
The Magic of Spring

The Proxy Fairy

Victor Rentea - Independent Trainer VictorRentea.ro @victorrentea

When something is painful
but you can't avoid doing it…

postpone it

When something is painful
but you can't avoid doing it…

delegate it

When something is painful
but you can't avoid doing it…

Do It More Often!
"Bring The Pain Forward!"

Continuous Integration

Pair Programming

Continuous Refactoring

TDD

XP
"Bring The Pain Forward!"

Victor Rentea
14 years of Java

Clean Code Evangelist

VictorRentea.ro

30+ talks, 12 meetups

.NET

Lead Architect
Tech Team Lead and Consultant

Software Craftsman
XP: Pair Programming, Refactoring, TDD

VictorRentea.ro @victorrentea victor.rentea@gmail.com

Independent

Technical Trainer & Coach

Hibernate Spring Java 8

Architecture, DDDDesign Patterns

Clean Code Unit Testing, TDD

Java Performance and much more…Scala

180+ days1300 devs6 years

VictorRentea.rovictor.rentea@gmail.com

30 companies

Posting daily on

▪Log the arguments passed to m1()

▪The same for m2(), please

▪And for m3,m4,...m30

▪I love it! I want the same
for all methods in this package

copy-paste

A Success Story

?!!...Argh!!... copy-paste ...

You add a log.debug(...) in m1

You copy-paste in m2 and adjust it

Whaat?!!! ... copy-paste in 110 methods.
You feel bad. For 5 minutes.

Next task...

copy-paste

copy-paste

Time passes by

▪BUG: a method
is not logged !!!%@^!

Time passes by
(2 weeks later)
I’ll put this method here...

▪Please change the log format Oh boy! 1, 2, 3, .. 109, Done!

I  my job!▪BUG: you missed a spot !!!%@^!

A Success Story

▪Log the arguments passed to m1()

▪The same for m2(), please

▪And for m3,m4,...m30

▪I love it! I want the same
for all methods in this package

copy-paste

A Success Story

?!!...Argh!!... copy-paste ...

You add a log.debug(...) in m1

You copy-paste in m2 and adjust it

Whaat?!!! ... copy-paste in 110 methods.
You feel bad. For 5 minutes.

Next task...

copy-paste

copy-paste

Time passes by

copy-pasteNever logic

R
decompose it in smaller methods

and call them as you need

Don’t Repeat Yourself

The Capital Sin in Programming

copy-pastecopy-paste

D Y

What if I could magicaly

intercept method calls

and do stuff for each call ?

Aspect-Oriented Programming

Logging
Transactions

Access Control
Audit

...

“Cross-cutting concerns”:

“But I will still need to add one line in each method!

placeholder intermediating interactions with an object
•The client wants to work with the Real Subject
•But we trick him to intercept his calls, to do

(1) AOP
(2) Remote calls (RMI, Web Services)

Proxy

«interface»
Subject

someMethod()

RealSubject

someMethod()

Proxy

someMethod()

represents

calls

actually uses

generated

do more things in an object’s methods, by composition
• Implement the Subject interface,

execute code before/after/instead calling the real method
➢Can be nested: new Decor1(new Decor2(original));
➢Usually written by hand

Decorator

Proxy «interface»
Subject

someMethod()

RealSubject

someMethod()

Proxy

someMethod()

represents

calls

actually uses

Decorator

delegate

someMethod()

•Decorator + Proxy Patterns

• Interface Proxies

•Class Proxies

• In-depth Spring AOP

•Custom Aspects - Best Practices

Contents

Every time you don’t understand how Spring does something…

it's a Proxy
@Cacheable

@Transactional
@Aspect
@Async
@Secured

@Validated
Request/Thread scope

…

The Magic of Spring

class A {

private B b;

...

}

class BImpl
implements B {

...

}

interface B {

...

}

Interface Proxy
has a

:A
B

:BImpl

implem

call

Static
Runtime

implem

proxy

Created at run-time with
java.lang.reflect.Proxy

class A {

private B b;

...

}

interface B {

...

}

Class Proxy
has a

:A
B

:B
call

Static
Runtime

proxy

Concrete classes are proxyied
via bytecode generation

class B {

extends

*
*

•A method of a non-Spring bean?

•A final method/class?
• For a class-proxy:

•Field access?

•A private method call?

Can AOP Intercept…

NO!

NO!
NO!

Well…
Actually…

You know…

You can do any of that via:

Bytecode Enhancement
(compile-time hacking)

Or Instrumentation
(classload-time hacking)

NO!

•Autowiring yourself ?

•@Autowired ApplicationContext + getBean(T)

•@Autowired ObjectFactory<> + getObject()

•@Lookup method

•AopContext.currentProxy()

Call Yourself via a Proxy
To intercept a local call,

AopContext.currentProxy()

proxy

methodWithTx();

CurrentClass myselfProxied =

(CurrentClass)AopContext.currentProxy();

myselfProxied.methodWithTx();

AopContext.currentProxy()

@Transactional(propagation = REQUIRES_NEW)
public void methodWithTx() {

No More Magic

- an AOP Alternative -

Functional Programming

"Execute Around" Pattern

transactionTemplate.execute(this::methodInNewTx);

I found my code!

The Hamburger Problem

Proxies

What the heck is the rest?!

in front of any class with 1+ methods to intercept

Are you sure you want to know?

stacktrace

How can Aspects
(invisible logic)
communicate?

What is shared?
(within an invocation)

ThreadLocal
(invisible data)

ThreadLocal Data -- what about @Async calls?

Propagate Thread Data
to worker threads

Hunt me
afterwards

•Decorator + Proxy Patterns

• Interface Proxies

•Class Proxies

• In-depth Spring AOP

•Custom Aspects - Best Practices

Contents

@annotation(my.proj.Logged)

annotation-based weaving

Designing Custom Aspects - Best Practices

@Around("execution(* *(..)) && @within(my.proj.Facade))")

public Object logAround(ProceedingJoinPoint point) { … }

make them visible

@Facade
public class ExpensiveOps {

@Logged
public Boolean isPrime(int n) {…}

}

Designing Custom Aspects - Best Practices

"execution(* com.mycomp.proj.facade.*.*(..))"

instead of

package name

or

class name
"execution(* com.mycomp..*DAO.*(..))"

annotation-based weaving

keep them light

Designing Custom Aspects - Best Practices

synchronized
files

database
http

don't intercept insane-rate calls

Designing Custom Aspects - Best Practices

I did that!

don't intercept insane-rate calls

alternatives:

Execute-AroundFP

BeanPostProcessor

CPP

BPP
after init

@PostConstruct
BPP

before init
@Autowired

Designing Custom Aspects - Best Practices

BeanPostProcessor

new

*Technically, each step above hides a bit more work, and more ways to configure

Can return a different instanceproxy

WHY?

Average Error (99.9%) Unit

Cache Method 357.7 ± 11.7

us/op

Decorator 355.1 ± 6.0

Interface Proxy 398.7 ± 28.0

Class Proxy 386.9 ± 17.5

Class Proxy / BPP 373.9 ± 36.0

@Cacheable 8109.8 ± 1097.5

Performance

Details? Run it yourself: https://github.com/victorrentea/proxy-fairy-performance

https://github.com/victorrentea/proxy-fairy-performance

Leftover Tricks

Designing Custom Aspects - Best Practices

- Double proxying

- @Aspect @Order

- Sharing the PersistenceContext

- Proxies in ORMs

Hunt me
afterwards

Every time you don’t understand how Spring does something…

it's a Proxy

The Magic of Spring

mixins

Spring Data

mixins

CustomerRepository

Customer findByName(String name);

@Query("SELECT c FROM Cust... ")

List<Customer> getActiveCustomers();

JpaRepository<E,ID>

List<E> findAll();
E findOne(ID);
void save(E);
void delete(E); ...

CustomerRepositoryCustom
List<Customer> search(CustomerSearch);

CustomerRepositoryImpl
List<Customer> search(CustomerSearch) {
...<implem>...

}

YourBaseRepository<E,ID>
abc customMethod(xyz);

YourBase
RepositoryImpl

<implem>

naming
rules

✓Proxy + Decorator Patterns; wiring

✓Interface & Class Proxy - under the hood

✓Spring AOP - tricks & limitations

✓Custom Aspects - Best Practices

Key Points

And have a nice Spring!

Thank You!

I'm available
a proof of seniority

I use both hemispheres

Tough meetings?
Abused estimates?

Purpose of code:--Uncle Bob

1. Maintainable
2. Does its job!

Functional Party
Activist

Stay into
The Light

Trainings, Talks, Goodies Daily Posts

Clean Code
needs strength

and determination

Let's chat!

Thanks for review,
Vladimir Sitnikov

Hunt me
down

