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A three-part session
● Core principles
● Tips & tricks

– Mostly Java-specific
– Applicable to other languages

● How to nurture the community
– … for mutual benefit of users & yourself
– May seem less important but is a crucial part
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Where this came from

–         23.6k    100
–         netty/netty
–         @netty_project

–         2.6k    111
–         line/armeria
–         @armeria_project

https://twitter.com/trustin
https://github.com/netty/netty
https://twitter.com/netty_project
https://github.com/line/armeria
https://twitter.com/armeria_project
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Core principles
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Be in user’s shoes
● What will user’s code look like?
● Imagine the best possible user code for the core problem.

– Type like the API is already there.
– Forget about how you’ll implement it.

● Keep refining while adding increasingly complex use cases.
● Reach a certain level of confidence first.

– Keep in mind – This is not a sprint but a journey.
– No need to implement anything until ready.
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Consistency
● ‘A’ is like this. Why is ‘B’ like that?
● Consistency in your API

– e.g. This builder accepts long, but this accepts Duration.

● When in doubt, check others’ work:
– Language SDK’s API

● JDK, Kotlin SDK, …

● Don’t follow blindly.
– Different context, new trends, mistakes, ...

– Other popular libraries
● Guava, Spring, …
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Cognitive load · Learning curve
● Start with a small set of concepts.
● Build more complex solutions on top of them.
● Use familiar constructs

– Builders and factories
– Decorators and strategies
– (Functional) Composition

● Don’t expose too much at once.
– e.g. 10 overloaded builder methods
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User experience ≫ Internal complexity 
● Always choose UX.

– Good UX is crucial for the virtuous cycle of project.

● Can tame internal complexity, but can’t tame poor UX:

→ Confused users → Too many support tickets → Poor experience · Less time for dev → 

→ Low-quality feed back · Burnout → Fix not at its best form → … 
● API with good UX often leads to better implementation:

– Encapsulation → More freedom at implementation level
– Composition  → Less complexity at implementation level
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Tips & tricks
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Use Java, not other languages
● Non-Java library means:

– Additional (BIG) runtime dependencies
– Weird synthetic classes and methods
– Lang A → Java & Lang B → Java may be easy, but Lang A → B may not.

● Keep the core in Java
● Provide language-specific layers, e.g. DSL

– Use others’ help if you are not good at those languages.
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Keep core dependencies minimal
● Don’t depend on another framework
● Let people choose

– … by providing integration layers
● Spring Boot, Dropwizard, …

● Shade utility dependencies
– Guava, Caffeine, FastUtil, JCTools, Reflections, …
– Use ProGuard to trim unused shaded classes: 30 MB → 6 MB
– Be aware of licenses
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Go non-null by default
● Use @Nullable.

– Do not use j.l.Optional.

● A language has its own null handling:
– Option (Scala)
– Nullable types (Kotlin)

● The caller can wrap the result: 
– Optional.ofNullable()
– Option()

● Escape analysis doesn’t always work.

class Server {
  …
  @Nullable
  ServerPort activePort() { … }
  …
}

class CacheControlBuilder {
  …
  CacheControlBuilder maxAge(
    @Nullable Duration maxAge) { … }
  …
}
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@NonNullByDefault in package-info.java

/**
 * Indicates the return values, parameters and fields are non-nullable by default.
 * Annotate a package with this annotation and annotate nullable return values,
 * parameters and fields with {@link Nullable}.
 */
@Nonnull
@Documented
@Target(ElementType.PACKAGE)
@Retention(RetentionPolicy.RUNTIME)
@TypeQualifierDefault({
    ElementType.METHOD,
    ElementType.PARAMETER,
    ElementType.FIELD })
public @interface NonNullByDefault {}
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Nullness annotation libraries
● javax.annotations 

(jsr305)
– Most popular
– Not compatible w/ Java Modules

● jspecify
– Joint effort to replace jsr305
– Too soon too tell

● JetBrains annotations
– IDE support
– Contract annotations

● @Contract("null -> null")

● Checker framework
– Mature
– More than just annotations
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Validate early with message
● Which stack trace is easier to understand?

java.lang.NullPointerException: idleTimeoutidleTimeout
  at java.util.Objects.requireNonNull()
  at com.linecorp.armeria.server.ServerBuilder.idleTimeout()idleTimeout()
  at com.linecorp.armeria.server.ServerTest$1.configure()

java.lang.NullPointerException: null
  at com.linecorp.armeria.server.ServerBuilder.initSocket()initSocket()
  at com.linecorp.armeria.server.ServerBuilder.build()
  at com.linecorp.armeria.server.ServerTest$1.configure()
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Think cognitive load
● Raise an exception as soon as a bad value is given.

– e.g. Don’t validate builder properties at build()

● Provide a meaningful message
– What is null?

● Use Objects.requireNonNull()

– Why is this bad and what is good?
● Use Preconditions.checkArgument()
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Consistent exception messages
● NullPointerException

– “paramName”

● IllegalArgumentException
– “paramName: badValue (expected: goodValueSpec)”

● idleTimeoutMillis: -1 (expected: >= 0)
● filePath: ../my_file (expected: an absolute path)

● Choose what works for your project
– … but the messages should be consistent and meaningful.
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import static com.google.common.base.Preconditions.checkArgument;
import static java.util.Objects.requireNonNull;

public final class ServerBuilder {
    …
    public ServerBuilder port(ServerPort port) {
        ports.add(requireNonNull(port, "port"));
        return this;
    }

    public ServerBuilder http2MaxStreamsPerConnection(
                                                 long http2MaxStreamsPerConnection) {
        checkArgument(
            http2MaxStreamsPerConnection > 0 &&
            http2MaxStreamsPerConnection <= 0xFFFFFFFFL,
            "http2MaxStreamsPerConnection: %s (expected: a 32-bit unsigned integer)",
            http2MaxStreamsPerConnection);
        this.http2MaxStreamsPerConnection = http2MaxStreamsPerConnection;
        return this;
    }
    …
}
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Static factory methods over constructors
● Easier to hide implementations
● More naming options

– of(), ofDefault(), empty()

● Chaining to a builder
– CorsService.builder(String... origins)
– CorsService.builderForAnyOrigin()

● Optimization opportunity
– Create an instance of different type for different parameters
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public interface EndpointGroup extends … {
    static EndpointGroup empty() {
        // StaticEndpointGroup is package-private.
        return StaticEndpointGroup.EMPTY;
    }

    static EndpointGroup of(EndpointGroup... endpointGroups) {
        requireNonNull(endpointGroups, "endpointGroups");
        // Highly simplified pseudo code
        // that shows how a static factory can optimize:
        switch (actualNumberOfEndpoints) {
            case 0:  
                return empty();
            case 1:
                return endpointGroups[0].first();
            default:
                // CompositeEndpointGroup is package-private.
                return new CompositeEndpointGroup(endpointGroups);
        }
    }
    …
}
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Avoid inner classes
● SomeClass.Builder

– Whose “Builder” is it?
– What happens if we import OtherClass.Builder?

● It’s dev-centric to organize the builder impl in the same class.
– User experience ≫ Internal complexity

import com.example.SomeClass.Builder;
Builder builder = SomeClass.builder();
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Avoid code generators in public API
● e.g. Lombok

– Sometimes OK for generating internal classes, though.

● Public API requires a lot more human touch
– Even a simple getter · setter needs hand-crafted Javadoc

● When this method should be used
● The default value when unused
● Examples

● Often lowers the contribution barrier if not used
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public final class CookieBuilder {
    /**
     * Sets the <a href="https://tools.ietf.org/...">{@code SameSite}</a>
     * attribute of the {@link Cookie}. The value is supposed to be one of
     * {@code "Lax"}, {@code "Strict"} or {@code "None"}. Note that this
     * attribute is server-side only.
     */
    public CookieBuilder sameSite(String sameSite) {
        this.sameSite = validateAttributeValue(sameSite, "sameSite");
        return this;
    }
}

Hand-crafted setter in action
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Follow semantic versioning

● Major bump → Breaking ABI changes
– Dropping a new version of JAR may fail.

● Minor bump → New features
– May add new classes
– May add default or static methods
– May add methods to final classes

● Micro bump → Bug fixes
– No public API changes

● It’s hard to follow semantic 
versioning strictly.
– Experiment as much as possible

in 0.x.y days.
– Use tools such as JDiff

Version 11.33.22
<majormajor>.<minorminor>.<micromicro>
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Keep public API to minimum
● Think twice before adding ‘public’ or ‘protected’.

– Hide implementations and use static factory methods in interface.
– If not possible because of inter-package references:

● Move to the ‘internal’ packages.
● Can be hidden or deprioritized by tools at least – Javadoc, IDE, …

● Why?
– API change often requires a major version bump.

● Nobody likes breaking changes…

– Implementation detail changes often in reality – bugs, performance, hindsight, …

https://twitter.com/trustin
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Make your classes & methods final
● Prefer composition over inheritance.

– Accept Function, Consumer, Predicate, …

● Why?
– User mistakes:

● Forgets to call super, Performs something totally unexpected

– Good balance between UX and DX (developer experience)

● Discuss · Think a lot before removing final (= opening a can of worms!)
– Users can often fork a problematic class.

● Of course, you can provide some abstract classes.
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Use API stability annotations
● A new feature sometimes needs time to mature.

– Use API stability annotations to balance between velocity & stability.

● Choose what works best for your community.
– @Beta, @UnstableApi, @InternalApi, @MaturityLevel… 
– Apache Yetus audience annotations
– @API Guardian

● Don’t overuse it, though.
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Usual engineering tips
● Prefer immutability.
● Implement toString() properly.
● Write awesome Javadoc · documentation.
● Keep your code clean

– Consistent and beautiful code style
– Technical debt must be handled on time.

● Automate for less tedium & higher quality:
– Formatting, linting, static analysis, test coverage, release process, …

https://twitter.com/trustin
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Community growth
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Don’t give up
● It usually takes (long) time – years, not months
● Dogfood and keep improving, because people don’t use when:

– Stale activity
● e.g. No releases, commits or site updates in last 6 months

– Poor metrics
● e.g. No test coverage, build failures, …

– Poor documentation
● No need to write a book, but should be good enough to get started

https://twitter.com/trustin
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Get the most out of interaction 
● Set up a place to chat informally.

– e.g. Slack, Gitter, …

● Respect and appreciate.
– Everyone is not good at textual communication.
– Every single visitor is important especially at the early stage.

● They could be your first customer or colleague!

● Engage proactively.
– Create a new issue to detail the reported problem · feature · workaround.

● They will usually be happy to provide feed back, or even a pull request.

https://twitter.com/trustin
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Don’t be shy but ask questions
● How did you find us?
● What features do you like about us?
● What is missing? What could be added or improved?
● Are you using it in your product?

– If so, how? If not, what would help you decide?

● I created an issue for you. Do you have anything to add?
● Are you interested in sending a pull request?

https://twitter.com/trustin
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Usual soft skills
● Be thankful.
● Assume good faith.
● Don’t take it personally.
● You sometimes need to agree to disagree.
● Humors, emojis and GIFs
● Be careful of burnout.
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You need a web site
● README.md is not enough.

– Aesthetics matter!
– No room for elevator pitch
– Not always mobile friendly
– No traffic analysis

● Find the site generator that works best for you.
– Gatsby, Hugo, Sphinx, Jekyll, …
– https://www.staticgen.com/

https://twitter.com/trustin
https://www.staticgen.com/
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Keep your eyes on “Referer” logs
● Who wrote about us?
● Who is using us?
● Engage!

– Let users know we care and appreciate.
– Update the ‘community resources’ page.
– Ask questions.
– Tweet about it.
– Propose a better way to use.

https://twitter.com/trustin
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Prepare a good dev guide
● Today’s user can be tomorrow’s dev in a library.
● Spend your time for good onboarding experience.

– Build requirements & How to build
– How to set up with IDE
– Conventions, e.g. Checkstyle rules
– CLA (Contributor License Agreement) – https://cla-assistant.io/

● See https://armeria.dev/community/developer-guide for an example.

https://twitter.com/trustin
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If you have more time…
● Speak in conferences.

– https://www.cfpland.com/

● Host contributor events.
– e.g. Open source coding sprint
– Try with your colleagues at work first.

● Watch and learn, or let’s work together!
– https://github.com/line/armeria
– https://github.com/netty/netty
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Meet us at GitHub

ARMERIA.dev
github.com/line/armeria
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