ => 0

}

▪ Extraction

arr match {
case Array() => 0
case Array(x, 0) => x
case Array(x, rest @ _*) => rest.min

}

▪ Also works with variable declarations, for comprehensions

val Array(first, second, rest @ _*) = arr
for ((k, "") <- System.getProperties())



JJaavva Pa Paattttern Mern Maattchingching

▪ JEP 305:

ch = obj instanceof String s && !s.isEmpty() ? s.charAt(0) : ' '

▪ Musings about

case String s
case Point(var x, var y)
case Point(var x, 0)
case Point(var x, _)
case String s && !s.isEmpty()

http://cr.openjdk.java.net/~briangoetz/amber/pattern-match_1.html


SSwitwitch ech exprxpressionsessions

▪ JEP 325:

int numLetters = switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY                -> 7;
case THURSDAY, SATURDAY     -> 8;
case WEDNESDAY              -> 9;

};

▪ An expression, not a statement
• Like conditional expression ? :

▪ Expressions to the right of ->
▪ No “fall through”
▪ Must be exhaustive

• Can have default ->
▪ “These changes will simplify everyday coding, and prepare the way for the use of pattern matching”
▪ Delivered as preview feature in JDK 12
▪ And with a minor change as preview feature in JDK 13 (JEP 354)
▪ Now targeted as a standard feature of JDK 14 (JEP 361)



GGivive Me Me a Be a Brreakeak

▪ What if you need to log something to the right of ->?

case TUESDAY -> { logger.info("Tuesday"); 7 }

▪ That's not Java—no block expression
▪ Lambdas suffer from the same problem

x -> x * x
x -> { logger.info("Dare to be square"); return x * x }

▪ What to do about a problem like block expressions?
• case TUESDAY -> { logger.info("Tuesday"); return 7; }
• case TUESDAY -> { logger.info("Tuesday"); break 7; } // JDK 12

▪ What about

case ... -> {
for (int i = 0; i < a.length; i++) {

if (a[i] == x) break i; // Error
}
break -1;

}

▪ What about

case ... -> { ...; break out; } // A labeled break?

▪ In JDK 13, it's yield



FFrrankankenswitenswitchch

▪ What about poor old toxic statement switch?

▪ switch (day) {
case MONDAY, FRIDAY, SUNDAY -> // Multiple case labels

numLetters = 6; // No fallthrough
case TUESDAY -> {

logger.info("Tuesday");
numLetters = 7;

}
case THURSDAY, SATURDAY ->

numLetters = 8;
default ->

numLetters = 9;
}



EEvvolution is Nolution is Noot a Ot a One-Wne-Waay Sy Strtreeteet

▪ What if expression switch has fall-through envy?

▪ int numLetters = switch(day) {
case MONDAY, FRIDAY, SUNDAY:

yield 6;
case TUESDAY:

logger.info("Tuesday");
yield 7;

case THURSDAY:
logger.info("Thursday"); // Yay! Fallthrough

case SATURDAY:
yield 8;

default:
yield 9;

};



TThe Mhe Maatrix (trix (JDK 12)JDK 12)

Expression Statement

No fallthrough

int numLetters = switch (day) {
case MONDAY, FRIDAY, SUNDAY -> 6;
case TUESDAY -> 7;
case THURSDAY, SATURDAY -> 8;
default -> 9;

};

switch (day) {
case MONDAY, FRIDAY, SUNDAY ->

numLetters = 6;
case TUESDAY -> {

logger.info("Tuesday");
numLetters = 7;

}
case THURSDAY, SATURDAY ->

numLetters = 8;
default ->

numLetters = 9;
}

Fallthrough

int numLetters = switch(day) {
case MONDAY, FRIDAY, SUNDAY:

break 6;
case TUESDAY:

logger.info("Tuesday");
break 7;

case THURSDAY:
logger.info("Thursday");

case SATURDAY:
break 8;

default:
break 9;

};

switch(day) {
case MONDAY, FRIDAY, SUNDAY:

numLetters = 6;
break;

case TUESDAY:
logger.info("Tuesday");
numLetters = 7;
break;

case THURSDAY:
logger.info("Thursday");

case SATURDAY:
numLetters = 8;
break;

default:
numLetters = 9;

}



TThe Ohe Original Sriginal Sinin

▪ “It seemed more desirable to tease the desired benefits (expression-
ness, better control flow, saner scoping) into orthogonal features, so
that switch expressions and switch statements could have more in
common. The greater the divergence between switch expressions
and switch statements, the more complex the language is to learn,
and the more sharp edges there are for developers to cut themselves
on.”

▪ Another matrix
Statement Expression

Two-way branch if/else ? :
Multi-way branch switch switch

▪ Why not multiway expressions?

int numLetters = day ??
MONDAY, FRIDAY, SUNDAY -> 6 :
TUESDAY -> 7 :
THURSDAY, SATURDAY -> 8 :
9;

▪ And what does any of this have to do with pattern matching?
• switch: Jump table with binary search
• Patterns are sequential, not constant



RRececorordsds

▪ Just immutable data

▪ record Point(int x, int y) {
double distance(Point other) { ... }

}

▪ Automatic constructor, private final fields, accessors x(), y(), equals,
hashCode, toString

▪ No other instance fields
▪ Eventually, some kind of deconstructor for pattern matching
▪ final and not abstract, supertype java.lang.Record
▪ Serializable
▪ Tuples with names
▪ Actually some data

• Judging from Google @AutoValue usage, likely to be about as popular as enum
▪ Non-goal: To solve all Java boilerplate problems
▪ To appear “soon”
▪ Some people want methods to update fields:.

Point projection = myPoint.y(0)

http://cr.openjdk.java.net/~cushon/amalloy/JDKRecordsProposalReport.html
https://mail.openjdk.java.net/pipermail/amber-spec-observers/2019-September/001666.html


LLoomoom

▪ 1995: Java language has thread support
▪ 1997: Java Web Server runs each web request in a new thread

• Amazing: thousands of concurrent requests

▪ Threads are expensive
• But what can you do when one blocks?

▪ Asynchronous programming
• Callback hell
• Futures
• Async/await

▪ Loom: What if blocking wasn't expensive?
• Millions of concurrent fibers
• Each thread runs many fibers
• Creating, switching between fibers cheap
• Blocking is virtually free
• VM, API park, unpark blocking fibers



““MMakake Ce Concurroncurrency Easy Aency Easy Againgain””

▪ Not so fast...
▪ More than one reason for concurrency
▪ User interfaces: UI components not threadsafe

• Single UI thread serializes operations
• Fibers won't help
• Keep using AsyncTask/SwingWorker

▪ What about parallel streams—the previous promise to “make
concurrency easy again”?

• Works great for non-blocking workloads...
• ...on splittable data structures
• With fibers, ok to block in tasks...
• ...on splittable data structures

▪ Fibers don't add value for computationally-intensive tasks
▪ Sweet spot: Many more tasks than threads, tasks not compute-bound



Kick the TKick the Tirireses

▪ Easy to build:

git clone https://github.com/openjdk/loom
cd loom
git checkout fibers
sh configure
make images

▪ Run a million fibers:

FiberScope scope = FiberScope.open();
for (int i = 1; i <= NTASKS; i++) {

int n = i;
scope.schedule(() -> run(n));

}
scope.close();

▪ Now Thread.sleep makes the current fiber sleep:

public static void run(int n) {
try {

Thread.sleep(1000);
} catch (InterruptedException ex) {

ex.printStackTrace();
}
System.out.println(n);

}

▪ Try it with threads
• On my laptop, out of memory after about 10,000 threads



SStructurtructured Ced Concurroncurrencyency

▪ Nathaniel Smith: “Start and forget” is like goto
go myfunc();
new Thread(this::myfunc).start();

sequential goto

▪ 1960s: Structured programming replaces goto with branches, loops, functions

...... ... ...

if loop function
call

▪ Structured concurrency: Should do the same with concurrent tasks

... ... ...

▪ Control over resource deallocation, cancelation

https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful/


TTimeoutimeout

▪ Concurrent tasks in a scope:

FiberScope scope = FiberScope.open();
for (int i = 0; i < NTASKS; i++) {

scope.schedule(this::myfunc);
}
scope.close(); // Blocks until all fibers finish

▪ Can use try-with-resources
▪ What if some of them don't finish?

... ... ...

▪ Open scope with deadline (Instant) or timeout (Duration):

try (var scope = FiberScope.open(Instant.now().plusSeconds(30))) {
for (...)

scope.schedule(...);
} // All fibers that haven't finished canceled after deadline

▪ Deadlines compose better



CancCancellaellationtion

▪ Long-standing problem for Java concurrency
▪ Call fiber.cancel() to set cancel status
▪ Unparks parked fiber, throws InterruptedException/IOException
▪ Cooperative cancellation: Busy fiber code should periodically call
Fiber.cancelled()

▪ When scope times out, its fibers get cancelled
▪ Unlike interrupted status, cancel status can never be reset
▪ Cancelation can be controlled by options in FiberScope constructor

• CANCEL_AT_CLOSE: Closing scope cancels all scheduled fibers instead of blocking
• PROPAGATE_CANCEL: If owning fiber is canceled, any newly scheduled fibers automatically canceled
• IGNORE_CANCEL: Scheduled fibers can't be canceled

▪ Top-level default: all options unset
• PROPAGATE_CANCEL, IGNORE_CANCEL inherited from parent scope



BBigger Exigger Examplamplee

▪ At JCrete 2019, Heinz Kabutz gave a puzzler with a program that
loaded thousands of Dilbert cartoon images, one per day

▪ For each image,
• Load page such as https://dilbert.com/strip/2011-06-05
• Find image URL in strip
• Load image from that URL
• Display or save image

▪ It was a mess of completable futures, somewhat like:

CompletableFuture
.completedFuture(getUrlForDate(date))
.thenComposeAsync(this::readPage, executor)
.thenApply(this::getImageUrl)
.thenComposeAsync(this::readPage)
.thenAccept(this::process);

▪ With Fibers:

try (var scope = FiberScope.open()) {
for (int i = 0; i < NUMBER_TO_SHOW; i++) {

LocalDate date = ...;
scope.schedule(() -> {

String page = new String(readPage(getUrlForDate(date)));
byte[] image = readPage(getImageUrl(page));
process(image);

});
}

}

http://horstmann.com/unblog/2019-07-27/


API UAPI Under Cnder Constructiononstruction

▪ Is a fiber a kind of thread?
▪ java.lang.Thread has accreted a good amount of cruft

• Priorities
• Thread groups
• Thread locals
• Context class loader
• stop, suspend, resume

▪ Loom team investigating different approaches
• Fiber extends Thread
• Fiber extends Strand, Thread extends Strand
• No relationship between Fiber and Thread
• Fiber is a Thread with a “lightweight” attribute

▪ Pain points
• Footprint
• Compatibility
• Serviceability



API UAPI Under Cnder Constructiononstruction

▪ What about Thread.currentThread()
• Currently returns “shadow Thread object”
• The actual carrier threads are never exposed

▪ Don't really want fiber locals
• Task locals?
• Processor locals?
• Scope locals?

▪ Scopes and scope locals



SStatatte oe of the Pf the Prrojectoject

▪ API implementations are being made fiber friendly
• Thread.sleep
• j.u.c Locks
• NIO, sockets
• JSSE implementation of TLS

▪ Reimplementations already in JDK 11, 12, 13
▪ Can't yet block on monitors (ReentrantLock is ok)
▪ Working on debugger, monitoring support
▪ Lots of “instabilities”
▪ Performance nowhere near where it needs to be
▪ Need help with testing
▪ Now is a good time to get involved



TThe Ehe Endnd

▪ Java is not done
▪ Major structural changes get a lot of attention by very smart people
▪ So do features of lesser importance
▪ But the interests of application programmers are not always

represented
▪ They need you!
▪ Read those JEPs
▪ Read the Amber, Valhalla, Loom, Panama, etc. project pages

• And the documents they reference

▪ Try early builds
▪ Give feedback

• Mailing lists
• Blogs

▪ Data is gold


	Java Evolution
	Why Care about Evolution?
	A Brief History of Java
	The Release Cadence
	Projects, JEPs, Incubation, Preview
	File API Evolution
	HttpClient
	HttpClient
	HttpClient
	Raw String Literals
	Off the Deep End
	Text Blocks
	Scala Pattern Matching
	Java Pattern Matching
	Switch expressions
	Give Me a Break
	Frankenswitch
	Evolution is Not a One-Way Street
	The Matrix (JDK 12)
	The Original Sin
	Records
	Loom
	“Make Concurrency Easy Again”
	Kick the Tires
	Structured Concurrency
	Timeout
	Cancellation
	Bigger Example
	API Under Construction
	API Under Construction
	State of the Project
	The End

