
The Path Towards Spring
Boot Native Applications

1

Sébastien Deleuze
@sdeleuze
VMware

Safe Harbor Statement
The following is intended to outline the general direction of VMware's offerings. It is intended for information
purposes only and may not be incorporated into any contract. Any information regarding pre-release of
VMware offerings, future updates or other planned modifications is subject to ongoing evaluation by
VMware and is subject to change. This information is provided without warranty or any kind, express or
implied, and is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions regarding VMware's offerings. These purchasing decisions should only
be based on features currently available. The development, release, and timing of any features or
functionality described for VMware's offerings in this presentation remain at the sole discretion of VMware.
VMware has no obligation to update forward looking information in this presentation.

2

Agenda

● Native executables
● Spring Native
● Getting started
● Demo
● The road ahead

3

Native executables

5

Native ahead-of-time compilation

Java or Kotlin
application

GraalVM native
compiler

Native
executable

Lightweight
container image

EXE0110

5

6

Scale to zero

You only pay when your application is
used

Serverless for any kind of workload
including regular web applications

Good fit with platforms like Knative

4x memory reduction (RSS) on small or
medium sized applications

Cheaper cloud instances

Critical with systems splitted into multiple
microservices

Instant Startup
Reduced memory
consumption

Our goal is cheaper hosting of your Spring Boot applicationsCheaper and more sustainable Java applications

6

JVM and Native trade-offs

7

CPU and memory profiles

8

JVMNative

Performance versus instance size (and cost)

9

Medium
instance

Small
instance

Key differences between JVM and Native

10

● Static analysis of your application from the main entry point
● Configuration required for:

○ Reflection
○ Proxies
○ Resources

● Classpath fixed at build time
● No class lazy loading
● Optional build time class initialization

GraalVM native is a source of inspiration for the
JVM ecosystem

11

An upcoming Java platform standard with
Project Leyden

12

Spring Native

Spring Native = support for compiling Spring
applications to native executables. Unchanged.

14

Spring Native for GraalVM incubates at
https://github.com/spring-projects-experimental/spring-graalvm-native

15

“We are excited about the great partnership between the Spring and
GraalVM engineering teams to support native ahead-of-time
compilation for millions of Spring Boot applications. This is a game
changer enabling low memory footprint and instant startup for these
workloads.”

Thomas Wuerthinger, GraalVM founder & project lead

16

Collaboration between Spring and GraalVM teams

https://github.com/oracle/graal/labels/spring

17

Leverage Spring Boot container image support

18

> mvn spring-boot:build-image

or

> gradle bootBuildImage

Timeline

GraalVM fixes
and improvements

Spring Native for
GraalVM incubator

First class support
in Spring Boot 3

We are here

19

https://github.com/spring-projects-experimental/spring-graalvm-native

20

Spring Native for GraalVM

● Incubator for Spring Native
● Analyses the Spring application at build time

○ Computes the most optimal native image configuration
○ Challenge is doing that with static analysis

● Also perform some build time transformation for:
○ Optimized footprint
○ Compatibility

21

We have just released 0.8.3

● Spring Boot 2.4.0
● GraalVM 20.3.0
● @SpringBootApplication and @Configuration support without

proxyBeanMethods = false

22

New flags available in Spring Framework 5.3

-3.6M RSS

-Dspring.xml.ignore=true

-0.5M RSS

-Dspring.spel.ignore=true

23

A new Tomcat artifact optimized for native apps

<!-- -3.5M RSS -->

<dependency>

 <groupId>org.apache.tomcat.experimental</groupId>

 <artifactId>tomcat-embed-programmatic</artifactId>

 <version>${tomcat.version}</version>

</dependency>

24

Our CI checks Java 8/11 x GraalVM 20.3/21.0-dev

25

Getting started

start.spring.io or an existing project

27

Configure Maven plugin

28

<plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <configuration>
 
 </configuration>
</plugin>

Add the spring-graalvm-native dependency

29

<dependency>
 <groupId>org.springframework.experimental</groupId>
 <artifactId>spring-graalvm-native</artifactId>
 <version>0.8.3</version>
</dependency>

Build the native application

3
0

> mvn spring-boot:build-image
Successfully built image 'docker.io/library/demo:0.0.1-SNAPSHOT'
Total time: 60 s

● No need for a GraalVM native local install
● Build happens in a container
● And produces a container

Run the native application

31

> docker run -p 8080:8080 docker.io/library/demo:0.0.1-SNAPSHOT

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot ::

Started application in 0.05 seconds (JVM running for 0.009)

You can also build a native executable without
using containers

32

Configure Maven plugin in a native profile

33

<plugin>
 <groupId>org.graalvm.nativeimage</groupId>
 <artifactId>native-image-maven-plugin</artifactId>
 <version>20.3.0</version>
 <configuration>
 <mainClass>com.example.demo.DemoApplication</mainClass>
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>native-image</goal>
 </goals>
 <phase>package</phase>
 </execution>
 </executions>
</plugin>

Build the native application

34

> mvn -Pnative clean package
Total time: 60 s

● Need for a GraalVM native local install
● Build happens directly on your host (Linux, Mac and Windows are

supported)
● Produces a native executable
● No cross compilation

Run the native application

35

> target/com.example.demo.demoapplication

 . ____ _ __ _ _
 /\\ / ___'_ __ _ _(_)_ __ __ _ \ \ \ \
(()___ | '_ | '_| | '_ \/ _` | \ \ \ \
 \\/ ___)| |_)| | | | | || (_| |))))
 ' |____| .__|_| |_|_| |___, | / / / /
 =========|_|==============|___/=/_/_/_/
 :: Spring Boot ::

Started application in 0.05 seconds (JVM running for 0.009)

Demo

36

How fast is your PetClinic?

37

Sample On the JDK As native application

petclinic-jdbc Build: 9s
Memory(RSS): 417M
Startup time: 2.6s

Build: 194s +2050%
Memory(RSS): 101M -75%
Startup time: 0.158s -94%

Ongoing work on footprint
Key metrics: build time, size of resultant image, and runtime memory footprint

38

Sample 2019 2020

commandlinerunner Build: 90s
Exec. size: 48M
Memory(RSS): 29M

Build: 50s -45%
Exec. size: 22M -55%
Memory(RSS): 24M -17%

webflux-netty Build: 193s
Exec. size: 81M
Memory(RSS): 95M

Build: 79s -60%
Exec. size: 43M -47%
Memory(RSS): 47M -50%

webmvc-tomcat Build: 203s
Exec size: 105M
Memory(RSS): 70M

Build: 67s -67%
Exec. size: 42M -60%
Memory(RSS): 51M -27%

The road ahead

Rodmap

40

0.9.0 (early 2021)
● First release with beta status

○ Spring Boot 2.4.0 and GraalVM 20.3 baseline
○ Subset of starters supported
○ Breaking change will happen (with upgrade paths)

● Wider support
○ Spring Security
○ Spring Batch

● Introduction of build time transformations
○ Programmatic Spring factories
○ GraalVM feature to native configuration generator
○ Automatic native configurations of src/main/resources/*

41

0.9.X
● Switch at some point to Spring Framework 6 / Boot 3 milestones
● GraalVM 21.x baseline
● More build time transformations
● Testing
● Focus on maintainability, footprint and build time reduction

42

Build time transformations

43

Native applications functional configuration

44

Sample webmvc-tomcat webmvc-functional
With build time transformation to
functional configuration

Regular Spring Boot
application with Spring MVC,
Tomcat and Jackson

Build: 67s
Exec. size: 42M
Memory(RSS): 51M
Startup time: 0.06s

Build: 60s -10%
Exec. size: 37M -12%
Memory(RSS): 26M -49%
Startup time: 0.02s -66%

Spring Boot 3, based on Spring Framework 6, is
expected to provide first-class support for native
application deployment, as well as an optimized
footprint on the JVM.

45

Takeaways

● Spring Native is great to build lightweight containers
● Try it now with spring-graalvm-native 0.8.3
● Contribute support for your favorite starter
● Beta early 2021 with spring-graalvm-native 0.9
● Wider support and smaller footprint during 0.9.x releases
● Upcoming first-class native support in Spring Boot 3 / Framework 6

46

https://github.com/spring-projects-experimental/spring-graalvm-native

https://spring.io/blog

@sdeleuze on for fresh news

Stay Connected.

