
Álvaro Hernández Tortosa

ToroDB internals:
open source Java database
middleware under the hood

aht@torodb.com

mailto:aht@torodb.com

ALVARO HERNANDEZ

@ahachete

DBA and Java Software Developer
8Kdata and ToroDB Founder
Well-Known member of the PostgreSQL Community
World- Class Database Expert (+30 Talks in last 2 years)

CE
O

http://www.apple.es
https://www.torodb.com

What is ToroDB?

ToroDB Layered Architecture

Document

Document
String
String
Stringname

surname
username
address

city String
Array

name String

conferences

year Integer

Document0

• JSON document is transformed into our internal document format that allows easy transformation using
the Visitor pattern

How D2R (Document-to-Relational) transformation is performed

{
 “name”: “Álvaro”,
 “surname”: “Hernandez”,
 “username”: “aht”,
 “address”: {
 “city”: “Madrid”
 }
 “conferences”: [
 {
 “name”: “JockerConf”,
 “year”: 2017
 },
 ...
]
}

Document

Document

String
String
Stringname

surname
username
address

city String

Array

name String
conferences year Integer

Document0

speaker

did name_s surname_s username_s address_e conferences_e

0 Álvaro Hernandez aht f t

speaker_address

did rid city_s

0 0 Madrid

speaker_conferences

did rid seq name_s year_i

0 0 0 JockerConf 2017

• Internal document format is mapped to a table-friendly format that includes some meta columns (and is enabled to
perform batch inserts)

✓ did: identify a document
✓ rid: identify a data row in a table
✓ pid: is the foreign key to column rid of the parent level

table (in 2 level did column is used)
✓ seq: identify the position in an array

How D2R (Document-to-Relational) transformation is performed

doc_part

database collection table_ref identifier

world speaker [] speaker

world speaker [address] speaker_address

world speaker [conferences] speaker_conferences

speaker

did name_s surname_s username_s address_e conferences_e

0 Álvaro Hernandez aht f t

speaker_address

did rid city_s

0 0 Madrid

speaker_conferences

did rid seq name_s year_i

0 0 0 JockerConf 2017

field

database collection table_ref name type identifier

world speaker [] name string name_s

...

world speaker [conferences] name string name_s

✓ “doc part” represents a table mapped to the
document root or to a subdocument (or subarray)

✓ “table ref” is the primary key of a “doc part” and you can think
of it as the path inside the document

Generated meta-information

Document

Document

String
String
Stringname

surname
username
address

city String

Array

name String

conferences

year Integer

Document0

speaker

did name_s surname_s username_s address_e conferences_e

0 Álvaro Hernandez aht f t

speaker_address

did rid city_s

0 0 Madrid

speaker_conferences

did rid seq name_s year_i

0 0 0 JockerConf 2017

1

2

3

Rebuilding the document from the table information

• We retrieve a ResultSet for each table representing a level of the document and start building the original
document from the last child levels up to the root level

• ToroDB Stampede replicates MongoDB oplog operations using an Akka Streams pipeline.

• Akka has been designed with back pressure in mind that allow to execute a pipeline efficiently and with
bounded resource usage.

• The actor model implemented by Akka enable an easy and efficient control over threads usage.

• And make it easy to implement complex pipeline:

Off heap
buffer

Internal/user
filters

Unsupported
operation

checks

CUD
operation
group and

reduce

Executor Metrics

Replication pipeline

RunnableGraph<Pair<UniqueKillSwitch, CompletionStage<Done>>> graph =
 createOplogSource(fetcher)
 .async()
 .via(createOffheapBuffer(this.offHeapConfig))
 .async()
 .map(batchFilter)
 .map(batchChecker)
 .via(createBatcherFlow(applierContext))
 .viaMat(KillSwitches.single(), Keep.right())
 .async()
 .map(
 analyzedElem -> {
 for (AnalyzedOplogBatch analyzedOplogBatch :
analyzedElem.analyzedBatch) {
 batchExecutor.apply(analyzedOplogBatch, applierContext);
 }
 return analyzedElem;
 })
 .map(this::metricExecution)
 .toMat(
 Sink.foreach(this::storeLastAppliedOp),
 (killSwitch, completionStage) -> new Pair<>(killSwitch,
completionStage));

OplogBatch Flow

AnalyzedStreamElement
Flow

Off Heap buffer

Internal /user filters

Unsupported operations checks

CUD operations group and reduce

Sync

Sync

Sync

Sync

Executor

Metrics

Replication pipeline

• Operations are streamed as part of the replication pipeline, and can mix DML and DDL statements.

• Several operations may happen concurrently.

• This works fine on PostgreSQL (transactional DDL!). But has problems on MySQL/Oracle due to impicit commit,

violating atomicity.

DDL changes

Fix implicit DDL commit problem: execute DDL on different tx (same or separate thread)

• Backend needs to provide READ COMMITTED DDL (OK on all dbs)

• Deadlock detection needs to be implemented, specially for destructive operations like DROP

TABLE:

‣ A reader is reading the table

‣ It then needs to add a column.

‣ The DDL tx waits to acquire the exclusive lock

‣ The reader is blocked waiting for the DDL to proceed

DDL changes

● The solution is to use exclusive transactions for DDL: no other tx will happen in the

system (this can later be relaxed).

● No DDL/DML can be mixed: if a tx sees DDL, rollbacks, sends the DDL to the

SchemaManager, waits, and retries the operation

● Implementation is non-trivial as different backends require different lockings, but a

superset of locks was developed (can be fine-tuned)

● An alternative solution could have been to create a lazy system where C request a drop,

M modifies its metadata but not the backend and eventually, when C transaction is

closed, M modifies the backend accordingly

DDL changes

• ToroDB applies the oplog in a very smart way: it fetches a batch of oplog operations and apply them
concurrently, grouping them by a hash of the database, collection and _id (primary key).

• NOTE: all updates and deletes on the oplog must query by _id. Inserted documents must always contain the _id.

• Doing this, each group can be executed in any order...

ops stream

parallel appliers

applier 1 applier 2

database

CUD Operations

Single-batch operations can also be partitioned into sub-operations. This can allow some out-of-order
execution. Divide operations into sub-operations which can be:

✓ insert a document (I)
✓ fetch a document (F)
✓ remove a document (D)
✓ modify a document that is in memory (M)

Oplog operations map to::

✓ Create: a I if insertsAsUpserts is false or F, D, M, I if insertsAsUpserts is true
✓ Update: a F, D, M, I
✓ Delete: a D

(insertAsUpserts == false iif in initial sync state)

CUD Operations

Group sub operations by type and execute them in the following order without breaking the
semantics (only if sub operations belong to the same document):

✓ First all F sub operations
✓ Then all D sub operations and M sub operations (they can be executed on any order)
✓ Finally all I sub operations

We can then execute all sub operations of the same type as a single db batch and produce a huge
improvement.:

Even more, these batches of sub operations can be executed in parallel!

CUD Operations

Piece of cake with Akka Streams:
Flow.of(OplogBatch.class)
 .via(
 new BatchFlow<>(
 batchLimits.maxSize,
 batchLimits.maxPeriod,
 finishBatchPredicate,
 costFunction,
 zeroFun,
 acumFun))
 .filter(rawElem -> rawElem.rawBatch != null && !
rawElem.rawBatch.isEmpty())
 .map(
 rawElem -> {
 List<OplogOperation> rawOps = rawElem.rawBatch.getOps();
 List<AnalyzedOplogBatch> analyzed =
batchAnalyzer.apply(rawOps);
 return new AnalyzedStreamElement(rawElem, analyzed);
 });

This is a Flow that does not emit until a
predicate is true or the buffered elements are
evaluated to value higher than a maximum or a
finite duration has passed

Filter out empty batches

Extract sub operations, analyze them and
divide them into independent batches (here
is where the finite state machine can reduce
CUD operation into a single composed
operation (Insert, Update & Modify, Delete &
Create, etc.)

CUD Operations

• Netty is an event based NIO framework that easy the use of non-blocking sockets.

• ToroDB uses Netty heavily and also takes advantage of the off heap support. We lazily deserialize MongoDB
messages on demand so that String and Binary values are brought to the Heap only if needed.

Off Heap

Heap

HEADER
BSON

HEADER
BSON

HEADER
BSON

HEADER
BSON

HEADER
BSON

HEADER
BSON

Filtered out

To the applyer
pipeline

Parse
Wire Protocol

Header

Parse
Message Header

Parse
Message Value

Netty Receive
Wire Protocol

Message

Network I/O with Netty

We just skip the reading a String until it is really needed!

Network I/O with Netty

public class NettyBsonString extends AbstractBsonString {

 private final ByteBuf byteBuf;

 public NettyBsonString(ByteBuf byteBuf) {
 this.byteBuf = byteBuf;
 }

 @Override
 public String getValue() {
 return getString(byteBuf);
 }

 private String getString(ByteBuf byteBuf) {
 int lenght = getStringLenght(byteBuf);
 byte[] bytes = new byte[lenght];
 byteBuf.getBytes(0, bytes);
 return new String(bytes, Charsets.UTF_8);
 }

 private int getStringLenght(ByteBuf byteBuf) {
 return byteBuf.readableBytes();
 }
}

• Chronicle Queue is a distributed unbounded persisted queue. We use it in replication as a persistent buffer of
messages that allow ToroDB to cope with oplog burst like an initial import.

• If ToroDB operations can not process operation at the same speed as MongoDB they’re stored on disk.

• We can also continue replicating from the last applied operation if for some reasons ToroDB instance crash.

ops stream
Chronicle
Queue

disk

ops stream

Off-heap buffers

• Really easy to instantiate a queue with Chronicle Queue

private static ChronicleQueue
getSingleChronicleQueue(OffHeapBufferConfig offHeapConfig) {

 Path path = createPath(offHeapConfig.getPath());

 StoreFileListener sl =
getStoreFileListener(offHeapConfig.getMaxFiles());

 return SingleChronicleQueueBuilder.binary(path)
 .rollCycle(offHeapConfig.getRollCycle().asCqRollCycle())
 .storeFileListener(sl)
 .build();
}

Off-heap buffers

• We created a small project to integrate Chronicle Queue with Akka and put it on our replication pipeline

ChronicleQueue scq =
getSingleChronicleQueue(offHeapConfig);

Flow.of(OplogBatch.class)
 .via(
 new ChronicleQueueStreamFactory<>()
 .withQueue(scq)
 .autoManaged()
 .createBuffer(new OplogBatchMarshaller()))
 .map(Excerpt::getElement);

Off-heap buffers

Resource consumption

 Documents are schema-less...

...a better describing word is “schema-attached”: the
schema is shipped with the data in each document!

...this imply a lot of String instances

...that imply a lot of String comparison byte per byte since we use lots of
HashMaps

Can we optimize it?

public class WeakMapStringPool extends StringPool {

 private final Interner<String> interner;

 public WeakMapStringPool(StringPoolPolicy heuristic) {
 super(heuristic);
 this.interner = Interners.newWeakInterner();
 }

 @Override
 protected String retrieveFromPool(ByteBuf stringBuf) {
 return interner.intern(getString(stringBuf));
 }

}

Resource consumption
Yes!

• Retrieve the string from an intern like cache (if string cacheable)

String result = stringPool.fromPool(likelyCacheable, buffer.readSlice(pos));

• We use the Guava Interner class for efficiency since it let the Garbage Collector do its job on unreaded keys

• People that requires advanced analytics usually have a lot of data.

• To efficiently manage that amount of data on MongoDB is by using sharding.

• ToroDB Stampede can replicate from several shards!

shard 1 shard 2 shard 3

ToroDB
Stampede

s1_dat.col

s2_dat.col

s3_dat.col

Sharding

! Different replication state per shard: to replicate from several shards, each one with their own oplog, we can fall
to recovery on one shard but still be online on the others.

shard 1 shard 2 shard 3

ToroDB
Stampede

recovery

s1_dat.col

s2_dat.col

s3_dat.col

Sharding - issues to deal with

! Drop database on recovery: before implementing sharding, the first thing done by the recovery phase is to
drop the whole database. It has sense when replicating from a single shard (or if we share the replication state
on all shards) but it is incorrect if we decide to allow different states per shard.

shard 1 shard 2 shard 3

ToroDB
Stampede

s1_dat.col

s2_dat.col

s3_dat.col

Sharding - issues to deal with

! Migrate operations (aka when moving a document to another shard): These operations are stored on at
least two different shards and the stored operation is different on each one. For example, when a
document is moved from a shard to another, there will be a delete operation on the shard that stored the
document and a insert operation on the shard that will be store the document.

shard 1 shard 2 shard 3

ToroDB
Stampede

recovery

recovery

s1_dat.col

s2_dat.col

s3_dat.col

Sharding - issues to deal with

! Changes on shards: What happen when a shard is added or removed. It seems difficult to think in advance
which implications will this would have.

shard 1 shard 2 shard 3

ToroDB
Stampede

s1_dat.col

s2_dat.col

s3_dat.col

shard 4

s4_dat.col

Sharding - issues to deal with

! Operations of different shards executed out of order: as there is no common clock, the timestamp of
two operations on different oplogs cannot be compared.

✓ This is not bad on CUD (Create, Update, Delete) operations that are not migrations, as they affect a
single document which must be on a single shard, so different operations on the same document
are always comparable by timestamp.

! We need to find synchronization points. Two possible options:

✓ Documents that migrate from one shard to another (identified by _id, uniquely global) happen at the
same time.

✓ Some operations like index creations affect all shards

Sharding - issues to deal with

! A single Guice injector is OK to create plain Guava services, but it cannot have several

instances of the same module

! Guice injectors only provide singleton instances per injector. There are 2 possible solutions:

✓ Use scopes. It is more complicated and error prone: if there's a bug, you will silently get

the singleton and not the other instance.

✓ Use several injectors: easier and probably less performant, but only used at startup time

(so it's OK)

Sharding - bundles

Sharding - bundles. Problems encountered

! It is very easy to break the abstraction. Each class of each module can request the injection of any object on the

injector, including classes from other modules . Seems fine, and Guice can resolve complex dependency graphs,

but it is very difficult to reason about that.

! Example: to improve startup method, backend service is started to check for consistency. Only if it is all OK starts

other modules. But backend service relied on other layers, like torod, so it was not easy task.

! Dependencies were implicit. Not only when talking about dependencies between modules, but where a class was

used. As it was very easy inject even classes, new dependencies could be added without documentation or

reasoning whether they should have rather been be wrapped in some way (like using a delegator or an adaptor).

Guice PrivateModule and Bundles are the key that enabled ToroDB to
support sharding:

! PrivateModule force developer to be aware of what to expose as a

dependency. So that a we can have a fine grain control over

injected instances.

! Bundles are quite simple: They are a Guava service that

instantiates something that is returned on the method

getExternalInterface. There are some abstract bundles designed

to be compliant with DRY principle that implement some common

things like to wait until all dependencies are started before
starting the bundle.

public interface Bundle<ExtIntT> extends
TorodbService,
 SupervisedService, AutoCloseable {

public abstract Collection<Service>
getDependencies();
public abstract ExtIntT getExternalInterface();

public default <O> Bundle<O> map(Function<ExtIntT,
O>
 transformationFunction) {
 return new TransformationBundle<>(this,
 transformationFunction);
}

@Override
public default void close() {
 if (isRunning()) {
 this.stopAsync();
 this.awaitTerminated();
 }
}

}

Sharding - bundles

Integration Tests are really important for ToroDB. In particular we have to test that:

✓ Backend code is working as expected

✓ Replication corner cases are well handled

Integration Test JUnit5 and Docker

We need a way to test all of that with real database instances?!

Docker integration into Java for fully automated unit and
integration testing scenarios, including clusters of servers,
failover, etc. ...and JUnit 5 taken to the extreme!

@RunWith(JUnitPlatform.class)
@RequiresPostgres(version = LATEST)
public class PostgresTest {

 @Test
 public void simpleTest(PostgresService service) {
 assertEquals(Service.State.NEW, service.state(), "The injected
service must start on "
 + Service.State.NEW + " state");

 service.startAsync();
 service.awaitRunning();

 testConnection(service);
 }

 private void testConnection(PostgresService service) {
 assert service.isRunning();

 service.getDslContext().createTable("test")
 .column("aint", SQLDataType.INTEGER)
 .execute();

 for (int i = 0; i < 10; i++) {
 service.getDslContext().insertInto(DSL.table("test"))
 .columns(DSL.field("aint"))
 .values(i)
 .execute();
 }

 Record1<Integer> countRecord =
service.getDslContext().selectCount()
 .from(DSL.table("test"))
 .fetchAny();
 Assertions.assertNotNull(countRecord);
 Assertions.assertEquals(10, countRecord.value1().intValue());
 }
}

A Postgres docker container is spawned
by our open source testing-tools project
in each test iteration.

https://github.com/torodb/testing-tools

Contributions are welcome!

Integration Test JUnit5 and Docker

https://github.com/torodb/testing-tools

You can also use it without annotation if your test needs
require complex configurations

... like you need to spawn a container for each test suite
and need a reference before each test

public class PostgreSqlStructureIT extends
AbstractStructureIntegrationSuite {
 private static PostgresService postgresService;

 @BeforeAll
 public static void beforeAll() {
 postgresService =
PostgresService.defaultService(EnumVersion.LATEST);
 postgresService.startAsync();
 postgresService.awaitRunning();
 }

 @AfterAll
 public static void afterAll() {
 if (postgresService != null &&
postgresService.isRunning()) {
 postgresService.stopAsync();
 postgresService.awaitTerminated();
 }
 }

 @Override
 protected BackendTestContextFactory
getBackendTestContextFactory() {
 return new
PostgreSqlTestContextFactory(postgresService);
 }
}

Integration Test JUnit5 and Docker

JUnit 5 also rocks!

Testing replication corner cases made easy with @TestFactory
annotation

@RunWith(JUnitPlatform.class)
public abstract class AbstractOplogApplierTest {

 protected String getName(OplogApplierTest oplogTest) {
 return oplogTest.getTestName().orElse("unknown");
 }

 protected abstract Supplier<ClosableContext>
contextSupplier();

 @TestFactory
 protected Stream<DynamicTest> createJsonTests() throws
Exception {
 return oplogTestSupplier()
 .map(oplogTest -> OplogApplierTestFactory.oplogTest(
 getName(oplogTest),
 oplogTest,
 contextSupplier())
);
 }

 protected Stream<OplogApplierTest> oplogTestSupplier() {
 return new DefaultTestsStreamer().get();
 }
}

Integration Test JUnit5 and Docker

Questions?

www.torodb.com/stampede

info@torodb.com

@nosqlonsql

 github.com/torodb

