Writing a Java library
with better experience

W @trustin

https://twitter.com/trustin

A three-part session

* Core principles
* Tips & tricks
- Mostly Java-specific
- Applicable to other languages
* How to nurture the community

- ... for mutual benefit of users & yourself

- May seem less important but is a crucial part

YW @trustin

https://twitter.com/trustin

Where this came from

<3, i
\’/l\lettg w2 Armeria
- 23.6k .7 10 - 2.6k . 111
-) netty/netty -) line/armeria

- 9 @netty_project - 9 @armeria_project

YW @trustin

https://twitter.com/trustin
https://github.com/netty/netty
https://twitter.com/netty_project
https://github.com/line/armeria
https://twitter.com/armeria_project

Core principles

W @trustin

https://twitter.com/trustin

Be in user’s shoes

What will user’s code look like?

Imagine the best possible user code for the core problem.
- Type like the API is already there.

- Forget about how you’ll implement it.
Keep refining while adding increasingly complex use cases.

Reach a certain level of confidence first.
- Keep in mind — This is not a sprint but a journey.

- No need to implement anything until ready.

YW @trustin

https://twitter.com/trustin

Consistency

‘A’ is like this. Why is ‘B’ like that?
Consistency in your API

- e.g. This builder accepts long, but this accepts Duration.

When in doubt, check others’ work:

- Language SDK’s API - Other popular libraries
* JDK, Kotlin SDK, ... * Guava, Spring, ...

Don’t follow blindly.

- Different context, new trends, mistakes, ...

YW @trustin

https://twitter.com/trustin

Cognitive load - Learning curve

Start with a small set of concepts.
Build more complex solutions on top of them.

Use familiar constructs
— Builders and factories
- Decorators and strategies

- (Functional) Composition

Don’t expose too much at once.

- e.g. 10 overloaded builder methods

YW @trustin

https://twitter.com/trustin

User experience > Internal complexity

* Always choose UX.

- Good UX is crucial for the virtuous cycle of project.

* Can tame internal complexity, but can’t tame poor UX:
— Confused users = Too many support tickets — Poor experience - Less time for dev —
— Low-quality feed back - Burnout — Fix not at its best form — ...

* API with good UX often leads to better implementation:
- Encapsulation — More freedom at implementation level

- Composition — Less complexity at implementation level

YW @trustin

https://twitter.com/trustin

Tips & tricks

W @trustin

https://twitter.com/trustin

Use Java, not other languages

* Non-Java library means:
- Additional (BIG) runtime dependencies
- Weird synthetic classes and methods

- Lang A - Java & Lang B - Java may be easy, but Lang A - B may not.
* Keep the core in Java

* Provide language-specific layers, eg st

- Use others’ help if you are not good at those languages.

YW @trustin

https://twitter.com/trustin

Keep core dependencies minimal

* Don’t depend on another framework

* Let people choose

- ... by providing integration layers
* Spring Boot, Dropwizard, ...

* Shade utility dependencies
- Guava, Caffeine, FastUtil, JCTools, Reflections, ...
- Use ProGuard to trim unused shaded classes: 30 MB —» 6 MB

- Be aware of licenses

YW @trustin

https://twitter.com/trustin

Go non-null by default

Use @Nullable.
- Donotuse j.l.0pttonal.

class Server {

_ . éNullable
A language has its own null handling: ServerPort activePort() { .. }

- Option (Scala) }'“

- Nullable types (Kotlin)
class CacheControlBuilder {
The caller can wrap the result:

_ - EacheControlBuilder maxAge(
Opt}onal.ofNullable() @Nullable Duration maxAge) { .. }
- Option()

Escape analysis doesn’t always work.

W @trustin

https://twitter.com/trustin

@NOnNU -l. -L ByDefaU -l.t in package-info. java

VA3
* Indicates the return values, parameters and fields are non-nullable by default.
* Annotate a package with this annotation and annotate nullable return values,

* parameters and fields with {@link Nullable}.
*x/

@Nonnull

@Documented

@Target(ElementType.PACKAGE)

@Retention(RetentionPolicy.RUNTIME)

@TypeQualifierDefault({

ElementType.METHOD,
ElementType.PARAMETER,
ElementType.FIELD })

public @interface NonNullByDefault {}

YW @trustin

https://twitter.com/trustin

Nullness annotation libraries

* javax.annotations * JetBrains annotations
(jsr305) - IDE support
~ Most popular - Contract annotations
- Not compatible w/ Java Modules - @Contract("null -> null")
* Jspecify * Checker framework
- Joint effort to replace jsr305 - Mature
— Too soon too tell - More than just annotations

YW @trustin

https://twitter.com/trustin

Validate early with message

* Which stack trace is easier to understand?

at
at
at

java.

lang.NullPointerException: idleTimeout
java.util.Objects.requireNonNull()

com. linecorp.armeria.server.ServerButilder. idleTimeout()
com. linecorp.armeria.server.ServerTest$l.configure()

at
at
at

java.

T
-

lang.NullPointerException: null
com.linecorp.armeria.server.ServerBuilder. initSocket()
com. linecorp.armeria.server.ServerBuilder.build()

com. linecorp.armeria.server.ServerTest$l.configure()

W @trustin

https://twitter.com/trustin

Think cognitive load

* Ralse an exception as soon as a bad value is given.
- e.g. Don’t validate builder properties at build()

* Provide a meaningful message

- Whatisnull?
* Use Objects.requireNonNull()

- Why is this bad and what is good?
* Use Preconditions.checkArgument()

YW @trustin

https://twitter.com/trustin

Consistent exception messages

* NullPointerException
- “paramName”

* IllegalArgumentException

- “paramName: badValue (expected: goodValueSpec)”
* idleTimeoutMillis: -1 (expected: >= 0)
« filePath: ../my_file (expected: an absolute path)

* Choose what works for your project

- ... but the messages should be consistent and meaningful.

YW @trustin

https://twitter.com/trustin

import static com.google.common.base.Preconditions.checkArgument;
import static java.util.Objects.requireNonNull;

public final class ServerBuilder {

public ServerBuilder port(ServerPort port) {
ports.add(requireNonNull(port, "port"));
return this;

}

public ServerBuilder http2MaxStreamsPerConnection(
long http2MaxStreamsPerConnection) {
checkArgument(
http2MaxStreamsPerConnection > 0 &&
http2MaxStreamsPerConnection <= OxFFFFFFFFL,
"http2MaxStreamsPerConnection: %s (expected: a 32-bit unsigned integer)",
http2MaxStreamsPerConnection);
this.http2MaxStreamsPerConnection = http2MaxStreamsPerConnection;
return this;

W @trustin

https://twitter.com/trustin

Static factory methods over constructors

Easier to hide implementations
More naming options
- of(),ofDefault(), empty()

Chaining to a builder
- CorsService.butilder(String... origins)
- CorsService.butilderForAnyOrigin()

Optimization opportunity

- Create an instance of different type for different parameters

YW @trustin

https://twitter.com/trustin

public interface EndpointGroup extends .. {
static EndpointGroup empty() {
// StaticEndpointGroup is package-private.
return StaticEndpointGroup.EMPTY;
¥

static EndpointGroup of(EndpointGroup... endpointGroups) {
requireNonNull(endpointGroups, "endpointGroups");
// Highly simplified pseudo code
// that shows how a static factory can optimize:
switch (actualNumberOfEndpoints) {
case 0:
return empty();
case 1:
return endpointGroups[0].first();
default:
// CompositeEndpointGroup is package-private.
return new CompositeEndpointGroup(endpointGroups);

W @trustin

https://twitter.com/trustin

Avoid inner classes

« SomeClass.Butilder

import com.example.SomeClass.Butilder;
Builder builder = SomeClass.butilder();

- Whose “Builder” is it?

- What happens if we import OtherClass.Butilder?

* It’s dev-centric to organize the builder impl in the same class.

- Usel’ experience =>> Internal complexity

W @trustin

https://twitter.com/trustin

Avoid code generators in public API

* e.g. Lombok

- Sometimes OK for generating internal classes, though.

* Public API requires a lot more human touch

- Even a simple getter - setter needs hand-crafted Javadoc
* When this method should be used
* The default value when unused

* Examples

* Often lowers the contribution barrier if not used

YW @trustin

https://twitter.com/trustin

Hand-crafted setter in action

public final class CookieBuilder A{

/**

* Sets the {@code SameSite}

* attribute of the {@link Cookie}. The value is supposed to be one of

* {@code "Lax"}, {@code "Strict"} or {@code "None"}. Note that this

* attribute is server-side only.

w5/

public CookieBuilder sameSite(String sameSite) {
this.sameSite = validateAttributeValue(sameSite, "sameSite");
return this;

YW @trustin

https://twitter.com/trustin

Follow semantic versioning

Version 1.3.2
<major>.<rinor>.<micro>

* Major bump — Breaking ABI changes * Micro bump — Bug fixes
- Dropping a new version of JAR may fail. - No public API changes

* Minor bump = New features * It’s hard to follow semantic

- May add new classes versioning strictly.

- Experiment as much as possible

- May add default or static methods _
in 0.x.y days.

- May add methods to final classes ,
- Use tools such as ID1ff

YW @trustin

https://twitter.com/trustin

Keep public APl to minimum

* Think twice before adding ‘public’ or ‘protected.
- Hide implementations and use static factory methods in interface.

- If not possible because of inter-package references:
* Move to the ‘internal’ packages.
* Can be hidden or deprioritized by tools at least — Javadoc, IDE, ...

* Why?

— API change often requires a major version bump.
* Nobody likes breaking changes...

- Implementation detail changes often in reality — bugs, performance, hindsight, ...

YW @trustin

https://twitter.com/trustin

Make your classes & methods final

Prefer composition over inheritance.
— Accept Function, Consumer, Predicate, ...
Why?

- User mistakes:

* Forgets to call super, Performs something totally unexpected

— Good balance between UX and DX (developer experience)

Discuss - Think a lot before removing final (= opening a can of worms!)

— Users can often fork a problematic class.

Of course, you can provide some abstract classes.

YW @trustin

https://twitter.com/trustin

Use API stability annotations

* A new feature sometimes needs time to mature.

— Use API stability annotations to balance between velocity & stability.

* Choose what works best for your community.
- @Beta, @UnstableApt, @InternalApt, @MaturitylLevel...
- Apache Yetus audience annotations
- @API Guardian

* Don’t overuse it, though.

YW @trustin

https://twitter.com/trustin

Usual engineering tips

Prefer immutability.

Implement toString() properly.

Write awesome Javadoc - documentation.

Keep your code clean
— Consistent and beautiful code style

— Technical debt must be handled on time.

* Automate for less tedium & higher quality:

- Formatting, linting, static analysis, test coverage, release process, ...

YW @trustin

https://twitter.com/trustin

Community growth

W @trustin

https://twitter.com/trustin

Don't give up

* It usually takes (long) time — years, not months

* Dogfood and keep improving, because people don’t use when:
- Stale activity
* e.g. No releases, commits or site updates in last 6 months

- Poor metrics

* e.g. No test coverage, build failures, ...

- Poor documentation

* No need to write a book, but should be good enough to get started

YW @trustin

https://twitter.com/trustin

Get the most out of interaction

Set up a place to chat informally.
- e.g. Slack, Gitter, ...
Respect and appreciate.

- Everyone is not good at textual communication.

- Every single visitor is important especially at the early stage.

* They could be your first customer or colleague!
Engage proactively.
- Create a new issue to detail the reported problem - feature - workaround.

They will usually be happy to provide feed back, or even a pull request.

YW @trustin

https://twitter.com/trustin

trustin € 2 months ago
That'd be awesome. Thanks again, @Tobias

a Tobias 2 months ago

& It's weird that I'm using a product that you wrote, I'm
asking for features that you and your friends/colleagues
and other people "on the internet" are implementing,
paying in nothing but a little praise and recognition,
and you're the one thanking me.. Either way, thank you
too for Armeria & Netty

W @trustin

https://twitter.com/trustin

Don't be shy but ask questions

* How did you find us?
* What features do you like about us?
* What is missing? What could be added or improved?
* Are you using it in your product?
- If so, how? If not, what would help you decide?
* I created an issue for you. Do you have anything to add?

* Are you interested in sending a pull request?

YW @trustin

https://twitter.com/trustin

Usual soft skills

* Be thankful.

* Assume good faith.

* Don’t take it personally.

* You sometimes need to agree to disagree

* Humors, emojis and GIFs &2 %] 1 0 /ecas ,i‘

* Be careful of burnout.

YW @trustin

https://twitter.com/trustin

You need a web site

* README . md is not enough.
- Aesthetics matter!
- No room for elevator pitch
- Not always mobile friendly

- No traffic analysis

* Find the site generator that works best for you.
- Gatsby, Hugo, Sphinx, Jekyll, ...

- https://www.staticgen.com/

W @trustin

https://twitter.com/trustin
https://www.staticgen.com/

Users Sessions Bounce Rate Session Duration

1.3 2.2K 48.88% 3m 18s

140.0% 150.4% $17.3% 16.3%

< .
IS & . N D entati Co ity
<l=; Ar I erla Docs » Welcome to Armeria © Edit on GitHub lews ocumentation ommunity o

Welcome to Armeria Build a reactive microservice

Setting up a project Armeria is an open-source asynchronous HTTP/2 RPC/REST client/server library built on top of Java 8, Netty, Thrift and) nOt theirS.

Writing a server gRPC. Its primary goal is to help engineers build high-performance asynchronous microservices that use HTTP/2 as a ses-

sion layer protocol. Armeria is your go-to microservice framework for any situation. You can build
Writing a client any type of microservice leveraging your favorite technologies, including gRPC,
Advanced topics It is open-sourced and licensed under Apache License 2.0 by LINE Corporation, who uses it in producti(Thrift, Kotlin, Retrofit, Reactive Streams, Spring Boot and Dropwizard.
Release notes ick > * Brought to you by the creator of Netty and his colleagues at LINER
API documentation Want a quic tour:

Source cross-reference

Check out the introductory slides:
Questions and answers

Fork me on GitHub
Contributing

C)stars 2.6k

W Follow 610 Armeria

Chat onslack
A Microservice Framework cerver
Well-suited Everywhere .builder()

commit activity 56/month rvice(

gRPC, Thrift, REST, static files? T /hellor,

maven-central |V

. (ctx, req) -> HttpResponse.of("Hello!"))
You name it. We serve them all. .service(Grpcservice
r()

Let's embrace the reality — we almost always have to deal with more than -add E;’ vice(myGrpcServiceImpl)

one protocol. It was once Thrift, today it's gRPC, and REST never gets old. At vi E:)
Wearmeria_project ()line/armeria Enter fullscreen the same time, you sometimes have to handle health check requests from a "/ap i/thri I ity . .

load balancer or even serve some static files. Thr.ﬁtservme (e leempL) g

Features Armeria is capable of running services using different protocols, all on a

FileService.of(File("/var/
single port. No need for any proxies or sidecars. Enjoy the reduced e

HTTP/2 complexity and points of failure, even when migrating between protocols! /monitor/l7check",
HealthCheckService.of())

.build()

® Supports HTTP/2 on both TLS and cleartext connections .start();

e Supports protocol upgrade via both HTTP/2 connection preface and traditional HTTP/1 upgrade request
® Fully compatible with existing HTTP/1 servers
o Integrated PROXY protocol support for interoperability with load balancers such as HAProxy and AWS ELB.

https://twitter.com/trustin

Keep your eyes on “Referer” logs

* Who wrote about us?

* Who is using us?

* Engage!
- Let users know we care and appreciate.
- Update the ‘community resources’ page.
- Ask questions.

- Tweet about it.

- Propose a better way to use.

YW @trustin

https://twitter.com/trustin

@ @ O ©

Trustin Lee @trustin - May 2 v

@JaapCoomans Hi! Just found your "The ultimate microframework
smackdown" and wanted to tell you @armeria_project is 1) based on
@netty_project 2) supports both annotations and programmatic model.
Thanks a lot for mentioning Armeria! Any other comments you wanted to
say?

Trustin Lee @trustin - May 2 v

Replying to @trustin
I'm especially interested in what improvements could be made to make

-
" =

Armeria be one of the final top list. *

O 1 n Q 0 [

Jaap Coomans @JaapCoomans - May 2 v

Replying to @trustin

Thanks for reaching out. That's awesome!

It's been a while, but | recall | found the programmatic model fairly limited.
The focus seems to be on annotations. Also the anonymous inner classes in
the docs are not my style.

O 1 (Q T

Jaap Coomans @JaapCoomans - May 2 v

An improvement wrt the annotated model would be to automatically
respond with 404 when a handler returns null or an empty Optional.

Furthermore greater adoption would have scored some extra points, but
that's not something you can control directly.

YW @trustin

Armeria Official Tweets (Please Retweet!) Arr

W jun1stat10:19 PM
https:/twitter.com/armeria_project/status/1267
445703652937728

& Armeria @armeria_project

+ = Baremaps, a vector tile server
and pipeline for producing @Mapbox vector
tiles from @openstreetmap and other data
sources, built with #Armeria by @bchapuis
et al https:/t.co/Mwml2qgyUha

Tutorial: https:/t.co/67y0FAAIS2

y Twitter Jun 1st

85 ©
2 replies
@ Bertil Chapuis 27 days ago
Thanks a lot for the tweet s I'm now in a rush
to release the new version &= In the near future,
the plan is to develop additional webservices

based on armeria-grpc for localization, search,
routing, etc. Thank you for your work! (edited)

Trustin Lee 'ﬁ' 26 days ago
Awesome! Looking forward to your feed back

4

https://twitter.com/trustin

Prepare a good dev guide

* Today’s user can be tomorrow’s dev in a library.

* Spend your time for good onboarding experience.
- Build requirements & How to build
- How to set up with IDE
- Conventions, e.g. Checkstyle rules

— CLA (Contributor License Agreement) — https://cla-assistant.io/

* See https://armeria.dev/community/developer-guide for an example.

W @trustin

https://twitter.com/trustin
https://cla-assistant.io/
https://armeria.dev/community/developer-guide

If you have more time...

* Speak in conferences.

- https://www.cfpland.com/

* Host contributor events.
- e.g. Open source coding sprint

- Try with your colleagues at work first.

* Watch and learn, or let’s work together!
- https://github.com/line/armeria
- https://github.com/netty/netty

W @trustin

https://twitter.com/trustin
https://www.cfpland.com/
https://github.com/line/armeria
https://github.com/netty/netty

Meet us at GitHub

oo
=]

ARMERIA.dev
github.com/line/armeria

W @trustin

https://twitter.com/trustin
https://armeria.dev/
https://github.com/line/armeria

	슬라이드 1
	슬라이드 2
	슬라이드 3
	슬라이드 4
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16
	슬라이드 17
	슬라이드 18
	슬라이드 19
	슬라이드 20
	슬라이드 21
	슬라이드 22
	슬라이드 23
	슬라이드 24
	슬라이드 25
	슬라이드 26
	슬라이드 27
	슬라이드 28
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33
	슬라이드 34
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40
	Meet us at GitHub and Slack

