
© Copyright Azul Systems 2017

© Copyright Azul Systems 2015

@speakjava
azul.com

JDK 9: Mission Accomplished
What Next For Java?

Simon Ritter
Deputy CTO, Azul Systems

1

© Copyright Azul Systems 2017

JDK 9: Big And Small Changes

2

© Copyright Azul Systems 2017

Java Platform Module System (JPMS)
§  The core Java libraries are now a set of modules (JEP 220)

– 97 modules: 28 Java SE, 8 JavaFX, 59 JDK, 2 Oracle
§  Most internal APIs now encapsulated (JEP 260)

– sun.misc.Unsafe	
– Some can be used with command line options

§  Modular source code (JEP 201)
– JDK source code re-organised to support modules

3

© Copyright Azul Systems 2017

Migrating Applications to JPMS
§  Initially, leave everything on the classpath
§  Anything on the classpath is in the unnamed module

– All packages are exported
– The unnamed module depends on all modules

§  Migrate to modules as required
– Try automatic modules
– Move existing jar files from classpath to modulepath

4

© Copyright Azul Systems 2017

Reversing Encapsulation
§  "The Big Kill Switch" to turn off encapsulation

– --illegal-access	
§ permit: Warning for first use of an encapsulated API	
§ warn: Warning for every use of an encapsulated API	
§ debug: Warning and stack trace for every use	
§ deny: No access to encapsulated APIs	

5

© Copyright Azul Systems 2017

Reversing Encapsulation
§  Allowing direct access to encapsulated APIs

– --add-exports	

§  Allowing reflective access to encapsulated APIs
– --add-opens	

6

--add-exports	java.management/com.sun.jmx.remote.internal=mytest	
--add-exports	java.management/sun.management=ALL-UNNAMED	

--add-opens	java.base/java.util=ALL-UNNAMED	

© Copyright Azul Systems 2017

Reversing Encapsulation
§  Using the JAR file manifest

7

Add-Exports:	java.base/sun.security.provider	

© Copyright Azul Systems 2017

JDK 9 And Compatibility

8

"Clean applications that just depend on java.se
 should just work" - Oracle

© Copyright Azul Systems 2017

Finding Encapsulated API Use
§  jdeps	

– Analyses dependencies on APIs
§  Example: Minecraft

9

jdeps	--list-deps	1.8.jar	
			java.base	
			java.datatransfer	
			java.desktop	
			java.management	
			java.naming	
			not	found	
			unnamed	module:	1.8.jar	

© Copyright Azul Systems 2017

jlink: The Java Linker (JEP 282)

10

Modular run-time
image

… conf bin

jlink

$	jlink	--modulepath	$JDKMODS	\	
		--addmods	java.base	–output	myimage	
	
$	myimage/bin/java	–-list-modules	
java.base@9		

jmods

© Copyright Azul Systems 2017

jlink: The Java Linker (JEP 282)

$	jlink	--module-path	$JDKMODS:$MYMODS	\	
		--addmods	com.azul.app	–-output	myimage	
	
$	myimage/bin/java	–-list-modules	
java.base@9	
java.logging@9	
java.sql@9	
java.xml@9	
com.azul.app@1.0	
com.azul.zoop@1.0	
com.azul.zeta@1.0	

© Copyright Azul Systems 2017

The Implications Of jlink	
§  "Write once, run anywhere"

– Long term Java slogan, mainly held true
§  jlink generated runtime may not include all Java SE

modules
– But is still a conformant Java implementation
– To be conformant:

§  It must include the java.base module
§  If other modules are included, all transitive module dependencies

must also be included
– Defined as a closed implementation

© Copyright Azul Systems 2017

"Missing" Modules
§  Remember, "Clean applications that only use java.se..."
§  The java.se.ee module not included by default

– Compilation and runtime
§  Affected modules

–  java.corba	
–  java.transaction	
–  java.activation	
–  java.xml.bind	
–  java.xml.ws	
–  java.xml.ws.annotation	

13

© Copyright Azul Systems 2017

Using "Missing" Modules
§  Use the command line option

–  --add-modules	java.corba	
§  All modules (except CORBA) have standalone versions

– Maven central
– Relevant JSR RI

§  Deploy standalone version on the upgrade module path
–  --upgrade-module-path	<path>	

§  Deploy standalone version on the classpath

14

© Copyright Azul Systems 2017

JDK Development Changes

© Copyright Azul Systems 2017

OpenJDK: New Release Model
§  A new version of the JDK will be released every six months

– March and September
– Starting this year

§  OpenJDK development will be more agile
– Previous target was a release every two years

§ Three and a half years between JDK 8 and JDK 9
§  Features will be included only when ready

– Targeted for a release when feature complete
– Not targeted at specific release when started

16

© Copyright Azul Systems 2017

OpenJDK: More Open Source
§  Oracle will open-source closed-source parts of the JDK

– Flight recorder
– Mission control

§  The goal is for there to be no functional difference between
an Oracle binary and a binary built from OpenJDK source
– Targeted for completion late 2018

17

© Copyright Azul Systems 2017

JDK Version Numbering
§  New scheme introduced in JDK 9 (JEP 223)

– JDK	${MAJOR}.${MINOR}.${SECURITY}	
– Semantic versioning
– Easier to understand by humans and computers

18

© Copyright Azul Systems 2017

JDK Version Numbering
§  New proposal for subsequent releases

– JDK	${YEAR}.${MONTH}	
§ JDK 18.3, JDK 18.9, etc.

– Same concept as used by Ubuntu
– Many people not happy about this

19

© Copyright Azul Systems 2017

JDK Version Numbering
§  New, new scheme. Just proposed JEP 322

– $FEATURE.$INTERIM.$UPDATE.$PATCH

– FEATURE: Was MAJOR, i.e. 10, 11, etc.
–  INTERIM: Was MINOR. Always zero, reserved for future use
– UPDATE: Was SECURITY, but with different incrementing rule
– PATCH: Emergency update outside planned schedule

20

© Copyright Azul Systems 2017

Deprecated in JDK 9: Soon To Go
§  Applets as a deployment mechanism
§  CMS garbage collector
§  Java policy tool, jconsole, Doclet API, other small things
§  java.se.ee meta-module

§ java.corba	
§ java.transaction	
§ java.activation	
§ java.xml.bind	
§ java.xml.ws	
§ java.xml.ws.annotation	

21

© Copyright Azul Systems 2017

Availability Of JDK Updates
§  Oracle is switching to a long term support (LTS) model

– ONLY for customers of commercial support
§  There will be 3 years between LTS releases

– JDK 8 has been classified as an LTS release
§  It will have updates for more than 3 years

– Next LTS release will be September, 2018 (JDK 11)
§  Non-LTS releases are "Feature Releases"

– JDK 9 is a feature release
§  No overlap of support

22

© Copyright Azul Systems 2017

Oracle Binaries
§  Until now released under Oracle Binary Code License

– Have to accept to download
– Classic "field-of-use" restriction

§  Moving forward
– Binaries available under GPLv2 with CPE
– No more 32-bit binaries
– No more ARM binaries
– Windows, Linux, Mac and Solaris SPARC only

§ All 64-bit

23

© Copyright Azul Systems 2017

JDK 11: All Change

24

© Copyright Azul Systems 2017

JDK.${NEXT}

© Copyright Azul Systems 2017

JDK 10 (JSR 383)
§  JSR 383 submitted and expert group formed

– Lead by Brian Goetz
– Oracle, IBM, Red Hat, SAP and Azul (Me)

§  Schedule approved
– General Availability: 20/3/18

§  Release candidate now available

26

© Copyright Azul Systems 2017

JDK 10
§  JEP 286: Local variable type inference
var	list	=	new	ArrayList<String>();	//	infers	ArrayList<String>	
var	stream	=	list.stream();									//	infers	Stream<String>	

§  JEP 307: Parallel Full GC for G1
– Still a full GC with potentially big pauses

§  JEP 310: Application Class-Data Sharing
§  JEP 317: Experimental Java-based JIT compiler (Graal)
§  JEP 319: Root Certificates
§  JEP 296: Consolidate JDK forests into single repo

27

© Copyright Azul Systems 2017

JDK 10
§  JEP 316: Heap allocation on alternative devices

–  NV-RAM with same semantics as DRAM

§  JEP 313: Remove javah tool
– Same functionality through javac	

§  JEP 304: Garbage Collector Interface (Internal JVM)
– Easier to add new algorithms

§  JEP 312: Thread-Local Handshakes

28

© Copyright Azul Systems 2017

JDK 10
§  73 New APIs

– List, Set, Map.copyOf(Collection)
– Optional.orElseThrow()
– Collectors

§  toUnmodifiableList
§  toUnmodifiableMap
§  toUnmodifiableSet

29

© Copyright Azul Systems 2017

JDK 10
§  Miscellaneous

– XMLInputFactory.newFactory() de-deprecated
– com.sun.security.auth package

§ Six deprecated classes removed

–  java.lang.SecurityManager
§ One deprecated field and seven methods removed

– JVM now more Docker container aware
§ Uses container CPU count and memory size

30

© Copyright Azul Systems 2017

Longer Term JDK Futures

© Copyright Azul Systems 2017

JDK 11 (JSR 384)
§  Expert group same as JSR 383 (and JSR 379)
§  More of a rolling JSR
§  Features proposed so far

– Epsilon GC (JEP 318)
– Dynamic class file constants (JEP 309)
– Remove the Java EE and CORBA modules (JEP 320)
– Local variable syntax for Lambda parameters (JEP 323)

32

© Copyright Azul Systems 2017

OpenJDK Projects
§  Amber

–  Simplifying syntax

§  Loom
–  Continuations and fibres

§  Metropolis
–  The JVM re-written in Java

§  Panama
–  FFI replacement for JNI

§  Valhalla
–  Value types and specialised generics

33

© Copyright Azul Systems 2017

Project Amber: Pattern Matching
§  JEP 305: Pattern matching

– Type test and switch statement support to start

34

String	formatted;	
switch	(obj)	{	
				case	Integer	i:	formatted	=	String.format("int	%d",	i);	break;	
				case	Byte	b:				formatted	=	String.format("byte	%d",	b);	break;	
				case	Long	l:				formatted	=	String.format("long	%d",	l);	break;	
				case	Double	d:		formatted	=	String.format(“double	%f",	d);	break;	
				case	String	s:		formatted	=	String.format("String	%s",	s);	break	
				default:								formatted	=	obj.toString();	
}	

© Copyright Azul Systems 2017

Project Valhalla
§  Java has:

– Primitives: for performance
– Objects: for encapsulation, polymorphism, inheritance, OO

§  Problem is where we want to use primitives but can't
– ArrayList<int> won't work
– ArrayList<Integer> requires boxing and unboxing,

object creation, heap overhead, indirection reference

35

© Copyright Azul Systems 2017

Project Valhalla
§  Value types
§  "Codes like a class, works like a primitive"

– Can have methods and fields
– Can implement interfaces
– Can use encapsulation
– Can be generic

36

© Copyright Azul Systems 2017

Project Loom
§  Further work on making concurrent programming simpler
§  Threads are too heavyweight

– Too much interaction with operating system
§  Loom will introduce fibres

–  JVM level threads (remember green threads?)
– Add continuations to the JVM
– Use the ForkJoinPool scheduler
– Much lighter weight than threads

§ Less memory
§ Close to zero overhead for task switching

37

© Copyright Azul Systems 2017

Project Metropolis
§  Run Java on Java

– Rewrite most of the JVM in Java
§  Use the Graal compiler project as significant input
§  Easier ports to new platforms

– Less native code to modify and compile
§  Faster new features on front-end

– Easier to write Java than C++
§  Performance is an issue to be explored and resolved

– AOT compiler in JDK 9 is the start of this

38

© Copyright Azul Systems 2017

Azul's Zulu Java

© Copyright Azul Systems 2017

Zulu Java
§  Azul’s binary distribution of OpenJDK

– Passes all TCK tests
– Multi-platform (Windows, Linux, Mac)

§  JDK 6, 7, 8 and 9 available
§  Wider platform support:

– Intel 32-bit Windows and Linux
– ARM 32 and 64-bit
– PowerPC

40

www.zulu.org/download

© Copyright Azul Systems 2017

Azul Support Timeline

7	(LTS)
2017 2018 2019 2020

8	(LTS)

19

18

17	(LTS)

16

15

14

13

12

11	(LTS)

10

9 9

8	(LTS)

7	(LTS)

Publicly	available	
binaries

Azul	Zulu	Passive	
Commercial	Support

Oracle	Commercial	
Support

Oracle	Extended	
Commercial	Support

Azul	Zulu	Active	
Commercial	Support

2022 2023 20242021

14

13

12

11	(LTS)

10

19

18

17	(LTS)

16

15

© Copyright Azul Systems 2017

Summary

© Copyright Azul Systems 2017

Java Continues Moving Forward
§  JDK 9 is out

– But not an LTS
– JPMS may require changes to existing applications

§  Faster Java releases
– Feature release every 6 months, LTS every 3 years
– Support is a major consideration

§  Lots of ideas to improve Java
– Value types, better JNI, better type inference
– Many smaller things

43

© Copyright Azul Systems 2017

© Copyright Azul Systems 2015

@speakjava
azul.com

Thank you!

Simon Ritter
Deputy CTO, Azul Systems

44

