
Simplifying
global-scale consistency

Rethinking database consistency

Today’s Agenda

2

01~55:00 Presentation

0215:00 Q&A

DIANEMODB Vision & Mission

3

What
Offering better global-scale transactions

How
Creating a simple but robust, distributed, high availability

transactionality solution based on the currently used

standards like SQL

Why
Providing a single logical view of a

unified transactional database platform

for the world results in savings for

everyone and lower barrier of entry into

software

4

What we are about - theory

4

What could we do if we
had a globally ordered,

wait-free, highly available
clock with perfect

precision?

Wouldn't it be great if this
clock would have no

central consensus groups
or need clock syncing?

What would it mean for
our industry if we could
do it simply enough for
anyone to understand?

5

What we are about - practice

5

Serving query results
from consistent
followers could
replace caches

(which are external,
inconsistent followers)

Retrofit ACID over
a heterogeneous

set of (even weakly
consistent) datastores,

even on
the user's premises

Deal with replication and
not needing observability

for execution internals

Establish a single, unified
platform, on which

clusters could join others
over arbitrary distances

and still provide ANSI SQL
semantics over any
number of arbitrary

schemas

Some
thoughts
on time

01

Our
algorithm

02

Complexity
and costs

03

What we do
now

04

Closing
thoughts

05

Today’s Outline

66

“

7

It’s causality all the way down

Abraham U., Ben-David S., Moran S. (1992) On the limitation of the global time
assumption in distributed systems. In: Toueg S., Spirakis P.G., Kirousis L. (eds)

Distributed Algorithms. WDAG 1991. Lecture Notes in Computer Science, vol 579.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022434

We apply time mostly as a tool, or even just
a metaphor, to help analyze causality.

By saying ‚‘’a read execution R precedes
a write W“ we usually wish to say ‚

‘’R cannot be affected by the value written
by W“ rather than ’’if R terminates at

07:00 p.m. then W should not commence
before 07:01 p.m.“

“
“

8

The global time assumption

Strict serializability

presumes speed of

information to be infinite

01

Even in theory, distant

computers can’t

communicate faster than

the speed of light

02

The shortest possible time

to retrieve a piece of

information half the globe

away is ~67 ms

(on surface)

03

Google Spanner’s 6 ms is

at least an order of

magnitude too strict in

some (identifiable) cases

04

8

10

Overview of our model I

Transaction commits
and clock progression

must be atomic events

Establish global
consensus over local
consensus groups

10

Strong consistency
➝ SQL ANSI
isolation levels, can
create SQL DB

Algorithm deals
with both

transactionality and
replication /

reliability

12

Overview of our model II

Error if record has a
higher committed

version than the one
you’re updating

When reading, have a
‘past timestamp’, filter out
any information that has a
higher timestamp ➝ no
half-finished transactions

Clock assigns commit
versions locally, global
translation established
in a wait-free manner

1212

Optimistic locking,
update what

you read

13

Data distribution

1313

Records can be moved
around different

localities based on
usage

Consistent read
replicas can be

established for both
indices and records,
lagging by less than
half a second with

data from across the
globe

Data locality is
important for
timeliness of
information

(In current impl.) data
distribution is based on

record attributes

Indices need an
established range,

which is mapped to
nodes

16

Logical clock
establishes a global
order between any

two transactions
agreed on by any

two observers

Commit algorithm
ensures record-

linearizability

Because time-
definition is precise,
protocol can be kept

simpler

Solution-overview

16

A

18

Clock event sourcing

18

A:1

A:2

A:3

A:4

A:5

A:6

X→B1

X→B1

X→B1

Y→C2

Y→C2

Z→D3

D

C

BA

19

Clock event sourcing

A:1

A:2

A:3

A:4

A:5

A:6

Y→C

Z→D

X→B

Y→C

X→B

X→B1

1

1

2

2

3

X

Z

Y

20

Clock definitions

20

- Nodes are represented by their input events here (inputs = state)
- Small collection of ordered nodes is called a "group"

- They communicate with each other through event logs only
- Node stores all state, so both data and intermediate tx states

21

A:1A A:2 A:3 A:4 A:5 A:6 A:7

B:1B B:2 B:3 B:4 B:5 B:6 B:7

C:1C C:2 C:3 C:4 C:5 C:6 C:7

Independent consensus groups

Separate series of events, independent of each other.

Potentially replicated, (somewhat) localised consensus-groups.

In this example, we have 3 event logs (Kafka partitions)

22

Token passing

1: Abe

2: Bea

3: Clara

4: Dave

5: Eva

A B C D E

1 1 2 3 4 5

2 6 7 8 9 10

3 11 12

i + g * n (i: index, g: # in group, n: # of circles)

i + 5 * n (i: index, n: # of circles)

23

Token passing

A token-message is passed around by these in a continuous circle.
This establishes an increasing number.

Last one received is called the “closed” version, the next we’ll receive is “open”.
Sequence for first one is: 1, 4, 7 … i + g * n (i: index, g: # in group, n: # of circles).

A:1A:-2 A:2

C:1 C:2 C:3 3

1 A:4 A:5 4

B:1 B:2 B:3 2B:-1

C:0

24

Local clock

The set of information represented by closed is final.
The sets represented by open is still append-able.

The blue squares represent readable, consistent state.
Closed on this node means everything lower is also closed on others in group.

A:1 A:2 A:4 A:5 4

B:1 B:2 B:3 2

C:1 C:2 C:3 3

1A:-2

B:-1

C:-0

25

Group clock- logical view

A:1 A:2 A:4 A:5 4

B:1 B:2 B:3 2

C:1 C:2 C:3 3

1

B:-1

C:-0

A:1 A:2 B:1 B:2 B:31 2 C:1 C:3 3 A:4C:2 A:5

A:-2

26

Clock group summarised

2626

“Open” means that
it’s still gathering

information

“Closed” means
that its information

is final

We have a version
we can rely on,

which we can assign
on each node

The data
represented will be
exposed to readers

atomically

Establishes a
logical clock

between different
nodes

How do we go
from a single group
to a global cluster?

27

Visualising multiple clocks

Multiple groups are being run in parallel.
Their periods will not be aligned with each other.

But their open still means ‘’can append’’ and closed means “finalised”.

D:1 1 E:2 2 F:1E:1 F:2 F:3 3

A:1 A:2 B:1 B:2 B:31 2 C:1 C:2

1 2 G:2 G:3 3G:1 4 5 H:1

28

Association introduction

28

- Group established with approximate locality
- Nodes "London 1, 2, 3" and nodes "Berlin 1, 2, 3"

- New node created, one for "London", one for "Berlin",
- These two new nodes also form a new group called "Europe"

-These also establish a clock
- We have 3 groups, "LDN", "BER" and "EU", advancing separately

BERLDN

EUR

L B

LD LE LF BA BB BC

29

Association - introduction

2929

Parent group
associates its

currently open
version with

child's highest
value

We call this node
“parent node”

and its group the
“parent group”

We call the
original group

the “child group”

Any node can
“request a

translation” from
the child group
to the parent

group

“Hey parent
node, what does

my 5 mean to
your group?”

If value (or a
higher one) has

already been
associated (from
the child group),

it returns that
value

EUR

LDN

30

An example association

Two child-groups, {A, B, C} and {D, E, F}
First group associated 15 and 17, second group 16 and 18

D:1 1 E:2 2E:1

D:1 E:1-2 15

BER

BER

EUR

LDN

31

An example association

Two child-groups, {A, B, C} and {D, E, F}
First group associated 15 and 17, second group 16 and 18

A:1 A:2 1

D:1 E:1-2 A:1-2 1615

D:1 1 E:2 2E:1

BER

EUR

LDN

32

An example association

Two child-groups, {A, B, C} and {D, E, F}
First group associated 15 and 17, second group 16 and 18

D:1 1 E:2 2 F:1E:1 F:2 F:3 3

D:1 E:1-2 A:1-2 16 F:1-315 17

A:1 A:2 1

BER

EUR

LDN

33

An example association

Two child-groups, {A, B, C} and {D, E, F}
First group associated 15 and 17, second group 16 and 18

D:1 1 E:2 2 F:1E:1 F:2 F:3 3

A:1 A:2 B:1 B:2 B:31 2

D:1 E:1-2 A:1-2 16 F:1-315 17 B:1-3 18

34

Association - continued I

In impl, only closed versions are queried, so that data is already final (simple).
Parent’s open version is associated with child’s (highest queried) version, so it’s associated with the

mutable version and they are finalised at next token receive.
Parent’s version-closure is communicated to the child-group, so that it knows what version is reliable on

parent’s level.

BERLDN

EUR

L B

LD LE LF BA BB BC

35

Association - continued II

The parent’s response to the child’s query is immutable, so it can be cached or communicated.
It can be used to compare versions from other groups, since they also form

a single order of events.
Lowest common parent-group exists between any two groups.

BERLDN

EUR

L B

LD LE LF BA BB BC

36

Typical latencies - how close are we to global time?

< 1ms < 20 ms < 50 ms < 250 ms< 5 ms

No single node needs to be distributed beyond geo-location (LDN).
Groups higher in hierarchy would be more spread out.

Typical latencies:

We presume that most data will be managed locally, where this setup typically progresses quicker than 6ms.

Same data-centre Same geo-
location
(London)

Same region
(London-Paris-
Amsterdam)

Same continent
(Moscow-

London-Rome)

Worldwide

37

Clocks in DIANEMODB

3737

Timestamp chosen
at commit

Increasingly wider
consensus after

periods are closed
(and until then they

are unreadable)

Garbage
collection

Consistent
replica-reads

Reliable timestamp
chosen for each
level at TX start

(in current impl.)

38

TX commit - discovery

R0 {M, -}

R

R0 {M, -}

R

R1 {R0, N, TX1:2}

R1 {R0, N, TX1:2}

TX1:2

R0 {M, -}

R

R1 {R0, N, TX1:2}

R2 {R0, O, TX0:5}

R2 {R0, O, TX0:5}

TX0:5 Discovered: {TX1:2}

TX commit - registration

39

Discovered:
{TX1:2}

Commit

TX0:5

0 1

COMMITTED

COMMITTED

Register TX0:5

RUNNING

CANCELLED

TX1:2
Commit

COMMITTED

Register TX1:2

40

TX commit - summary

40

If a tx updates the same
record as another one,

saves it in its discovered
list

Independent transactions
never wait for each other

If a tx starts its commit,
it makes its own

registered list immutable,
and for each $tx in its

discovered list

• queries the state of $tx

• tries to write itself into $tx’s
registered list (via the query
message)

A tx can commit (and is
rolled back otherwise) if

• each tx in its registered list
was cancelled

• it successfully wrote itself
into each tx’s registered list
in its discovered list

Click to add text

41

TX commit - remarks, edge cases

41

The transactions which
start their commits don’t

accept any more to
register, the ones that

come later are cancelled

If a transaction A
registered into B

successfully, B has to wait
for A to either succeed or

fail before progressing
with its commit

It can happen that both
transactions are

cancelled, if they both
start their commits at the
same time (on different

nodes)

42

TX commit - closing thoughts

42

Isolation levels
established by choosing

the right version

Each consensus group
progresses

independently,
essentially a mesh of

nodes

Single-thread nodes only,
all internal state is

observable from inputs,
not just data

43

Consequences - quick, simple, stateless

Time definition is
strict (no tolerance

needed), but still very
close to temporal

ordering

Single datacenter
“temporal fit” will be
less than a few ms

(with a group of
sensible size)

Same inputs =
Same outputs

Replication is
streaming inputs

Parallel execution

44

Aggregators, deployment, failures

Tolerating failures via redundancies

New instances can be added to each level

No elections, no timeouts

Gain reliability for hardware resources

Nodes publish idempotent messages

A C A C A C

A C
aggregator

A C input queue

A C output queue

A C
aggregator

A input
queue

A B input
queue

B C input
queue

With multiple redundancies, can
tolerate even byzantine-failures

45

Communication, redundancy

Can have multiple
processors consuming

from the same
consensus group

Can find faulty
instances, which

disagree with the majority
before sending out the
request (Byzantine fault

tolerance)

Follower reads do not
need to be stored in

event log

No consensus beyond
event-logs

Writes always go to
master record, from
which changes are
communicated to

followers

46

Replicated, reliable, highly available consistency
is expensive because it's complex

Consensus
is complex

Responsive
consensus gets

increasingly harder
the further away you

go on a network.

Original RAFT
paper proposes

election timeouts
between 150ms and

300ms (congestion eats
this up quickly)

Efficiency dropoff after
this range is sudden

47

Complexity in practice

People use SQL or
no transactions

Industry hardly ever
uses anything beyond
“READ COMMITTED”

People don’t want to
care about their DB

internals

Ideally, a system
which _tells them_

what happened instead
of reconstructing

from logs

“Causal consistency
with no stale reads” vs
“REPEATABLE READ”

48

What do we do now?

Anything_to_
do_with_

complexity;

Managed
services and
paid support!

Tech companies can easily spend
>30% of their budget on infra and

data-services

49

What do we do now?

Others managing your data is not always an option,
it just becomes someone else’s problem, no easy fix for complex problems

Network (esp. inter-datacenter) and disk IO is extra
Typically single datacenter to minimise complexity

Complexity still needs to be “internalized” to a large extent
If you run your own, you can't replicate your PROD instance very well

50

So, what do we think – people would care about?

Simple
enough to
maintain

and manage

As little change
from the status
quo as possible

(a’la
Cockroach’s

Postgres-
compatibility)Full

reproducibility
not just

observability

HA: replication
and failover,

(scalable
performance

XOR
distribution)

51

Summary – simpler, cheaper to develop for

Much easier
to reason

about

Developing
tests is as

easy as
listing inputs

SQL-
compatible
isolation,
currently

SNAPSHOT

Difference is
deciding

which
region

record and
index lives in

52

What we solve summary

Strong Consistency High Availability
Consistent (Geo-)

Replication

Byzantine Fault
tolerance

(like CPU errors)

53

DIANEMODB – Products

Looking for strategic investor

Existing
Software and

implementation
consulting

JDBC
compatible

database

SQL impl,
retrofitting

transactionality
on multiple

schemas
and datastores

Currently

Shortly Plans

Eventually
A service,

which can join
independent
clusters into a
single tx unit, a

single global
SQL DB

54

Image
Placeholder

Thanks

for watching

András Gerlits [CTO]

andras.gerlits@dianemodb.com | www.dianemodb.com

