
Docker Who.
Small Containers
Through Time and Space
Dmitry Chuyko

2020

Liberica www.bell-sw.com
supported OpenJDK binaries

Who
we
are

Dmitry
Chuyko

ex-employers:

@dchuyko

http://bell-sw.com

OpenJDK
Contributions

JDK 11

Deployment

...package an
application with all of
its dependencies into
a standardized unit for
software development.

— Docker

Deploy an image. Direct
⦁ Participants

─ User/CI in Dev local or cloud
─ Hosts in the cloud

⦁ Transfer
─ Full image every time

⦁ Custom connection
⦁ Custom topology management

Host

Service Image

Deploy an image. Registry
⦁ Participants

─ User/CI in Dev local or cloud
─ Hosts in the cloud
─ Registry

⦁ User/CI in Dev local or cloud (proxy)
⦁ Cloud
⦁ Cloud SaaS
⦁ Public 3rd party SaaS

⦁ Transfer
─ All layers for a clean host
─ New layers

Host 1

Base layers

Registry

Service layers

Host N

Deploy an image. Networks

Registry

Host

Proxy

Host

Layers

Registry
3rd party

Layers

Deploy an image. Networks

Mirror

Host

Layers

Registry
3rd party

Host

Layers

Registry
SaaS

It’s all not for free
⦁ Docker Hub Free

─ Pull rate limits since Nov 2 2020 (200 rqs / 6 hrs)

⦁ Registry
─ SaaS or 3rd party
─ Day $, GB $, GB*day $, GB out $$

⦁ Mirror
─ A running instance $
─ Maintenance / SLAs $
─ Traffic

...

It’s all not for free
...
⦁ Traffic

─ No direct cost within VPC
─ Cross network, VPNs $$
─ Delays $
─ Machine time $

⦁ Time
─ CPU time $
─ Deployment $$
─ Downtime $$$

Smaller
containers
can help

Images are transferred over the
network across domains, so less
traffic is cheaper. At the same time,
every deployment will go faster.

The paid registry needs to contain
less volume of data, and less
data is transferred out.

She’s just bigger on the inside

Base Images
Most Dockerfiles start
from a parent image.

— Docker

Base/Parent Images

A base image has FROM scratch
in its Dockerfile.

A parent image is the one that your image is
based on. It refers to the contents of the FROM
directive in the Dockerfile. Each subsequent
declaration in the Dockerfile modifies this parent
image. Most Dockerfiles start from a parent
image rather than a base image. However, the
terms are sometimes used interchangeably.

Microservice
container
layers

App

Framework

App Libraries

OS Packages

JRE

OS

Scratch

Base

Developer voice
⦁ Aleksey Nesterov. Spring: Your next Java microframework
⦁ Vladimir Plizga. Spring Boot "fat" JAR: Thin parts of a thick artifact

Optimize Top
⦁ Select management system, use generic technics
⦁ App

─ Keep microservices micro

⦁ Framework & Libraries
─ You can choose, smaller app = wider choice
─ Also affect app part (so keep it micro)

⦁ OS Packages
─ Keep apps micro
─ Add minimal sufficient ones
─ Select OS

⦁ Correctness
⦁ Security and updates
⦁ Maintenance, tools and support

⦁ Size
⦁ Performance

Optimize Base. Selection Criteria

kubedex.com/base-images crunchtools.com/comparison-linux-container-images

https://kubedex.com/base-images/
http://crunchtools.com/comparison-linux-container-images/

Optimize Base. Size
⦁ Smaller JRE

─ Lighter JVM type, proper JDK variant
─ Reduced set of modules, compressed modules

⦁ No JRE (compile app to native executable)
─ Going beyond module granularity
─ Closed world

⦁ OS
─ Small “OS” images

⦁ No OS (distroless)
─ Actually “package manager”-less

⦁ Scratch only
─ Only for simple programs

Compressed Size (across wire)
$ java -XX:+UnlockDiagnosticVMOptions …

$ vi ~/.docker/config.json

{
 "experimental": "enabled",
 "debug": true
}

$ docker manifest inspect -v openjdk

Compressed Size (across wire)
...
layers": [

{
"mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
"size": 54163019,
"digest": "sha256:9f8aeb516aa1b01143452930dec1cadef36b4298bcdb43224755b12ab4bc9289"

},
{

"mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
"size": 13508533,
"digest": "sha256:6199265ff0195874d7975d360d91e2ed48bc621c12633d52a4fe5207953ff202"

},
{

"mediaType": "application/vnd.docker.image.rootfs.diff.tar.gzip",
"size": 195778204,
"digest": "sha256:5614451d1903a5b3955552f1f4a3d94f61477ccc34d7e1521a4029c7c7b15185"

}
]
...

251 MB

Uncompressed Size (disk)
$ docker history openjdk
IMAGE CREATED CREATED BY SIZE
95b80f783bd2 12 days ago /bin/sh -c #(nop) CMD ["jshell"] 0B
<missing> 12 days ago /bin/sh -c set -eux; objdump="$(command -v… 336MB
<missing> 12 days ago /bin/sh -c #(nop) ENV JAVA_VERSION=15.0.1 0B
<missing> 12 days ago /bin/sh -c #(nop) ENV PATH=/usr/java/openjd… 0B
<missing> 12 days ago /bin/sh -c #(nop) ENV JAVA_HOME=/usr/java/o… 0B
<missing> 12 days ago /bin/sh -c #(nop) ENV LANG=C.UTF-8 0B
<missing> 12 days ago /bin/sh -c set -eux; microdnf install gzi… 40.1MB
<missing> 12 days ago /bin/sh -c #(nop) CMD ["/bin/bash"] 0B
<missing> 12 days ago /bin/sh -c #(nop) ADD file:ca74b6a4572ba9ecd… 148MB
<missing> 8 weeks ago /bin/sh -c #(nop) LABEL org.opencontainers.… 0B

$ docker images | head -n 1; docker images | grep openjdk
REPOSITORY TAG IMAGE ID CREATED SIZE
openjdk latest 95b80f783bd2 12 days ago 524MB

524 MB

Pull time (100 Mbps)
$ time docker pull openjdk
...
real 0m27.990s
user 0m0.095s
sys 0m0.096s

28 s

SSD

IOPS

STORAGE

Keep 524 MB

$0.09/mo
*From internet

*From same region

BANDWIDTH

Pull 251 MB

$0*
Efficiently myocardinate

market-driven innovation via

open-source alignments.

CPU

Pull 27 s

≈$0
*Same region.

Good rate limits

Push is cheap.

REGISTRY

Keep & Seed

$0*

Deployment costs per instance. Cloud

Different region.

REGISTRY

Seed 251 MB

$0.09

Clean deployment costs. Cloud

x 0.251 GB
x 1000 deploys
x 29.5 days

= $666

Deployment costs. Cloud

x 0.251 GB
x 1k deploys = 0.25 TB

⦁ Tens of seconds for a single pull
⦁ Shared HW
⦁ Shared I/O limits
⦁ Keep old versions
⦁ On-premise / private cloud?
⦁ Elastic fleet
⦁ 10 Mbps

OS + JDK images
⦁ Based on OS images
⦁ JDK package installation

─ Package manager
─ Package
─ Same vendor

⦁ JDK binary installation
─ Requirements
─ Compatibility

⦁ Ask your provider about testing

OS Image Wire Disk libc pkg man shell

Ubuntu 27 MB 73 MB glibc apt bash

Debian 48 MB 114 MB glibc apt bash

Debian Slim 26 MB 69 MB glibc apt bash

CenOS 71 MB 215 MB glibc yum bash

RHEL Atomic Base 31 MB 78 MB glibc microdnf bash

GCR Distroless base 7.6 17 MB glibc — —

Alpine 2.7 MB 5.6 MB musl apk ash

GCR Distroless static 0.6 MB 1.8 MB — — —

OS + JDK 15 Image Wire Disk

bellsoft/liberica-openjdk-debian 126 MB 231 MB

bellsoft/liberica-openjdk-centos 183 MB 322 MB

bellsoft/liberica-openjdk-alpine 78 MB 132 MB

bellsoft/liberica-openjdk-alpine-musl 76 MB 107 MB

Liberica JDK Images

Pull time
$ time docker pull bellsoft/liberica-openjdk-alpine-musl:latest
...
real 0m3.957s
user 0m0.026s
sys 0m0.061s

4 s

Small containers
do help

The amount of transferred data for
OS+JDK image can be decreased
to 76 MB, overall pull time drops
many times (like 28 s → 4 s or 6 s
→ 0.8 s).

Image contents look unfamiliar.

... is a security-oriented,
lightweight Linux
distribution based on
musl libc and busybox.

— Alpine

Alpine Linux

Musl libc. At a glance
⦁ musl.libc.org
⦁ Built on top of Linux syscall API (C bindings for the OS interfaces)
⦁ Base language standard (ISO C)
⦁ POSIX + widely-agreed extensions
⦁ Lightweight (size), fast, simple, free (MIT)
⦁ Strives to be correct in the sense of standards-conformance and safety

http://musl.libc.org/

Musl libc. Key Principles
⦁ musl.libc.org/about.html
⦁ Simplicity

─ Decoupling, minimize abstractions
─ Favors simple algorithms over more complex ones
─ Readable code

⦁ Resource efficiency
─ Minimal size, low overhead, efficient static linking (Nx10kb)
─ Scalable (small stacks)

⦁ Attention to correctness
─ Defensive coding, no race conditions

⦁ Ease of deployment (single binary)
⦁ First-class support for UTF-8/multilingual text

http://musl.libc.org/about.html

Libc implementations
⦁ etalabs.net/compare_libcs.html
⦁ Note: outdated

http://www.etalabs.net/compare_libcs.html

Libc implementations

Libc implementations

Libc implementations

Libc implementations

Libc implementations

Musl libc. Key Issues
⦁ It’s different

Busybox. At a glance
⦁ busybox.net
⦁ Many Unix utilities in a single executable file

─ i.e. shell commands and the shell itself

⦁ Glibc, musl (Alpine), uLibc
⦁ GPLv2
⦁ hub.docker.com/_/busybox

https://www.busybox.net/
https://hub.docker.com/_/busybox

Busybox. Key Principles
⦁ Swiss army knife, small
⦁ Implementation of the standard Linux command line tools
⦁ Smallest executable size
⦁ Simplest and cleanest implementation
⦁ Standards compliant
⦁ Minimal run-time memory usage (heap and stack)
⦁ Fast

Busybox. Key Issues
⦁ It’s different
⦁ Single executable

─ Process binary path
─ Non-modular binary

⦁ Doesn’t support environment variables
with periods in the names
─ POSIX compliant

Alpine Linux. At a glance
⦁ alpinelinux.org
⦁ Small

─ Built around musl libc and busybox
─ Small packages

⦁ Simple
─ OpenRC init system
─ apk package manager

⦁ Secure
─ Position Independent Executables (PIE) binaries

with stack smashing protection

https://alpinelinux.org/

Alpine Linux. Key Issues
⦁ It’s different
⦁ Not desktop-oriented
⦁ Package repository

Alpine Linux
is perfect
for containers

It is small and secure. All necessary
tools are available out of the box
or in packages.

Alpine containers with Java work.

Alpine Linux Port

Port the JDK to Alpine
Linux, and to other Linux
distributions that use musl
as their primary C library,
on both the x64 and
AArch64 architectures.

— JEP 386

JDK 16
⦁ JEP 386: Alpine Linux Port
⦁ openjdk.java.net/jeps/386

http://openjdk.java.net/jeps/386

Project Portola
⦁ openjdk.java.net/projects/portola
⦁ Port of the JDK to the Alpine Linux distribution,

and in particular the musl C library
⦁ Started by Mikael Vidstedt from Oracle in 2017
⦁ Used for Alpine musl containers with JDK 9+
⦁ Integrated into mainline in 2020 with JEP 386

─ Delivered by BellSoft
─ JDK 16

https://openjdk.java.net/projects/portola/

Project Portola. Build
⦁ A new port

─ Determine and distinguish C libraries
─ Conditional compilation

⦁ Native build
⦁ Cross-toolchain for glibc environment
⦁ Implement missing functions or make them compatible
⦁ Testing environment
⦁ Documentation

─ https://github.com/openjdk/jdk/blob/master/doc/building.md#building-for-musl

https://github.com/openjdk/jdk/blob/master/doc/building.md#building-for-musl

JNI. Build
$ gcc -std=c99 -I"$JAVA_HOME/include" -I"$JAVA_HOME/include/linux" -shared -o
libhelloworld.so -fPIC JNIHelloWorld.c

16K libhelloworld.so

$ java -Djava.library.path=. JNIHelloWorld

Hello world!

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine-musl:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

JNI. Cross Build
$ x86_64-linux-musl-cross/bin/x86_64-linux-musl-gcc -std=c99 -I"$JAVA_HOME/include"
-I"$JAVA_HOME/include/linux" -shared -o libhelloworld.so -fPIC JNIHelloWorld.c

7.7K libhelloworld.so

$ java -Djava.library.path=. JNIHelloWorld

Exception in thread "main" java.lang.UnsatisfiedLinkError: /home/tp/jni/libhelloworld.so:
/usr/lib/x86_64-linux-gnu/libc.so: invalid ELF header

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

$ docker run -it -v ~/jni:/jni bellsoft/liberica-openjdk-alpine-musl:15 java
-Djava.library.path=/jni -cp /jni JNIHelloWorld

Hello world!

Project Portola. Issues
⦁ LD_PRELOAD is not the same on different platforms

─ Glibc resolves libs not like musl (or AIX libc)
─ jpackage and other launchers were fixed to still use proper JDK libs

⦁ Alpine used to have PaX/grsecurity in kernel by default
─ Attempt to execute JIT code shut down the JVM
─ Added Memory protection check on startup

⦁ JDWP (Debug) sometimes had troubles with IPv4/IPv6 config
─ Initialization was made more careful

⦁ Debugging (gdb)
─ There’s SIGSYNCCALL during JVM init
─ Debug with -XX:-MaxFDLimit

Project Portola. Issues
⦁ Running AWT in headless mode

─ You may want to render images
─ Install freetype and fonts

⦁ Fontmanager
─ For all real cases load awt lib before fontmanager

⦁ NMT
─ Use latest Alpine (3.11+)

⦁ NUMA detection requires recent libnuma
─ apk add numactl

Project Portola. Issues
⦁ lsof does not support ‘-p’ option on busybox

─ Expect reduced output

⦁ Musl does not execute scripts that does
not have a proper shebang
─ Write proper # headers in *.sh
─ https://www.openwall.com/lists/musl/2020/02/13/4

⦁ Serviceability agent (private API) doesn’t work

Shebang
$ docker run -it bellsoft/liberica-openjdk-alpine-musl:15 ash

-rwxr-xr-x run.sh

echo "hello"

jshell> Runtime.getRuntime().exec("./run.sh")
| Exception java.io.IOException: Cannot run program "./run.sh": error=8, Exec format error

-rwxr-xr-x run.sh

#!/bin/sh
echo "hello"

jshell> Runtime.getRuntime().exec("./run.sh")
$1 ==> Process[pid=262, exitValue=0]

Variables
$ docker run -it -e "hibernate.format_sql=true" bellsoft/liberica-openjdk-alpine:15 ash

set | grep hibernate

hibernate

$ docker run -it -e "hibernate.format_sql=true" bellsoft/liberica-openjdk-debian:15 bash

set | grep hibernate

<empty>

$ docker run -it -e "hibernate_format_sql=true" bellsoft/liberica-openjdk-alpine-musl:15 ash

set | grep hibernate

hibernate_format_sql='true'

SA
$ docker run -it bellsoft/liberica-openjdk-alpine:8 jstack -h
...
Options:

-F to force a thread dump. Use when jstack <pid> does not respond (process is hung)
-m to print both java and native frames (mixed mode)
-l long listing. Prints additional information about locks
-h or -help to print this help message

$ docker run -it bellsoft/liberica-openjdk-alpine-musl:8 jstack -h
...
Options:

-l long listing. Prints additional information about locks
-h or -help to print this help message

$ docker run -it bellsoft/liberica-openjdk-debian:11 jstack -h
...
Options:

-l long listing. Prints additional information about locks
-h or -help to print this help message

Alpine Linux
port
in upstream

Unifies platform support across community
and distributions. Helps maintenance and
port development for perfect small
containers. Liberica JDK Alpine musl
containers are tested and TCK-verified.

Different uses are possible.

Native Image

A technology to
ahead-of-time
compile Java code
to a standalone
executable.

— GraalVM

JVM+App Images
⦁ Based on Distroless images

─ Base (glibc, 17 MB). Dynamic linking.
─ Static (1.8 MB). Statically link musl (Nx10 kb).

⦁ Monitored Spring Boot service is 89 MB
─ 106 MB / 91 MB total
─ Compare to 107 MB Alpine musl + 17 MB fat jar = 124 MB total

⦁ No thin layers

Native App Images. At a glance
⦁ Single file
⦁ Instant startup

─ 0.1 s vs 8 s for the same example
⦁ Low memory footprint

─ 35 MB vs 128 MB
⦁ Peak performance is comparable to Hotspot
⦁ Frameworks support

─ Up to cluster deployment stage

Native App Images. Key Issues
⦁ They are even more different
⦁ Different bugs
⦁ Closed world
⦁ Compilation time & memory
⦁ Static VM configuration
⦁ Low latency GC is not yet there
⦁ Frameworks support is in progress
⦁ Tools incompatibility

Native Image
is an option
for containers

Containers are smaller, they
start fast and consume
less memory.

Regular Java SE is better when
we need thin layers, more mature
ecosystem and compatibility.

Make More
Users Happy

We plan to stay
on Java 8.

— NN% of users

She can be seen in various forms

Portola Expansion
⦁ JDK 11 LTS

─ Not in mainline (yet)
─ Historical downports in Liberica 9+

⦁ JDK 8 LTS
─ Liberica 8u on Dockerhub

⦁ AArch64
⦁ OpenWRT

─ One more flavor of Raspberry Pi

Cheat Sheet

Conclusions

⦁ There are many ways to deliver container images
⦁ There are many ways to build an image
⦁ Small base images help in production
⦁ Alpine musl is the smallest OS image with tools
⦁ On top of it there are good base images with JDK
⦁ Alpine and musl have peculiarities
⦁ musl C port is officially in OpenJDK

