
Project Loom: Modern scalable
concurrency for the Java
platform

Alan Bateman
Java Platform Group
November 27, 2020

2

Java is made of Threads
• Exceptions
• Thread Locals
• Debugger
• Profiler

Copyright © 2020, Oracle and/or its affiliates2

3

Threads in Java
• java.lang.Thread
• One implementation based on OS thread
• OS threads support all languages
• Large fixed stacks
• Task-switching requires switch to kernel
• Scheduling is a compromise for all usages

Copyright © 2020, Oracle and/or its affiliates3

4 Copyright © 2020, Oracle and/or its affiliates

Synchronous

• Easy to read

• Fits well with the Java Language

• control flow, exceptions, …

• Fits well with tooling (debuggers, profilers)

• But a costly resource

Programmer 😀

OS / Hardware ☹

5

Reuse with thread pools

Copyright © 2020, Oracle and/or its affiliates5

6

Reuse with thread pools
• Return at end

• May leak thread locals
• Problematic cancellation

Copyright © 2020, Oracle and/or its affiliates6

7

Reuse with thread pools
• Return at end

• May leak thread locals
• Complex cancellation

• Return at waiting/blocking points
• Incomplete APIs
• Lost context
• Intrusive, nearly impossible to migrate

Copyright © 2020, Oracle and/or its affiliates7

Programmer ☹

OS / Hardware 😀

8 Copyright © 2020, Oracle and/or its affiliates

Asynchronous

• Scalable

But

• Hard to read

• Lost context so hard to debug and profile

9

simple
less scalable

scalable,
complex,
non-interoperable,
hard to debug/profile

OR

SYNC

Java Blue

ASYNC

Programmer 😀

OS / Hardware ☹

Programmer ☹

OS / Hardware 😀

Copyright © 2020, Oracle and/or its affiliates

10

Codes Like Sync, Scales Like Async

App

Connections

Programmer 😀

OS / Hardware 😀
10Copyright © 2020, Oracle and/or its affiliates

API

11 Copyright © 2020, Oracle and/or its affiliates

API

12

• Use java.lang.Thread ?
• Introduce new API (maybe Fiber) ?

Copyright © 2020, Oracle and/or its affiliates

API

13

• Use java.lang.Thread ?
• Introduce new API (maybe Fiber) ?
• Use of Thread.currentThread() and ThreadLocal is pervasive
• Other aspects of Thread are rarely used

Copyright © 2020, Oracle and/or its affiliates

API

14

• Use java.lang.Thread ?
• Introduce new API (maybe Fiber) ?
• Use of Thread.currentThread() and ThreadLocal is pervasive
• Other aspects of Thread are rarely used
• Gravitational pull of 25 years of existing code is impossible to escape
• java.lang.Thread represent all threads
• The new low cost threads will be called “Virtual Threads”

Copyright © 2020, Oracle and/or its affiliates

15

Virtual threads

“carrier” OS threads managed by a scheduler

Copyright © 2020, Oracle and/or its affiliates

16 Copyright © 2020, Oracle and/or its affiliates

200-300B metadata
Pay-as-you-go stack

>2KB metadata
1MB stack

1-10µs ~200ns

<<<Switch to IDE>>>

17 Copyright © 2020, Oracle and/or its affiliates

Limitations

18

• Blocking with native frames on stack
• Blocking while holding monitors
• In both cases, the OS thread is pinned

Copyright © 2020, Oracle and/or its affiliates

Preparing for Loom

19

• What can you do
• Reduce use of thread locals
• Reduce footprint of per thread/request data
• Identify places where code is doing blocking I/O while holding a

monitor, replace these with java.util.concurrent locks

Copyright © 2020, Oracle and/or its affiliates

A virtual thread is a Thread in the debugger

20 Copyright © 2020, Oracle and/or its affiliates

A virtual thread is a Thread in the profiler

21

• Java Flight Recorder

Copyright © 2020, Oracle and/or its affiliates

22 Copyright © 2020, Oracle and/or its affiliates

$ jfr print --events jdk.Socket* --stack-depth 100 server.jfr

jdk.SocketRead {
 startTime = 08:27:08.077
 duration = 1.00 s
 host = "localhost"
 address = "127.0.0.1"
 port = 8081
 timeout = 0 s
 bytesRead = 161 bytes
 endOfStream = false
 eventThread = "<unnamed>" (javaThreadId = 84, virtual = true)
 stackTrace = [
 java.net.Socket$SocketInputStream.read(byte[], int, int) line: 67
 java.io.BufferedInputStream.fill() line: 255
 java.io.BufferedInputStream.read1(byte[], int, int) line: 310
 java.io.BufferedInputStream.lockedRead(byte[], int, int) line: 382
 java.io.BufferedInputStream.read(byte[], int, int) line: 361
 sun.net.www.http.HttpClient.parseHTTPHeader(MessageHeader, ProgressSource, HttpURLConnection) line: 791
 sun.net.www.http.HttpClient.parseHTTP(MessageHeader, ProgressSource, HttpURLConnection) line: 723
 sun.net.www.protocol.http.HttpURLConnection.getInputStream0() line: 1676
 sun.net.www.protocol.http.HttpURLConnection.getInputStream() line: 1577
 java.net.HttpURLConnection.getResponseCode() line: 527
 org.glassfish.jersey.client.HttpUrlConnector._apply(ClientRequest) line: 321
 org.glassfish.jersey.client.HttpUrlConnector.apply(ClientRequest) line: 227
 org.glassfish.jersey.client.ClientRuntime.invoke(ClientRequest) line: 225
 org.glassfish.jersey.client.JerseyInvocation$2.call() line: 671
 org.glassfish.jersey.internal.Errors.process(Callable, boolean) line: 315
 org.glassfish.jersey.internal.Errors.process(Producer, boolean) line: 297
 org.glassfish.jersey.internal.Errors.process(Producer) line: 228
 org.glassfish.jersey.process.internal.RequestScope.runInScope(Producer) line: 424
 org.glassfish.jersey.client.JerseyInvocation.invoke(Class) line: 667
 org.glassfish.jersey.client.JerseyInvocation$Builder.method(String, Class) line: 396
 org.glassfish.jersey.client.JerseyInvocation$Builder.get(Class) line: 296
 demo.AggregatorServices.query(String) line: 94
 demo.AggregatorServices.lambda$allOf$3(String) line: 74
 java.util.concurrent.ThreadExecutor$ThreadBoundCompletableFuture.run() line: 314
 java.lang.VirtualThread.lambdanew0(Runnable) line: 128
 java.lang.Continuation.enter0() line: 396
 java.lang.Continuation.enter(Continuation, boolean) line: 389
 java.lang.Continuation.enterSpecial(Continuation, boolean)
]
}

A virtual thread is a Thread in the profiler

23

• Java Flight Recorder
• JVM TI based tools
• Challenges

Copyright © 2020, Oracle and/or its affiliates

Serviceability

24

• Troubleshooting and diagnosability
• Identify pinned threads
• Identify compute bound virtual threads
• Thread dumps
• …

Copyright © 2020, Oracle and/or its affiliates

Current status

25

• Current focus
• Stability
• Performance
• API
• Debugger support

• Important for a first preview
• Aarch64 port
• Thread dump

Copyright © 2020, Oracle and/or its affiliates

Further topics for exploration

26

• Channels
• Structured concurrency
• Scope variables
• Cancellation

Copyright © 2020, Oracle and/or its affiliates

Key Takeaways

27

• A virtual thread is a Thread in code, at run-time, in the debugger
and in the profiler

• A virtual thread is not a wrapper around an OS thread, instead it is
just a Java object

• Creating a virtual thread is cheap - you can have millions of them,
don’t pool them!

• Blocking a virtual thread is cheap - be synchronous!

Copyright © 2020, Oracle and/or its affiliates

More information

28

• Early access builds: https://jdk.java.net/loom 

• Mailing list: loom-dev@openjdk.java.net 

• Wiki: https://wiki.openjdk.java.net/display/loom/Main

Copyright © 2020, Oracle and/or its affiliates

https://jdk.java.net/loom
mailto:loom-dev@openjdk.java.net
https://jdk.java.net/loom
mailto:loom-dev@openjdk.java.net

The following is intended to outline our general product direction. It is intended
for information purposes only, and may not be incorporated into any contract. It
is not a commitment to deliver any material, code, or functionality, and should
not be relied upon in making purchasing decisions. The development, release,
timing, and pricing of any features or functionality described for Oracle’s
products may change and remains at the sole discretion of Oracle Corporation.

Safe harbor statement

