
Anton Semenchenko

Mixing Visitor, Builder, 

Composite, Decorator and 

Iterator: building architecture 

on the cross-cutting example



About lecture 

Anton Semenchenko
Activist of COMAQA.BY and CoreHard.BY 
communities, co-founder of DPI.Solutions, 
manager at EPAM Systems. More than 16 
years of experience in IT. Specializes in 
low-level development, QA automation, 
management, sales.



Agenda

1. Issue

2. Solution

3. Detailed context of the cross-cutting example

4. List of necessary DP’s

5. A way to link DP’s

6. Architecture example

7. Pros and Cons

8. Detailed summary

9. High level summary

10. Recommended literature



Issue!



How to solve challenges?



Tech side related solution!



Process related solution!



Linked DP based Architecture



Cross-cutting example context



Domain

Granular back-up and restore of Targets:

• MS SQL

• MS Exchange

• MS SharePoint

• file systems

• different variants of virtualization

• and many other things …



Task

Formulating the task:

• Fast

• Consistent

• “Supportable”

• Granular



Current solutions

Current “state”:

• A lot of manual testing

• Not following coding standards in a strict way

• From time to time formal inspections

• Not full Unit-tests coverage 

• Not using Design Patters systematically

• Very skillful C++ engineers, including soviet physicists, scientists, 

and really clever people



Requirements: to improve

• Decrease the number of bugs found by end users

• Guarantee the release time of new features in predictable, and 

ideally, in a short time

• Shorten the work \ time load for testing of new versions



Additional limitations

• Release is scheduled not more than in 3 months after Release Back-

up Target, constant release date changes

• Scope is constantly changing

• “Low priority” features are almost not exist

• Architecture should be created in a way for making the process of 

adding new features or deleting them from the scope easy and 

convenient

• Issues in the department of functional testing



Methodology

• Iterational process

• Non-Scrum but most of the practices are taken from that 

methodology

• PRD - Project Requirement Document

• ERD - Engineering Requirement Document

• Prototyping

• Architecture \ Design Draft Phase

• Then, Scrum like iteration



Ideal Scrum killed company

• a. Concept of “Universal Soldier”

• b. Blind following of Scrum methodology as the dogma

• c. Results

• d. Details – “it’s completely a different story” 



Tasks, part 1

Implement a plug-in for

• Effective

• Consistent

• Granular

• Persistent for update

back-up restore solution for new version of MS SQL Denali



Tasks, part 2

• A big number of features

• Features are prioritized

• Most of the features are very important for the end-user

• Number of features that are easy to avoid is almost zero

• Development process is build using Release Candidate

• Release of the product not more than in 3 months after Release 

Target



Tasks, part 3

Complex configuration

• One physical machine one SQL instance

• One physical machine multiple SQL instances of one version

• One physical machine multiple SQL instances of different versions

• The same for virtual machines

• Work in the bounds of network with physical machines

• Work in the bounds of network with virtual machines

• Work in “mixed” network

• Variants of clustering of SQL



Tasks, part 4

A big number of special cases

• DB or a separate file are renamed during use process

• DB or a separate file are moved during use process

• Variations of naming conflicts

• Restore to the different folder, with additional variants of naming 

conflicts

• Continuous operations at the DB

• Other special cases



Tasks, part 5

• Time for functional testing is not more than 3 months, in fact –

approximately not more than one month



Tech details, part 1

• Using standardized mechanisms of performing back-up copying (VSS)

• Using C# SMO for ultra granular reserve back-up for some special 

cases.



Tech details, part 2

Mechanisms of optimization on VSS level

• System DB

• User DB

• 3 Recovery models

• Simple

• Bulk logged

• Full



Tech details, part 3

Mechanisms of server level optimization

• Storing data

• Restore data

• Smothering the edges between storing and restore speed



Tech details, part 4

• Supporting of limited back-up window

• User-chosen subset of DBs

• Optimizing the order of copying DB

• Multiple checks, including consistency checks

• Reports for users

• Different level of report specification

• Tracing for technical specialists

• Wide range of tracing specification

• Saving the concept of less surprise



Additional limitations

• Release is scheduled not more than in 3 months after Release 

Back-up Target, constant release date changes

• Scope is constantly changing

• “Low priority” features are almost not exist

• Architecture should be created in a way for making the process of 

adding new features or deleting them from the scope easy and 

convenient

• Issues in the department of functional testing



Solution variants?



What DPs should be used?



Additional limitations

List of potentially useful patterns:

• Builder

• Decorator

• Composite

• Iterator

• Visitor

• Singleton



Builder



Composite



Iterator



Visitor



Decorator



Singleton



Mapping tasks with patterns

• Granular Backup \ Restore (Builder, Composite)

• Different source of information about DB’s (Builder, Composite)

• Complex env (Builder, Composite, Decorator)



Mapping tasks with patterns

Tiny features:

• DB or a separate file are renamed during use process (Iterator, 

Visitor)

• DB or a separate file are moved during use process (Iterator, 

Visitor)

• Variations of naming conflicts (Iterator, Visitor)



Mapping tasks with patterns

Tiny features:

• Restore to the different folder, with additional variants of naming 

conflicts (Iterator, Visitor)

• Continuous operations at the DB (Iterator, Visitor, ~Decorator)

• Other special cases (Iterator, Visitor, ~Decorator)



Mapping tasks with patterns

• Using standardized mechanisms of performing back-up \ restore 

copying, VSS (Visitor, Decorator)

• Using C# SMO for ultra-granular back-up \ restore for some special 

cases (Visitor, Decorator)



Mapping tasks with patterns

Mechanisms of optimization on VSS level

• System DB (Composite, Iterator, Visitor)

• User DB (Composite, Iterator, Visitor)

• 3 Recovery models (Composite, Iterator, Visitor)

• Simple (Visitor)

• Bulk logged (Visitor)

• Full (Visitor)



Mapping tasks with patterns

Mechanisms of server level optimization

• Storing data (Composite, Iterator, Visitor)

• Restore data (Composite, Iterator, Visitor)

Supporting of limited back-up window (Composite, Iterator, Visitor)

User-chosen subset of DBs (Visitor)



Mapping tasks with patterns

Optimizing the order of copying DB (Visitor)

• Multiple checks, including consistency checks (Visitor)

• Reports for users (Visitor)

• Different level of report specification (Visitor)



Mapping tasks with patterns

• Tracing for technical specialists (Visitor)

• Wide range of tracing specification (Visitor)

• Saving the concept of less surprise (Iterator, Visitor)



Linked DP’s



Solution!



Additional advantages 1

• Universal architecture for any target with C++ API (e.g. VSS Driver 

based)

• A skeleton of architecture was made, perforating tracing and 

logging

• Full Unit-tests coverage

• Decreasing and making the testing phase cheaper

• Full avoiding of manual testing

• No blockers or major bugs, found by end-users



Additional advantages 2

• Working on new targets and versions for existing targets by 

analogue

• Generating actual documentation based on the source code and 

unit-tests

• Simple understanding and readability of the code

• Simple way of teaching employees, effective involvement process 

of new people for speeding up the release process



Adapt for adjacent contexts

• MS Exchange, C++

• MS Share Point, C#



Adapt for “outer” contexts

• File System

• What difficulties can be?

• How to solve them?

• Working with subset of the tree (partial loading into RAM)

• Apply Visitor DP not one by one for all of the nodes and than 

change to next visitor, but all the Visitor DP for one node and them 

proceeding to the next one.

• Updating Iterator DP



Results

• Solved the standard challenges

• Solved project-specific challenges

• Met the budget and time limits

• Architecture was awarded as the best in the company

• It has become the iconic one in the company



Results

• Skeleton of the architecture became a pre-made template

• Product was awarded by MS

• Product was first to go out on the word stage

• Met almost all the user requirements after the first release

• Second version met all the user requirements and was released 

several months later because of the Architecture

• It couldn’t prevent the company for becoming a bankrupt 



Conclusions about DP

• There is an opinion especially between super skillful programmers, 

that DPs are shackling you and are not supposed to be used by a 

professional programmer

• You should always take best examples of other implementations

• Learn DP at any loose

• Think about architecture beforehand

• Find the balance for your exact project between flexibility (Agile), 

Lean and experience-expertise, preliminary projecting of 

architecture



Conclusion about processes

• Prototyping

• “Technical” sprints

• Ways of provision of high-quality software:

• Always a complex of plans

• Strict following the coding standards

• Effective tool for code reviews

• High coverage of Unit tests

• Mocking



Conclusion about processes

• CI

• Automated static code analysis, running subsets of Unit tests as pre 

commit event, pre-commit code-review, review lead time as 

metric of the process, running all Unit tests as post-commit event

• Process is not a goal but a tool

• Iterative process of development of non-classic scrum that is 

adapted for your needs

• Balance between specialization and concept of universal soldier



What’s next?

• Read books

• Read source code

• Practice, Practice and Practice



Recommended literature

1. Grady Butch “Object oriented analysis and design with examples 

of apps on C++”

• Notes: you should not be scared of C++ examples , 95% of the 

material is conceptual, no strict attached to the exact language. In 

my opinion it might look too simple, and because of that it’s far 

better to read at before going to bed.



Recommended literature

2. Martin Fowler “Refactoring”

• Notes: IMHO is should be totally read from end to end, twice, in 

order to make the contents of your book as your professional 

luggage (was using the “contents of that book the same way”). 



Recommended literature

3. David Thomas, Andrew Hunt “The Pragmatic Programmer: From 

Journeyman to Master”

• Notes: Amazing book that consists of a ton of advices. IMHO 

strongly recommend to read from cover to cover, twice, in order to 

have contents of the book – you active professional luggage. And 

then look through different chapters before talking to a customer.



Recommended literature

4. Gang of four “Design patterns”

• Notes: IMHO strongly recommend to read from cover to cover, 

twice, in order to have contents of the book – you active 

professional luggage.

5. Steve McConnel “Code complete”

• Notes: IMHO No need to be afraid of the size of the book ... it 

should be read or before “going to bed”, or from any place, of 

separate chapters, just to fresh things in the memory in the chosen 

field of problem.



Recommended literature

6. “Pattern-Oriented Software Architecture” Volume 1-3

• Notes: IMHO should be read from start to the end.

7. “Domain Specific Languages”, Martin Fowler

• Notes: IMHO should be read from start to the end.

8. “Patterns of Enterprise Application Architecture”, Martin Fowler

• Notes: IMHO should be read from start to the end.



CONTACT ME

Anton_Semenchenko@epam.com

semenchenko_anton_v

https://www.linkedin.com/in/anton-

semenchenko-612a926b

https://www.facebook.com/semenche

nko.anton.v

https://twitter.com/comaqa

Thanks for your attention

Anton Semenchenko
DPI.Solutions

EPAM Systems

Skype: dpi.Semenchenko

+375 33 33 46 120
+375 44 74 00 385

www.comaqa.by
www.corehard.by

http://www.comaqa.by/
http://www.corehard.by/


NOVEMBER

2-3

MINSK The conference is organized by 

C++ CoreHard Community

with kind support of leading 

Belarusian and Russian IT 

companies in order to discuss best 

practices in low-level development 

in C/C++, programming of 

controllers, Internet of Things, high-

load server solutions and other kind 

of hardcore development

https://t.me/corehard_by

http://conference.corehard.by

https://corehard.by/en/
http://conference.corehard.by/


COMAQA
Conference

http://conference.comaqa.by

October 5-6

Minsk

https://t.me/comaqa

http://conference.comaqa.by/en

