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Java is made of Threads
• Exceptions
• Thread Locals
• Debugger
• Profiler
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Threads in Java
• java.lang.Thread
• One implementation based on OS thread
• OS threads support all languages
• Large fixed stacks
• Task-switching requires switch to kernel
• Scheduling is a compromise for all usages

Copyright © 2020, Oracle and/or its affiliates3



4 Copyright © 2020, Oracle and/or its affiliates

Synchronous

• Easy to read

• Fits well with the Java Language 

• control flow, exceptions, …

• Fits well with tooling (debuggers, profilers)

• But a costly resource

Programmer       😀

OS / Hardware   ☹
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Reuse with thread pools
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Reuse with thread pools
• Return at end

• May leak thread locals
• Problematic cancellation
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Reuse with thread pools
• Return at end

• May leak thread locals
• Complex cancellation

• Return at waiting/blocking points
• Incomplete APIs
• Lost context
• Intrusive, nearly impossible to migrate
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Programmer       ☹

OS / Hardware   😀
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Asynchronous

• Scalable

But 

• Hard to read

• Lost context so hard to debug and profile
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simple 
less scalable

scalable,
complex, 
non-interoperable,
hard to debug/profile

OR

SYNC

Java Blue

ASYNC

Programmer       😀

OS / Hardware   ☹

Programmer       ☹

OS / Hardware   😀
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Codes Like Sync, Scales Like Async

App

Connections

Programmer       😀

OS / Hardware   😀
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API
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API
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• Use java.lang.Thread ?
• Introduce new API (maybe Fiber) ?
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API
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• Use java.lang.Thread ?
• Introduce new API (maybe Fiber) ?
• Use of Thread.currentThread() and ThreadLocal is pervasive
• Other aspects of Thread are rarely used
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API
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• Use java.lang.Thread ?
• Introduce new API (maybe Fiber) ?
• Use of Thread.currentThread() and ThreadLocal is pervasive
• Other aspects of Thread are rarely used
• Gravitational pull of 25 years of existing code is impossible to escape
• java.lang.Thread represent all threads
• The new low cost threads will be called “Virtual Threads”
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Virtual threads

“carrier” OS threads managed by a scheduler
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200-300B metadata 
Pay-as-you-go stack

>2KB metadata 
1MB stack

1-10µs ~200ns



<<<Switch to IDE>>>
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Limitations
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• Blocking with native frames on stack
• Blocking while holding monitors
• In both cases, the OS thread is pinned
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Preparing for Loom
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• What can you do
• Reduce use of thread locals
• Reduce footprint of per thread/request data
• Identify places where code is doing blocking I/O while holding a 

monitor, replace these with java.util.concurrent locks
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A virtual thread is a Thread in the debugger
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A virtual thread is a Thread in the profiler
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• Java Flight Recorder
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$ jfr print --events jdk.Socket* --stack-depth 100 server.jfr 

jdk.SocketRead { 
  startTime = 08:27:08.077 
  duration = 1.00 s 
  host = "localhost" 
  address = "127.0.0.1" 
  port = 8081 
  timeout = 0 s 
  bytesRead = 161 bytes 
  endOfStream = false 
  eventThread = "<unnamed>" (javaThreadId = 84, virtual = true) 
  stackTrace = [ 
    java.net.Socket$SocketInputStream.read(byte[], int, int) line: 67 
    java.io.BufferedInputStream.fill() line: 255 
    java.io.BufferedInputStream.read1(byte[], int, int) line: 310 
    java.io.BufferedInputStream.lockedRead(byte[], int, int) line: 382 
    java.io.BufferedInputStream.read(byte[], int, int) line: 361 
    sun.net.www.http.HttpClient.parseHTTPHeader(MessageHeader, ProgressSource, HttpURLConnection) line: 791 
    sun.net.www.http.HttpClient.parseHTTP(MessageHeader, ProgressSource, HttpURLConnection) line: 723 
    sun.net.www.protocol.http.HttpURLConnection.getInputStream0() line: 1676 
    sun.net.www.protocol.http.HttpURLConnection.getInputStream() line: 1577 
    java.net.HttpURLConnection.getResponseCode() line: 527 
    org.glassfish.jersey.client.HttpUrlConnector._apply(ClientRequest) line: 321 
    org.glassfish.jersey.client.HttpUrlConnector.apply(ClientRequest) line: 227 
    org.glassfish.jersey.client.ClientRuntime.invoke(ClientRequest) line: 225 
    org.glassfish.jersey.client.JerseyInvocation$2.call() line: 671 
    org.glassfish.jersey.internal.Errors.process(Callable, boolean) line: 315 
    org.glassfish.jersey.internal.Errors.process(Producer, boolean) line: 297 
    org.glassfish.jersey.internal.Errors.process(Producer) line: 228 
    org.glassfish.jersey.process.internal.RequestScope.runInScope(Producer) line: 424 
    org.glassfish.jersey.client.JerseyInvocation.invoke(Class) line: 667 
    org.glassfish.jersey.client.JerseyInvocation$Builder.method(String, Class) line: 396 
    org.glassfish.jersey.client.JerseyInvocation$Builder.get(Class) line: 296 
    demo.AggregatorServices.query(String) line: 94 
    demo.AggregatorServices.lambda$allOf$3(String) line: 74 
    java.util.concurrent.ThreadExecutor$ThreadBoundCompletableFuture.run() line: 314 
    java.lang.VirtualThread.lambda$new$0(Runnable) line: 128 
    java.lang.Continuation.enter0() line: 396 
    java.lang.Continuation.enter(Continuation, boolean) line: 389 
    java.lang.Continuation.enterSpecial(Continuation, boolean) 
  ] 
}



A virtual thread is a Thread in the profiler
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• Java Flight Recorder
• JVM TI based tools
• Challenges
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Serviceability
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• Troubleshooting and diagnosability
• Identify pinned threads
• Identify compute bound virtual threads
• Thread dumps
• …
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Current status
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• Current focus
• Stability
• Performance
• API
• Debugger support

• Important for a first preview
• Aarch64 port
• Thread dump
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Further topics for exploration
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• Channels
• Structured concurrency
• Scope variables
• Cancellation
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Key Takeaways
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• A virtual thread is a Thread in code, at run-time, in the debugger 
and in the profiler

• A virtual thread is not a wrapper around an OS thread, instead it is 
just a Java object

• Creating a virtual thread is cheap - you can have millions of them, 
don’t pool them!

• Blocking a virtual thread is cheap - be synchronous!
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More information
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• Early access builds: https://jdk.java.net/loom 

• Mailing list: loom-dev@openjdk.java.net 

• Wiki: https://wiki.openjdk.java.net/display/loom/Main
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