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DIANEMODB Vision & Mission
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What
Offering better global-scale transactions

How
Creating a simple but robust, distributed, high availability 

transactionality solution based on the currently used 

standards like SQL

Why
Providing a single logical view of a 

unified transactional database platform 

for the world results in savings for 

everyone and lower barrier of entry into 

software
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What we are about - theory
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What could we do if we 
had a globally ordered, 

wait-free, highly available 
clock with perfect 

precision?

Wouldn't it be great if this 
clock would have no 

central consensus groups 
or need clock syncing?

What would it mean for 
our industry if we could 
do it simply enough for 
anyone to understand?
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What we are about - practice
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Serving query results 
from consistent 
followers could 
replace caches 

(which are external,
inconsistent followers)

Retrofit ACID over 
a heterogeneous 

set of (even weakly
consistent) datastores,

even on 
the user's premises

Deal with replication and 
not needing observability 

for execution internals

Establish a single, unified 
platform, on which 

clusters could join others 
over arbitrary distances 

and still provide ANSI SQL 
semantics over any 
number of arbitrary 

schemas
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It’s causality all the way down

Abraham U., Ben-David S., Moran S. (1992) On the limitation of the global time 
assumption in distributed systems. In: Toueg S., Spirakis P.G., Kirousis L. (eds) 

Distributed Algorithms. WDAG 1991. Lecture Notes in Computer Science, vol 579. 
Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0022434

We apply time mostly as a tool, or even just
a metaphor, to help analyze causality.

By saying ‚‘’a read execution R precedes
a write W“ we usually wish to say ‚

‘’R cannot be affected by the value written
by W“ rather than ’’if R terminates at

07:00 p.m. then W should not commence
before 07:01 p.m.“

“
“
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The global time assumption

Strict serializability 

presumes speed of 

information to be infinite

01

Even in theory, distant 

computers can’t 

communicate faster than 

the speed of light

02

The shortest possible time 

to retrieve a piece of 

information half the globe 

away is ~67 ms

(on surface)

03

Google Spanner’s 6 ms is 

at least an order of 

magnitude too strict in 

some (identifiable) cases

04

8
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Overview of our model I

Transaction commits 
and clock progression 

must be atomic events 

Establish global 
consensus over local 
consensus groups

10

Strong consistency 
➝ SQL ANSI 
isolation levels, can 
create SQL DB

Algorithm deals 
with both 

transactionality and 
replication /

reliability
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Overview of our model II

Error if record has a 
higher committed 

version than the one 
you’re updating

When reading, have a 
‘past timestamp’, filter out 
any information that has a 
higher timestamp ➝ no 
half-finished transactions

Clock assigns commit 
versions locally, global 
translation established 
in a wait-free manner

1212

Optimistic locking, 
update what 

you read 
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Data distribution
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Records can be moved 
around different 

localities based on 
usage

Consistent read 
replicas can be 

established for both 
indices and records, 
lagging by less than 
half a second with 

data from across the 
globe

Data locality is 
important for 
timeliness of 
information

(In current impl.) data 
distribution is based on 

record attributes

Indices need an 
established range, 

which is mapped to 
nodes
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Logical clock 
establishes a global 
order between any 

two transactions 
agreed on by any 

two observers

Commit algorithm 
ensures record-

linearizability

Because time-
definition is precise, 
protocol can be kept 

simpler

Solution-overview

16
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Clock event sourcing
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A:1

A:2

A:3

A:4

A:5

A:6

X→B1

X→B1

X→B1

Y→C2

Y→C2

Z→D3
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Clock event sourcing

A:1

A:2

A:3

A:4

A:5

A:6

Y→C

Z→D

X→B

Y→C

X→B

X→B1

1

1

2

2

3

X

Z

Y
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Clock definitions
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- Nodes are represented by their input events here (inputs = state)
- Small collection of ordered nodes is called a "group"

- They communicate with each other through event logs only
- Node stores all state, so both data and intermediate tx states
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A:1A A:2 A:3 A:4 A:5 A:6 A:7

B:1B B:2 B:3 B:4 B:5 B:6 B:7

C:1C C:2 C:3 C:4 C:5 C:6 C:7

Independent consensus groups

Separate series of events, independent of each other.

Potentially replicated, (somewhat) localised consensus-groups.

In this example, we have 3 event logs (Kafka partitions)
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Token passing

1: Abe

2: Bea

3: Clara

4: Dave

5: Eva

A B C D E

1 1 2 3 4 5

2 6 7 8 9 10

3 11 12

i + g * n (i: index, g: # in group, n: # of circles)

i + 5 * n (i: index, n: # of circles)
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Token passing

A token-message is passed around by these in a continuous circle.
This establishes an increasing number.

Last one received is called the “closed” version, the next we’ll receive is “open”.
Sequence for first one is: 1, 4, 7 … i + g * n (i: index, g: # in group, n: # of circles).

A:1A:-2 A:2

C:1 C:2 C:3 3

1 A:4 A:5 4

B:1 B:2 B:3 2B:-1

C:0
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Local clock

The set of information represented by closed is final.
The sets represented by open is still append-able.

The blue squares represent readable, consistent state.
Closed on this node means everything lower is also closed on others in group.

A:1 A:2 A:4 A:5 4

B:1 B:2 B:3 2

C:1 C:2 C:3 3

1A:-2

B:-1

C:-0
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Group clock- logical view

A:1 A:2 A:4 A:5 4

B:1 B:2 B:3 2

C:1 C:2 C:3 3

1

B:-1

C:-0

A:1 A:2 B:1 B:2 B:31 2 C:1 C:3 3 A:4C:2 A:5

A:-2
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Clock group summarised
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“Open” means that 
it’s still gathering 

information

“Closed” means 
that its information 

is final

We have a version 
we can rely on, 

which we can assign 
on each node

The data 
represented will be 
exposed to readers 

atomically

Establishes a 
logical clock 

between different 
nodes

How do we go 
from a single group 
to a global cluster?
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Visualising multiple clocks

Multiple groups are being run in parallel.
Their periods will not be aligned with each other.

But their open still means ‘’can append’’ and closed means “finalised”.

D:1 1 E:2 2 F:1E:1 F:2 F:3 3

A:1 A:2 B:1 B:2 B:31 2 C:1 C:2

1 2 G:2 G:3 3G:1 4 5 H:1
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Association introduction

28

- Group established with approximate locality
- Nodes "London 1, 2, 3" and nodes "Berlin 1, 2, 3"

- New node created, one for "London", one for "Berlin",
- These two new nodes also form a new group called "Europe"

-These also establish a clock
- We have 3 groups, "LDN", "BER" and "EU", advancing separately

BERLDN

EUR

L B

LD LE LF BA BB BC
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Association - introduction
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Parent group 
associates its 

currently open 
version with 

child's highest 
value

We call this node 
“parent node” 

and its group the 
“parent group”

We call the 
original group 

the “child group”

Any node can 
“request a 

translation” from 
the child group 
to the parent 

group

“Hey parent 
node, what does 

my 5 mean to 
your group?”

If value (or a 
higher one) has 

already been 
associated (from 
the child group), 

it returns that 
value
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An example association

Two child-groups, {A, B, C} and {D, E, F}
First group associated 15 and 17, second group 16 and 18

D:1 1 E:2 2E:1

D:1 E:1-2 15

BER



BER

EUR

LDN
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An example association

Two child-groups, {A, B, C} and {D, E, F}
First group associated 15 and 17, second group 16 and 18

A:1 A:2 1

D:1 E:1-2 A:1-2 1615

D:1 1 E:2 2E:1



BER

EUR

LDN
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An example association

Two child-groups, {A, B, C} and {D, E, F}
First group associated 15 and 17, second group 16 and 18

D:1 1 E:2 2 F:1E:1 F:2 F:3 3

D:1 E:1-2 A:1-2 16 F:1-315 17

A:1 A:2 1



BER

EUR

LDN
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An example association

Two child-groups, {A, B, C} and {D, E, F}
First group associated 15 and 17, second group 16 and 18

D:1 1 E:2 2 F:1E:1 F:2 F:3 3

A:1 A:2 B:1 B:2 B:31 2

D:1 E:1-2 A:1-2 16 F:1-315 17 B:1-3 18
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Association - continued I

In impl, only closed versions are queried, so that data is already final (simple).
Parent’s open version is associated with child’s (highest queried) version, so it’s associated with the 

mutable version and they are finalised at next token receive.
Parent’s version-closure is communicated to the child-group, so that it knows what version is reliable on 

parent’s level.

BERLDN

EUR

L B

LD LE LF BA BB BC
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Association - continued II

The parent’s response to the child’s query is immutable, so it can be cached or communicated.
It can be used to compare versions from other groups, since they also form 

a single order of events.
Lowest common parent-group exists between any two groups.

BERLDN

EUR

L B

LD LE LF BA BB BC
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Typical latencies - how close are we to global time?

< 1ms < 20 ms < 50 ms < 250 ms< 5 ms

No single node needs to be distributed beyond geo-location (LDN).
Groups higher in hierarchy would be more spread out.

Typical latencies:

We presume that most data will be managed locally, where this setup typically progresses quicker than 6ms.

Same data-centre Same geo-
location 
(London)

Same region 
(London-Paris-
Amsterdam)

Same continent 
(Moscow-

London-Rome)

Worldwide
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Clocks in DIANEMODB
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Timestamp chosen 
at commit

Increasingly wider 
consensus after 

periods are closed 
(and until then they 

are unreadable)

Garbage 
collection

Consistent
replica-reads

Reliable timestamp 
chosen for each 
level at TX start 

(in current impl.)
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TX commit - discovery

R0 {M, -}

R

R0 {M, -}

R

R1 {R0, N, TX1:2}

R1 {R0, N, TX1:2}

TX1:2

R0 {M, -}

R

R1 {R0, N, TX1:2}

R2 {R0, O, TX0:5}

R2 {R0, O, TX0:5}

TX0:5 Discovered: {TX1:2}



TX commit - registration
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Discovered:
{TX1:2}

Commit

TX0:5

0 1

COMMITTED

COMMITTED

Register TX0:5

RUNNING

CANCELLED

TX1:2
Commit

COMMITTED

Register TX1:2
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TX commit - summary
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If a tx updates the same 
record as another one, 

saves it in its discovered 
list

Independent transactions
never wait for each other

If a tx starts its commit, 
it makes its own 

registered list immutable, 
and for each $tx in its 

discovered list 

• queries the state of $tx 

• tries to write itself into $tx’s 
registered list (via the query 
message)

A tx can commit (and is 
rolled back otherwise) if

• each tx in its registered list 
was cancelled

• it successfully wrote itself 
into each tx’s registered list 
in its discovered list

Click to add text
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TX commit - remarks, edge cases
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The transactions which 
start their commits don’t 

accept any more to 
register, the ones that 

come later are cancelled

If a transaction A 
registered into B 

successfully, B has to wait 
for A to either succeed or 

fail before progressing 
with its commit

It can happen that both 
transactions are 

cancelled, if they both 
start their commits at the 
same time (on different 

nodes)
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TX commit - closing thoughts
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Isolation levels 
established by choosing 

the right version

Each consensus group 
progresses 

independently, 
essentially a mesh of 

nodes

Single-thread nodes only, 
all internal state is 

observable from inputs, 
not just data



43

Consequences - quick, simple, stateless

Time definition is 
strict (no tolerance 

needed), but still very 
close to temporal 

ordering

Single datacenter 
“temporal fit” will be 
less than a few ms 

(with a group of 
sensible size)

Same inputs = 
Same outputs

Replication is 
streaming inputs

Parallel execution 
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Aggregators, deployment, failures

Tolerating failures via redundancies

New instances can be added to each level

No elections, no timeouts

Gain reliability for hardware resources

Nodes publish idempotent messages

A C A C A C

A C 
aggregator

A C input queue

A C output queue

A C 
aggregator

A input
queue

A B input
queue

B C input
queue

With multiple redundancies, can 
tolerate even byzantine-failures
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Communication, redundancy

Can have multiple 
processors consuming 

from the same 
consensus group

Can find faulty 
instances, which 

disagree with the majority 
before sending out the 
request (Byzantine fault 

tolerance)

Follower reads do not 
need to be stored in 

event log

No consensus beyond 
event-logs

Writes always go to 
master record, from 
which changes are 
communicated to 

followers
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Replicated, reliable, highly available consistency 
is expensive because it's complex

Consensus 
is complex

Responsive 
consensus gets 

increasingly harder 
the further away you 

go on a network.

Original RAFT 
paper proposes 

election timeouts 
between 150ms and 

300ms (congestion eats 
this up quickly)

Efficiency dropoff after 
this range is sudden
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Complexity in practice

People use SQL or 
no transactions

Industry hardly ever 
uses anything beyond 
“READ COMMITTED”

People don’t want to 
care about their DB 

internals

Ideally, a system
which _tells them_ 

what happened instead 
of reconstructing 

from logs

“Causal consistency 
with no stale reads” vs 
“REPEATABLE READ”
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What do we do now?

Anything_to_
do_with_

complexity;

Managed 
services and 
paid support!

Tech companies can easily spend 
>30% of their budget on infra and 

data-services
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What do we do now?

Others managing your data is not always an option,
it just becomes someone else’s problem, no easy fix for complex problems

Network (esp. inter-datacenter) and disk IO is extra
Typically single datacenter to minimise complexity

Complexity still needs to be “internalized” to a large extent
If you run your own, you can't replicate your PROD instance very well
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So, what do we think  – people would care about?

Simple 
enough to 
maintain 

and manage

As little change 
from the status 
quo as possible 

(a’la 
Cockroach’s 

Postgres-
compatibility)Full 

reproducibility 
not just 

observability

HA: replication 
and failover, 

(scalable 
performance 

XOR 
distribution)
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Summary – simpler, cheaper to develop for

Much easier 
to reason 

about

Developing 
tests is as 

easy as 
listing inputs

SQL-
compatible 
isolation, 
currently

SNAPSHOT

Difference is 
deciding 

which 
region 

record and 
index lives in
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What we solve summary

Strong Consistency High Availability
Consistent (Geo-) 

Replication

Byzantine Fault 
tolerance

(like CPU errors)
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DIANEMODB – Products

Looking for strategic investor

Existing
Software and

implementation
consulting

JDBC
compatible

database

SQL impl, 
retrofitting 

transactionality
on multiple

schemas 
and datastores

Currently 

Shortly Plans

Eventually
A service, 

which can join 
independent 
clusters into a 
single tx unit, a 

single global 
SQL DB
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Thanks

for watching

András Gerlits [ CTO ]

andras.gerlits@dianemodb.com | www.dianemodb.com


