
How we built
Spark serverless
on top of Kubernetes

Moon soo Lee / moon@staroid.com

staroid.com

Moon soo Lee (moon@staroid.com)

Creator of Apache Zeppelin
Founder at Staroid

whoami

Deliver open source software as a
service and fund developers

https://staroid.com

Staroid

Traditional Spark cluster

User
Spark master, executors

Submitted
application 1

Submitted
application 2

Yarn cluster

Configure network (VPC, subnet)

Package your application

Deploy a cluster n x master, m x
worker node

Get network access to Spark cluster
to submit job (SSH to node or connect to
notebook running in the same network)

Submit the application

Spark serverless
● User run Spark application from any environment (notebook, IDE, etc)
● No app packaging, No job submit, No network configuration

Your spark
application

User

Serverless

Run my task!
From your notebook, IDE

or anywhere

blackbox

How it works

Let’s first see demo

Spark on Kubernetes

● Spark driver and executors
are running as a Pod

● Executors can be created
dynamically

● When driver Pod finishes,
executors are automatically
cleaned up

● Means each driver can
dynamically create its own
containerized executor set

Spark on Kubernetes provides on-demand spark cluster! Let’s use it to build spark-serverless!

Spark on Kubernetes

$./bin/spark-submit \
 --master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
 --deploy-mode cluster \
 --name spark-pi \
 --class org.apache.spark.examples.SparkPi \
 --conf spark.executor.instances=5 \
 --conf spark.kubernetes.container.image=<spark-image> \
 local:///path/to/examples.jar

1. Access to Kubernetes API server
with Rbac permission to create/delete Pod

2. Spark container image3. Your application artifact

You need 4 things to run Spark application in cluster mode

4. Network access between Driver Pod and Executor Pods

Spark on Kubernetes

Submit Cluster
mode app

(app2)

User B

Run my job!
From any remote

environment

Executors for app1 Executors for app2

Client mode
app (app1)

User A

From your notebook, IDE
or anywhere

Run my job!

This is what we’re looking for!

Spark on
kubernetes takes
care of executions

Architecture

Executors for app2

Namespace

Executors for app1

Namespace

Tunnel server Tunnel server

Executors for app2

Namespace

Executors for app1

Namespace

Tunnel server Tunnel server

H
ttp ingress

H
ttp ingress

PySpark application

Tunnel client

Spark Driver

Https
egress only

Spark container
image with python

- 3.6, 3.7, 3.8

Multi-cloud, multi-region
Kubernetes clusters

Staroid API Admission
controller

Admission
controller

Problem 1 - Isolation, Multi-tenancy

Submit Cluster
mode app

(app2)

User B

Run my job!
From any remote

environment
Executors for app1

Executors for app2

Client mode
app (app1)

User A

From your notebook, IDE
or anywhere

Driver for app2

Run my job!

1. Drivers / Executors are free to connect other apps’s one
2. Executors can run arbitrary code from user. Executors are
running inside container. Container does not provide strong
isolation/security.
3. What if one user try to use too much resources?

x
x

Problem 2 - Connection

Submit Cluster
mode app

(app2)

User B

From any remote
environment

Executors for app1
Executors for app2

Client mode
app (app1)

User A

From your notebook, IDE
or anywhere

Driver for app2

1. Usually Kubernetes API is not accessible from user’s
network. But need to access to submit Spark application

2. In client mode, executors need to connect to the driver
running in user’s network (vise versa).

Solution1
1. Drivers / Executors are free to connect other apps’s one
 Create a network policy and only allow communication between the same group of driver and
executors.

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
 name: allow-only-same-namespace
 namespace: kubernetes-app1
spec:
 podSelector: {}
 ingress:
 - namespaceSelector:
 matchLabels:
 spark-serverless: kubernetes-app1
 policyTypes:
 - Ingress

https://kubernetes.io/docs/concepts/services-networking/network-policies/

Solution1
2. Executors can run arbitrary code from user. Executors are running inside container. Container does not
provide strong isolation/security.
 - Apply Pod security policy and force non-root container

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: kubernetes-psp
spec:
 privileged: false # Don't allow privileged pods!
 allowPrivilegeEscalation: false
 hostNetwork: false
 hostPorts:
 - min: 58856 # for dedicated vm
 max: 58856
 hostIPC: false
 hostPID: false
 readOnlyRootFilesystem: false
 runAsUser:
 # Require the container to run without root privileges.
 rule: 'MustRunAsNonRoot'
 runAsGroup:
 rule: 'MustRunAs'
 ranges:
 - min: 1
 max: 65535
 ...

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

Solution1
2. Executors can run arbitrary code from user. Executors are running inside container. Container does not
provide strong isolation/security.
 - Dedicated VM allocation per executor to take advantage of VM level isolation instead of container level
isolation. (e.g. prevent https://meltdownattack.com/).

Implement Kubernetes mutating admission webhook that add hostPort to executor Pod when user
marked Pod to be run on dedicated VM (via label or annotation)

spark.kubernetes.executor.label.pod.staroid.com/isolation dedicated

1. Add a label to executor Pod using spark configuration

mutating admission webhook

apiVersion: v1
kind: Pod
spec:
 containers:
 - name: spark
 ports:
 - hostPort: 58856

2. Admission webhook add hostPort
when label is detected

3. Can not allocate the same hostPort on the same VM. therefore each Pod will be allocated to the different VM

https://meltdownattack.com/
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#mutatingadmissionwebhook

Solution1
3. What if one user try to use too much resources?
 Create a namespace for each application (set of driver and executors) and apply Resource Quota.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: compute-resources
spec:
 hard:
 requests.cpu: "10"
 requests.memory: 100Gi
 limits.cpu: "20"
 limits.memory: 200Gi

https://kubernetes.io/docs/concepts/policy/resource-quotas/

Solution2
1. Usually Kubernetes API is not accessible from user’s network. But need to access to submit Spark application
Configure RBAC of each Namespace’s service account (default) to have restricted permissions within the
Namespace. And run tunnel server in the Kubernetes cluster. Deploy a Pod that runs “kubectl --proxy” in
the target namespace.

User can run Spark application just like user can do inside the Kubernetes cluster.

Spark UI can be connected in this way

Executors for app2

Tunnel server

Kubectl --proxy

Tunnel client

User

Submit Client mode app
through the tunnel

Spark driver

https://github.com/jpillora/chisel

Solution2
2. In client mode, executors need to connect to the driver running in user’s network (vise versa).
In client mode, tunnel server provides a reverse tunnel as well so executors can connect to the driver
running in user’s environment.

Executors for app1

Tunnel server

Kubectl --proxy

Tunnel client

User

Client mode
app (app1)

Spark Configuration
 # dynamic allocation

 spark.dynamicAllocation.enabled true

 spark.dynamicAllocation.minExecutors 1

 spark.dynamicAllocation.maxExecutors 10

 spark.dynamicAllocation.initialExecutors 1

 spark.dynamicAllocation.executorIdleTimeout 600s

 spark.dynamicAllocation.schedulerBacklogTimeout 60s

 # Kubernetes, there’s no external shuffle service. so,

 spark.dynamicAllocation.shuffleTracking.enabled true

 # larger batch size is helpful otherwise Kubernetes will provision node one by one when scaling out

 spark.kubernetes.allocation.batch.size 20

 # spark 3.0 performance improvement

 spark.sql.adaptive.enabled true

 spark.sql.adaptive.coalescePartitions.enabled true

Client library

https://github.com/open-datastudio/ods

1. Download appropriate version of Spark binary locally
2. Configure Spark

a. Connect through (reverse) tunnel
b. Configure container image to choose compatible python version

3. Initiate (reverse) tunnel between kubernetes namespace and python
environment

4. Create Spark session

https://github.com/open-datastudio/ods

Pyspark in serverless

● Driver python environment and executor python environment can
be different

○ E.g. Driver - python 3.6, Executor image - python 3.7

● Driver need to detect its python version and run executor in a same
python version

PYSPARK_PYTHON=<executor python env path>
PYSPARK_DRIVER_PYTHON=<driver python env path>

https://github.com/open-datastudio/ods/blob/v0.0.7/ods/spark_cluster/spark_cluster.py#L238
https://github.com/open-datastudio/spark/blob/v3.1.0-snapshot-20200720-01/.github/workflows/publish-docker-image.yml#L51

https://github.com/open-datastudio/ods/blob/v0.0.7/ods/spark_cluster/spark_cluster.py#L238
https://github.com/open-datastudio/spark/blob/v3.1.0-snapshot-20200720-01/.github/workflows/publish-docker-image.yml#L51

Container image

● Includes multiple versions of Python environment (3.6, 3.7, 3.8)

https://github.com/open-datastudio/ods/blob/master/ods/spark_cluster/spark_cluster.py

https://github.com/open-datastudio/spark/blob/master-staroid/.github/workflow
s/publish-docker-image.yml#L47

Container image Client library

Architecture

Executors for app2

Namespace

Executors for app1

Namespace

Tunnel server Tunnel server

Executors for app2

Namespace

Executors for app1

Namespace

Tunnel server Tunnel server

H
ttp ingress

H
ttp ingress

PySpark application

Tunnel client

Spark Driver

Https
egress only

Spark container
image with python

- 3.6, 3.7, 3.8

Multi-cloud, multi-region
Kubernetes clusters

Staroid API Admission
controller

Admission
controller

Conclusions

● Easy to use Spark cluster from various environments
○ (e.g. notebook environment running on data scientist’s laptop)

● Better resource utilization
○ Executors are created when needed. Terminated when jobs are done.

● Better security / isolation
○ Each application get their own Spark cluster (set of executors)

● Fast spin-up
○ Initial Spinup time takes few seconds to 1-2 minutes (in case new node need to be

provisioned in Kubernetes cluster)

Staroid

● Cloud platform

For open source developers and enterprise

users

● Runtime based on Kubernetes

● StarRank

Fund developers when user deploy the

project

● Enterprise Support

Open data studio
https://staroid.com https://open-datastudio.io

● Open source!

● Releases service on the cloud

Instead of release as binary/source

package

● Focuses on data processing /

Machine learning softwares
e.g. Spark, Ray, and so on

● Let’s build it together

https://staroid.com/site/starrank
https://staroid.com
https://open-datastudio.io

Implementation & reference
Spark serverless project
https://github.com/open-datastudio/spark-serverless

Python Client
https://github.com/open-datastudio/ods

Spark Docker image
https://github.com/open-datastudio/spark/blob/master-staroid/.github/workflows/publish-docker-image.yml#L36

Documentation
http://open-datastudio.io/computing/spark/index.html

Tunnel, Reverse tunnel
https://github.com/jpillora/chisel

https://github.com/open-datastudio/spark-serverless
https://github.com/open-datastudio/ods
https://github.com/open-datastudio/spark/blob/master-staroid/.github/workflows/publish-docker-image.yml#L36
http://open-datastudio.io/computing/spark/index.html
https://github.com/jpillora/chisel

Thanks

Moon soo Lee / moon@staroid.com

mailto:moon@staroid.com

