Writing a Java library
with better experience
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A three-part session

* Core principles
* Tips & tricks
- Mostly Java-specific
- Applicable to other languages
* How to nurture the community

- ... for mutual benefit of users & yourself

- May seem less important but is a crucial part

YW @trustin


https://twitter.com/trustin

Where this came from

<3, i
\’/l\lettg w2 Armeria
- 23.6k .7 10 - 2.6k . 111
- ) netty/netty - ) line/armeria

- 9 @netty_project - 9 @armeria_project

YW @trustin


https://twitter.com/trustin
https://github.com/netty/netty
https://twitter.com/netty_project
https://github.com/line/armeria
https://twitter.com/armeria_project

Core principles
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Be in user’s shoes

What will user’s code look like?

Imagine the best possible user code for the core problem.
- Type like the API is already there.

- Forget about how you’ll implement it.
Keep refining while adding increasingly complex use cases.

Reach a certain level of confidence first.
- Keep in mind — This is not a sprint but a journey.

- No need to implement anything until ready.
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Consistency

‘A’ is like this. Why is ‘B’ like that?
Consistency in your API

- e.g. This builder accepts long, but this accepts Duration.

When in doubt, check others’ work:

- Language SDK’s API - Other popular libraries
* JDK, Kotlin SDK, ... * Guava, Spring, ...

Don’t follow blindly.

- Different context, new trends, mistakes, ...
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Cognitive load - Learning curve

Start with a small set of concepts.
Build more complex solutions on top of them.

Use familiar constructs
— Builders and factories
- Decorators and strategies

- (Functional) Composition

Don’t expose too much at once.

- e.g. 10 overloaded builder methods
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User experience > Internal complexity

* Always choose UX.

- Good UX is crucial for the virtuous cycle of project.

* Can tame internal complexity, but can’t tame poor UX:
— Confused users = Too many support tickets — Poor experience - Less time for dev —
— Low-quality feed back - Burnout — Fix not at its best form — ...

* API with good UX often leads to better implementation:
- Encapsulation — More freedom at implementation level

- Composition — Less complexity at implementation level
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Tips & tricks
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Use Java, not other languages

* Non-Java library means:
- Additional (BIG) runtime dependencies
- Weird synthetic classes and methods

- Lang A - Java & Lang B - Java may be easy, but Lang A - B may not.
* Keep the core in Java

* Provide language-specific layers, eg st

- Use others’ help if you are not good at those languages.
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Keep core dependencies minimal

* Don’t depend on another framework

* Let people choose

- ... by providing integration layers
* Spring Boot, Dropwizard, ...

* Shade utility dependencies
- Guava, Caffeine, FastUtil, JCTools, Reflections, ...
- Use ProGuard to trim unused shaded classes: 30 MB —» 6 MB

- Be aware of licenses
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Go non-null by default

Use @Nullable.
- Donotuse j.l.0pttonal.

class Server {

_ . éNullable
A language has its own null handling: ServerPort activePort() { .. }

- Option (Scala) }'“

- Nullable types (Kotlin)
class CacheControlBuilder {
The caller can wrap the result:

_ - EacheControlBuilder maxAge(
Opt}onal.ofNullable() @Nullable Duration maxAge) { .. }
- Option()

Escape analysis doesn’t always work.
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@NOnNU -l. -L ByDefaU -l.t in package-info. java

VA3
* Indicates the return values, parameters and fields are non-nullable by default.
* Annotate a package with this annotation and annotate nullable return values,

* parameters and fields with {@link Nullable}.
*x/

@Nonnull

@Documented

@Target(ElementType.PACKAGE)

@Retention(RetentionPolicy.RUNTIME)

@TypeQualifierDefault({

ElementType.METHOD,
ElementType.PARAMETER,
ElementType.FIELD })

public @interface NonNullByDefault {}
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Nullness annotation libraries

* javax.annotations * JetBrains annotations
(jsr305) - IDE support
~ Most popular - Contract annotations
- Not compatible w/ Java Modules - @Contract("null -> null")
* Jspecify * Checker framework
- Joint effort to replace jsr305 - Mature
— Too soon too tell - More than just annotations
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Validate early with message

* Which stack trace is easier to understand?

at
at
at

java.

lang.NullPointerException: idleTimeout
java.util.Objects.requireNonNull( )

com. linecorp.armeria.server.ServerButilder. idleTimeout( )
com. linecorp.armeria.server.ServerTest$l.configure()

at
at
at

java.

T
-

lang.NullPointerException: null
com.linecorp.armeria.server.ServerBuilder. initSocket()
com. linecorp.armeria.server.ServerBuilder.build()

com. linecorp.armeria.server.ServerTest$l.configure()
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Think cognitive load

* Ralse an exception as soon as a bad value is given.
- e.g. Don’t validate builder properties at build( )

* Provide a meaningful message

- Whatisnull?
* Use Objects.requireNonNull()

- Why is this bad and what is good?
* Use Preconditions.checkArgument()
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Consistent exception messages

* NullPointerException
- “paramName”

* IllegalArgumentException

- “paramName: badValue (expected: goodValueSpec)”
* idleTimeoutMillis: -1 (expected: >= 0)
« filePath: ../my_file (expected: an absolute path)

* Choose what works for your project

- ... but the messages should be consistent and meaningful.
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import static com.google.common.base.Preconditions.checkArgument;
import static java.util.Objects.requireNonNull;

public final class ServerBuilder {

public ServerBuilder port(ServerPort port) {
ports.add(requireNonNull(port, "port"));
return this;

}

public ServerBuilder http2MaxStreamsPerConnection(
long http2MaxStreamsPerConnection) {
checkArgument(
http2MaxStreamsPerConnection > 0 &&
http2MaxStreamsPerConnection <= OxFFFFFFFFL,
"http2MaxStreamsPerConnection: %s (expected: a 32-bit unsigned integer)",
http2MaxStreamsPerConnection);
this.http2MaxStreamsPerConnection = http2MaxStreamsPerConnection;
return this;
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Static factory methods over constructors

Easier to hide implementations
More naming options
- of(),ofDefault( ), empty()

Chaining to a builder
- CorsService.butilder(String... origins)
- CorsService.butilderForAnyOrigin()

Optimization opportunity

- Create an instance of different type for different parameters
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public interface EndpointGroup extends .. {
static EndpointGroup empty() {
// StaticEndpointGroup is package-private.
return StaticEndpointGroup.EMPTY;
¥

static EndpointGroup of(EndpointGroup... endpointGroups) {
requireNonNull(endpointGroups, "endpointGroups");
// Highly simplified pseudo code
// that shows how a static factory can optimize:
switch (actualNumberOfEndpoints) {
case 0:
return empty();
case 1:
return endpointGroups[0].first();
default:
// CompositeEndpointGroup is package-private.
return new CompositeEndpointGroup(endpointGroups);
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Avoid inner classes

« SomeClass.Butilder

import com.example.SomeClass.Butilder;
Builder builder = SomeClass.butilder();

- Whose “Builder” is it?

- What happens if we import OtherClass.Butilder?

* It’s dev-centric to organize the builder impl in the same class.

- Usel’ experience =>> Internal complexity
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Avoid code generators in public API

* e.g. Lombok

- Sometimes OK for generating internal classes, though.

* Public API requires a lot more human touch

- Even a simple getter - setter needs hand-crafted Javadoc
* When this method should be used
* The default value when unused

* Examples

* Often lowers the contribution barrier if not used
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Hand-crafted setter in action

public final class CookieBuilder A{

/**

* Sets the <a href="https://tools.ietf.org/...">{@code SameSite}</a>

* attribute of the {@link Cookie}. The value is supposed to be one of

* {@code "Lax"}, {@code "Strict"} or {@code "None"}. Note that this

* attribute is server-side only.

w5/

public CookieBuilder sameSite(String sameSite) {
this.sameSite = validateAttributeValue(sameSite, "sameSite");
return this;
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Follow semantic versioning

Version 1.3.2
<major>.<rinor>.<micro>

* Major bump — Breaking ABI changes * Micro bump — Bug fixes
- Dropping a new version of JAR may fail. - No public API changes

* Minor bump = New features * It’s hard to follow semantic

- May add new classes versioning strictly.

- Experiment as much as possible

- May add default or static methods _
in 0.x.y days.

- May add methods to final classes ,
- Use tools such as ID1ff
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Keep public APl to minimum

* Think twice before adding ‘public’ or ‘protected.
- Hide implementations and use static factory methods in interface.

- If not possible because of inter-package references:
* Move to the ‘internal’ packages.
* Can be hidden or deprioritized by tools at least — Javadoc, IDE, ...

* Why?

— API change often requires a major version bump.
* Nobody likes breaking changes...

- Implementation detail changes often in reality — bugs, performance, hindsight, ...
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Make your classes & methods final

Prefer composition over inheritance.
— Accept Function, Consumer, Predicate, ...
Why?

- User mistakes:

* Forgets to call super, Performs something totally unexpected

— Good balance between UX and DX (developer experience)

Discuss - Think a lot before removing final (= opening a can of worms!)

— Users can often fork a problematic class.

Of course, you can provide some abstract classes.
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Use API stability annotations

* A new feature sometimes needs time to mature.

— Use API stability annotations to balance between velocity & stability.

* Choose what works best for your community.
- @Beta, @UnstableApt, @InternalApt, @MaturitylLevel...
- Apache Yetus audience annotations
- @API Guardian

* Don’t overuse it, though.
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Usual engineering tips

Prefer immutability.

Implement toString( ) properly.

Write awesome Javadoc - documentation.

Keep your code clean
— Consistent and beautiful code style

— Technical debt must be handled on time.

* Automate for less tedium & higher quality:

- Formatting, linting, static analysis, test coverage, release process, ...
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Community growth
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Don't give up

* It usually takes (long) time — years, not months

* Dogfood and keep improving, because people don’t use when:
- Stale activity
* e.g. No releases, commits or site updates in last 6 months

- Poor metrics

* e.g. No test coverage, build failures, ...

- Poor documentation

* No need to write a book, but should be good enough to get started
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Get the most out of interaction

Set up a place to chat informally.
- e.g. Slack, Gitter, ...
Respect and appreciate.

- Everyone is not good at textual communication.

- Every single visitor is important especially at the early stage.

* They could be your first customer or colleague!
Engage proactively.
- Create a new issue to detail the reported problem - feature - workaround.

They will usually be happy to provide feed back, or even a pull request.
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trustin € 2 months ago
That'd be awesome. Thanks again, @Tobias

a Tobias 2 months ago

& It's weird that I'm using a product that you wrote, I'm
asking for features that you and your friends/colleagues
and other people "on the internet" are implementing,
paying in nothing but a little praise and recognition,
and you're the one thanking me.. Either way, thank you
too for Armeria & Netty
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Don't be shy but ask questions

* How did you find us?
* What features do you like about us?
* What is missing? What could be added or improved?
* Are you using it in your product?
- If so, how? If not, what would help you decide?
* I created an issue for you. Do you have anything to add?

* Are you interested in sending a pull request?
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Usual soft skills

* Be thankful.

* Assume good faith.

* Don’t take it personally.

* You sometimes need to agree to disagree

* Humors, emojis and GIFs &2 %] 1 0 /ecas ,i‘

* Be careful of burnout.
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You need a web site

* README . md is not enough.
- Aesthetics matter!
- No room for elevator pitch
- Not always mobile friendly

- No traffic analysis

* Find the site generator that works best for you.
- Gatsby, Hugo, Sphinx, Jekyll, ...

- https://www.staticgen.com/
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Users Sessions Bounce Rate Session Duration

1.3 2.2K 48.88% 3m 18s

140.0% 150.4% $17.3% 16.3%
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Welcome to Armeria Build a reactive microservice

Setting up a project Armeria is an open-source asynchronous HTTP/2 RPC/REST client/server library built on top of Java 8, Netty, Thrift and ) nOt theirS.

Writing a server gRPC. Its primary goal is to help engineers build high-performance asynchronous microservices that use HTTP/2 as a ses-

sion layer protocol. Armeria is your go-to microservice framework for any situation. You can build
Writing a client any type of microservice leveraging your favorite technologies, including gRPC,
Advanced topics It is open-sourced and licensed under Apache License 2.0 by LINE Corporation, who uses it in producti( Thrift, Kotlin, Retrofit, Reactive Streams, Spring Boot and Dropwizard.
Release notes ick > * Brought to you by the creator of Netty and his colleagues at LINER
API documentation Want a quic tour:

Source cross-reference

Check out the introductory slides:
Questions and answers

Fork me on GitHub
Contributing

C)stars 2.6k

W Follow 610 Armeria

Chat  onslack
A Microservice Framework cerver
Well-suited Everywhere .builder()

commit activity 56/month rvice(

gRPC, Thrift, REST, static files? T /hellor,

maven-central |V

. (ctx, req) -> HttpResponse.of("Hello!"))
You name it. We serve them all. .service(Grpcservice
r()

Let's embrace the reality — we almost always have to deal with more than -add E;’ vice(myGrpcServiceImpl)

one protocol. It was once Thrift, today it's gRPC, and REST never gets old. At vi E: )
Wearmeria_project ()line/armeria Enter fullscreen the same time, you sometimes have to handle health check requests from a "/ap i/thri I ity . .

load balancer or even serve some static files. Thr.ﬁtservme (e leempL) g

Features Armeria is capable of running services using different protocols, all on a

FileService.of( File("/var/
single port. No need for any proxies or sidecars. Enjoy the reduced e

HTTP/2 complexity and points of failure, even when migrating between protocols! /monitor/l7check",
HealthCheckService.of())

.build()

® Supports HTTP/2 on both TLS and cleartext connections .start();

e Supports protocol upgrade via both HTTP/2 connection preface and traditional HTTP/1 upgrade request
® Fully compatible with existing HTTP/1 servers
o Integrated PROXY protocol support for interoperability with load balancers such as HAProxy and AWS ELB.
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Keep your eyes on “Referer” logs

* Who wrote about us?

* Who is using us?

* Engage!
- Let users know we care and appreciate.
- Update the ‘community resources’ page.
- Ask questions.

- Tweet about it.

- Propose a better way to use.
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Trustin Lee @trustin - May 2 v

@JaapCoomans Hi! Just found your "The ultimate microframework
smackdown" and wanted to tell you @armeria_project is 1) based on
@netty_project 2) supports both annotations and programmatic model.
Thanks a lot for mentioning Armeria! Any other comments you wanted to
say?

Trustin Lee @trustin - May 2 v

Replying to @trustin
I'm especially interested in what improvements could be made to make

-
" =

Armeria be one of the final top list. *

O 1 n Q 0 [

Jaap Coomans @JaapCoomans - May 2 v

Replying to @trustin

Thanks for reaching out. That's awesome!

It's been a while, but | recall | found the programmatic model fairly limited.
The focus seems to be on annotations. Also the anonymous inner classes in
the docs are not my style.

O 1 ( Q T

Jaap Coomans @JaapCoomans - May 2 v

An improvement wrt the annotated model would be to automatically
respond with 404 when a handler returns null or an empty Optional.

Furthermore greater adoption would have scored some extra points, but
that's not something you can control directly.
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Armeria Official Tweets (Please Retweet!) Arr

W  jun1stat10:19 PM
https:/twitter.com/armeria_project/status/1267
445703652937728

& Armeria @armeria_project

+ = Baremaps, a vector tile server
and pipeline for producing @Mapbox vector
tiles from @openstreetmap and other data
sources, built with #Armeria by @bchapuis
et al https:/t.co/Mwml2qgyUha

Tutorial: https:/t.co/67y0FAAIS2

y Twitter Jun 1st

85 ©
2 replies
@ Bertil Chapuis 27 days ago
Thanks a lot for the tweet s I'm now in a rush
to release the new version &= In the near future,
the plan is to develop additional webservices

based on armeria-grpc for localization, search,
routing, etc. Thank you for your work! (edited)

Trustin Lee 'ﬁ' 26 days ago
Awesome! Looking forward to your feed back
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Prepare a good dev guide

* Today’s user can be tomorrow’s dev in a library.

* Spend your time for good onboarding experience.
- Build requirements & How to build
- How to set up with IDE
- Conventions, e.g. Checkstyle rules

— CLA (Contributor License Agreement) — https://cla-assistant.io/

* See https://armeria.dev/community/developer-guide for an example.
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If you have more time...

* Speak in conferences.

- https://www.cfpland.com/

* Host contributor events.
- e.g. Open source coding sprint

- Try with your colleagues at work first.

* Watch and learn, or let’s work together!
- https://github.com/line/armeria
- https://github.com/netty/netty
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Meet us at GitHub

oo
=]

ARMERIA.dev
github.com/line/armeria
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