
More Than You Ever Wanted
To Know About Strings

Charles Oliver Nutter

Me
● Charles Oliver Nutter
● Principal Software Eng. at Red Hat

○ “Research and prototyping” group
● “JRuby Guy” since 2006

○ Thanks to Sun Microsystems, Engine Yard,and Red Hat!
● headius@headius.com
● @headius

mailto:headius@headius.com
mailto:headius@headius.com

Many Challenges
● Dynamic language
● Native code integration
● Process management
● Multi-encoding string support

Agenda

● What is a string
● World of encodings
● JCodings
● JOni
● Wrap-up

Strings and Encodings

What is a String?
● A finite sequence of characters

○ A contiguous array
○ A tree of arrays, as in ropes
○ A list, perhaps immutable as in Erlang

● Mutable or immutable
● Constant or O(n) access time

What is a Character?
● Glyph: what you see on the screen
● Grapheme: smallest indivisible piece
● Character: one or more graphemes in combination

○ Not tied to a specific glyph
● Early representations limited in scope
● Frequently single-locale

ASCII
● American Standard Code for Information Interchange
● First published in 1963
● 7-bit encoding, now typically lower half of 8-bit

○ Large contributor to bytes having 8 bits
● Largely unchanged since 1977
● Many modern encodings are compatible

● Utilize high 128
values

● Latin variants and
non-latin

● Thai
● Not enough room for

most Asian languages
● ISO-8859-5 superceded

by KOI-R, Windows-1251

ISO-8859

ISO-8859-5 Cyrillic characters

● ASCII is just Latin
● ISO encodings are Latin + X

○ What if you need two different X?
● Languages with >255 (or 128) characters

○ Chinese, Japanese, Korean
● Archaic languages, symbols, pictographs
● Bad behavior if you pick wrong encoding

Single Byte is Not Enough

● Multi-byte encodings to the rescue
○ And oh the pain
○ Incompatible representations
○ Obvious ASCII, ISO-8859 issues

● If only byte had been 16 bits!

Multi-byte encodings

Chinese, Japanese, Korean
● Hiragana and Katakana: 46 characters each
● Hanzi/Kanji: thousands of characters

○ Over 100k in Chinese
○ Typically 2000-7000 considered mainstream

● Multiple encodings still in use today
○ All have variable-width characters
○ Most are at least ASCII-compatible
○ Some mandated by government, industry standards

Unicode

Unicode 88
● 16-bit characters
● 14 bits usable => 16k characters
● Only contemporary, in-use languages considered
● Unicode 1.0 followed in 1991

Universal Character Set (UCS)

● ISO-10646
● Developed in tandem with Unicode since 1991
● Standardized character codepoints
● Excludes inter-character relationships

○ Ligatures
○ Script direction
○ Sorting

● UCS-2 chosen for Java 1.0

Unicode 2.0 and Beyond
● Multi-word “surrogates” to support >16k chars
● UCS-2 becomes UTF-16
● Unicode continues to evolve

 ᧳

We Have a Problem
● Single byte encodings are more efficient, but…

○ Only two alphabets at a time
○ Pick wrong encoding, garbled text
○ No indication what encoding to use

● Multibyte encodings are more complete, but...
○ Efficient byte width for English
○ Multibyte for everything else
○ Sometimes “over-unify” as with Han Unification

● We may never solve this

Java

Strings in Java
● char[] and length (plus some other bits)
● In the beginning, UCS-2

○ 16 bits per character should be enough for anyone!
○ Most non-asian languages waste one byte

● Later changed to UTF-16
○ char could not change width
○ Surrogates for characters >16k

● We are stuck with it

Problems with Java’s UTF-16
● Unavoidable encoding overhead

○ Encode/decode to/from byte[]
○ Frequently UTF-8 to UTF-16 and back
○ Large part of IO performance gap with C/++

● ASCII range wastes 9 bits per character
○ Improved in Java 9 with compact 7-bit strings

● No alternative representation
○ All strings must be representable as UTF-16 characters

● Worst of all worlds?

Ruby

Strings in Ruby
● byte[], length, and encoding

○ Every string can have its own encoding
○ Every string knows its own encoding
○ Methods for both byte and character operations

● Complex implementation, but it works
○ Decode/encode/transcode only when needed
○ String IO can be nearly free
○ Impossible to match with fixed-encoding strings

The Ruby Way
● Too many problems with String/char[]
● Character logic had to be duplicated
● String methods had to be encoding-aware

○ Encoding negotiation and transcoding
● New Regex engine

○ Multi-encoding support
● Interop with Java became harder

○ Frequent transcoding to UTF-16 and back
○ Default to UTF-16 for Java interop

It works!
And now you can use it in Java!

ByteList

ByteList
● byte[], begin, length, and encoding
● StringBuffer-like operations on byte[]
● “Unsafe” access to byte[] allowed
● Expanding to provide character logic

○ Multi-byte character (MBC) support
○ Optimizations for random access time

● Maven: org.jruby.extras:bytelist:1.0.15
● https://github.com/jruby/bytelist
● Help wanted!

https://github.com/jruby/bytelist
https://github.com/jruby/bytelist

JCodings

JCodings
● Decode/encode codepoint ⇔ byte[]
● Character-walking
● Validation
● Transcoding from one encoding to another
● Maven: org.jruby.extras:jcodings:1.0.19
● https://github.com/jruby/jcodings

https://github.com/jruby/jcodings
https://github.com/jruby/jcodings

Encoding Support
● UTF-8 through UTF-32, all endians
● ISO-8859-1 through 16

○ OpenJDK doesn’t even support all of these
○ I have patches for a few of them

● Shift-JIS, EUC_JP, GB, Big5
● IBM and Windows codepages
● More possible in the future

Basics
byte[] utf8Bytes = "møøse".getBytes("UTF-8");

assertEquals(7, utf8Bytes.length);
assertEquals(5, UTF8Encoding.INSTANCE.strLength(utf8Bytes, 0, 7));
assertEquals(2, UTF8Encoding.INSTANCE.length(utf8Bytes[1]));
assertEquals('ø', UTF8Encoding.INSTANCE.mbcToCode(utf8Bytes, 1, 3));

Transcoding
● byte[] to byte[] with minimal overhead
● Pausable stateful transcoder
● Epic inner loop ported from C

○ Nested switches, loops, gotos
● Better perf than byte[] => char[] => byte[]
● Comparable perf to Charset

Transcoding
EConv econv = TranscoderDB.open("UTF-8", "UTF-16", 0);

byte[] src = "foo".getBytes("UTF-8");
byte[] dest = new byte["foo".getBytes("UTF-16").length];

econv.convert(src, new Ptr(0), 3, dest, new Ptr(0), dest.length, 0);

assertArrayEquals("foo".getBytes("UTF-16"), dest);

Bonus Features
● CR/LF negotiation

○ CR, LF, CRLF normalization
● XML entity replacement

○ < > & " '
○ 𒍅 character references

● Multi-stage transcoding
○ When there’s no direct translation between two encodings
○ SJIS-SoftBank => UTF8-SoftBank => UTF-8 => CP51932 =>

CP50220
○ Entity replacement, CRLF translation

Universal Newline
EConv econv = TranscoderDB.open("", "", EConvFlags.UNIVERSAL_NEWLINE_DECORATOR);

byte[] src = "foo\r\nbar".getBytes();
byte[] dest = new byte[7];

econv.convert(src, new Ptr(0), 8, dest, new Ptr(0), dest.length, 0);

assertArrayEquals("foo\nbar".getBytes(), dest);

XML Attrs and Character Refs
EConv econv = TranscoderDB.open("utf-8".getBytes(), "euc-jp".getBytes(),

 EConvFlags.XML_ATTR_CONTENT_DECORATOR |

 EConvFlags.XML_ATTR_QUOTE_DECORATOR |

 EConvFlags.UNDEF_HEX_CHARREF);

byte[] src = "<\u2665>&\"\u2661\"".getBytes(UTF8);

...

econv.convert(src, new Ptr(0), src.length, dest, destP, dest.length, 0);

assertArrayEquals(

 "\"<♥>&"♡"\"".getBytes(),

 Arrays.copyOf(dest, destP.p));

JCodings Performance
● Difficult to compare

○ Going through UTF-16 skews results
● Faster than two-stage
● Similar to decode or encode stages alone
● Has not been a bottleneck for JRuby

JCodings Users
● Facebook Presto

○ High-speed character IO without char[] decoding
● JRuby and TruffleRuby
● JetBrains RubyMine and other Ruby IDEs

JOni

JOni
● Port of Oniguruma from CRuby

○ Some divergence but we try to track them
● Match directly on byte[]
● Full JCodings encoding support
● Pluggable regex grammars (Java, Ruby, JS, …)
● Stackless bytecode machine
● Maven: org.jruby.joni:joni:2.1.11
● https://github.com/jruby/joni

https://github.com/jruby/joni
https://github.com/jruby/joni

 JOni Versus java.util.regex
● byte[] vs char[]
● j.u.r recurses, blows stack for large input
● Better performance for most forms
● Supports richer Ruby regex features
● Interruptible

Construction and Searching
public void regexExample(String pattern, byte[] str, int from, int to) {
 Regex reg = new Regex(pattern);
 reg = new Regex(pattern, Syntax.Java);

 Matcher m = reg.matcher(str);
 Region region;

 int r = m.search(from, to, Option.NONE);

 try {
 r = m.searchInterruptible(from, to, Option.NONE);
 } catch (InterruptedException ie) {
 // hooray for interruptible regex
 }
...

Capture Regions
...
 // extract regions
 region = m.getEagerRegion();

 int start = region.beg[1];
 int end = region.end[1];

 System.out.println(new String(str, start, end));
}

JOni Performance
● 2-3x faster than java.util.regex for most loads
● Avoids decoding step for bytes from IO
● Far fewer failure cases
● Interruptible for pathological cases

JOni Users
● Facebook Presto

○ Again, avoiding transcode overhead
● Nashorn

○ Modified port to use char[]
○ Grammar support intact
○ Potential replacement for j.u.regex?

● JetBrains RubyMine
● SourceClear Maven plugin

Real World Examples

Convert Database to ISO-8859-1
Connection conn =

 DriverManager.getConnection("jdbc:postgresql://localhost/headius");

Statement stmt = conn.createStatement();

ResultSet rs = stmt.executeQuery("select * from test_varchar");

int column = rs.findColumn("someString");

Convert Database to ISO-8859-1
// get UTF-8 character length of column

int utf8Size = rs.getMetaData().getColumnDisplaySize(column);

// reserve enough ISO-8859-1 buffer for longest chars

int isoSize = utf8Size * ISO8859_1Encoding.INSTANCE.maxLength();

byte[] iso = new byte[isoSize];

Convert Database to ISO-8859-1
while (rs.next()) {

 byte[] utf8 = rs.getBytes(column);

 // transcode into buffer

 Ptr in = new Ptr(0), out = new Ptr(0);

 EConv converter = TranscoderDB.open("UTF-8", "ISO-8859-1", 0);

 EConvResult result = converter.convert(

 utf8, in, utf8.length, iso, out, iso.length, 0);

Convert Database to ISO-8859-1
// check result of transcoding and print out bytes

System.out.println("result: " + result);

System.out.println("original string: " + rs.getString(column));

System.out.println("bytes in UTF-8: " + Arrays.toString(utf8));

System.out.println("bytes in ISO-8859-1: " +

 Arrays.toString(Arrays.copyOf(iso, out.p)));

Search "Война и мир"
File book1 = new File("book1.txt");

FileInputStream fis = new FileInputStream(book1);

byte[] bytes = new byte[(int)book1.length()];

fis.read(bytes);

byte[] nameBytes = "Пьер".getBytes("Windows-1251");

Regex regex = new Regex(nameBytes);

Matcher matcher = regex.matcher(bytes);

Search "Война и мир"
int index = 0;

int count = 0;

while ((index = matcher.search(index, bytes.length, 0)) >= 0) {

 index += nameBytes.length;

 count++;

}

System.out.println("Found the string \"Пьер\" " + count + " times");

Wrapping Up

Conclusion
● Java’s string is still evolving

○ But we’re stuck with char[] for now
○ We want UTF-8 inside String!

● We live in a multi-encoding world
○ Use our libraries to avoid char[] overhead
○ Help us improve and integrate better with Java String

● java.util.regex needs an overhaul
○ Failure cases are catastrophic
○ Matching on byte[] could be added

Help Wanted!
● ByteList (https://github.com/jruby/bytelist)

○ Oldest library, most cruft
○ Deprecated unsafe methods
○ Missing or inaccurate docs in places

● JCodings (https://github.com/jruby/jcodings)
○ More documentation and examples
○ Performance analyses
○ Additional encodings

● JOni (https://github.com/jruby/joni)
○ Performance analysis
○ Code cleanup and documentation

https://github.com/jruby/bytelist
https://github.com/jruby/jcodings
https://github/com/jruby/joni

Большое спасибо!
● Charles Oliver Nutter

○ headius@headius.com
○ @headius

● https://github.com/jruby/bytelist
● https://github.com/jruby/jcodings
● https://github.com/jruby/joni

mailto:headius@headius.com
mailto:headius@headius.com
https://github.com/jruby/bytelist
https://github.com/jruby/bytelist
https://github.com/jruby/jcodings
https://github.com/jruby/jcodings
https://github/com/jruby/joni
https://github/com/jruby/joni

