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JDK 9: Big And Small Changes 
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Java Platform Module System (JPMS) 
§  The core Java libraries are now a set of modules (JEP 220)  

– 97 modules: 28 Java SE, 8 JavaFX, 59 JDK, 2 Oracle 
§  Most internal APIs now encapsulated (JEP 260) 

– sun.misc.Unsafe	
– Some can be used with command line options 

§  Modular source code (JEP 201) 
– JDK source code re-organised to support modules 
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Migrating Applications to JPMS 
§  Initially, leave everything on the classpath 
§  Anything on the classpath is in the unnamed module 

– All packages are exported 
– The unnamed module depends on all modules 

§  Migrate to modules as required 
– Try automatic modules 
– Move existing jar files from classpath to modulepath 
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Reversing Encapsulation 
§  "The Big Kill Switch" to turn off encapsulation 

– --illegal-access	
§ permit: Warning for first use of an encapsulated API	
§ warn: Warning for every use of an encapsulated API	
§ debug: Warning and stack trace for every use	
§ deny: No access to encapsulated APIs	
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Reversing Encapsulation 
§  Allowing direct access to encapsulated APIs 

– --add-exports	

§  Allowing reflective access to encapsulated APIs 
– --add-opens	
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--add-exports	java.management/com.sun.jmx.remote.internal=mytest	
--add-exports	java.management/sun.management=ALL-UNNAMED	

--add-opens	java.base/java.util=ALL-UNNAMED	
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Reversing Encapsulation 
§  Using the JAR file manifest 
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Add-Exports:	java.base/sun.security.provider	
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JDK 9 And Compatibility 
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"Clean applications that just depend on java.se 
  should just work" - Oracle 
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Finding Encapsulated API Use 
§  jdeps	

– Analyses dependencies on APIs 
§  Example: Minecraft 
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jdeps	--list-deps	1.8.jar	
			java.base	
			java.datatransfer	
			java.desktop	
			java.management	
			java.naming	
			not	found	
			unnamed	module:	1.8.jar	
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jlink: The Java Linker (JEP 282) 
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Modular run-time  
image 

… conf bin 

jlink 

$	jlink	--modulepath	$JDKMODS	\	
		--addmods	java.base	–output	myimage	
	
$	myimage/bin/java	–-list-modules	
java.base@9		

jmods 
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jlink: The Java Linker (JEP 282) 

$	jlink	--module-path	$JDKMODS:$MYMODS	\	
		--addmods	com.azul.app	–-output	myimage	
	
$	myimage/bin/java	–-list-modules	
java.base@9	
java.logging@9	
java.sql@9	
java.xml@9	
com.azul.app@1.0	
com.azul.zoop@1.0	
com.azul.zeta@1.0	
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The Implications Of jlink	
§  "Write once, run anywhere" 

– Long term Java slogan, mainly held true 
§  jlink generated runtime may not include all Java SE 

modules 
– But is still a conformant Java implementation 
– To be conformant: 

§  It must include the java.base module 
§  If other modules are included, all transitive module dependencies 

must also be included 
– Defined as a closed implementation  
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"Missing" Modules 
§  Remember, "Clean applications that only use java.se..." 
§  The java.se.ee module not included by default 

– Compilation and runtime 
§  Affected modules 

–  java.corba	
–  java.transaction	
–  java.activation	
–  java.xml.bind	
–  java.xml.ws	
–  java.xml.ws.annotation	
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Using "Missing" Modules 
§  Use the command line option 

–  --add-modules	java.corba	
§  All modules (except CORBA) have standalone versions 

– Maven central 
– Relevant JSR RI 

§  Deploy standalone version on the upgrade module path 
–  --upgrade-module-path	<path>	

§  Deploy standalone version on the classpath 
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JDK Development Changes 
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OpenJDK: New Release Model 
§  A new version of the JDK will be released every six months 

– March and September 
– Starting this year 

§  OpenJDK development will be more agile 
– Previous target was a release every two years 

§ Three and a half years between JDK 8 and JDK 9 
§  Features will be included only when ready 

– Targeted for a release when feature complete 
– Not targeted at specific release when started 
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OpenJDK: More Open Source 
§  Oracle will open-source closed-source parts of the JDK 

– Flight recorder 
– Mission control 

§  The goal is for there to be no functional difference between 
an Oracle binary and a binary built from OpenJDK source 
– Targeted for completion late 2018 
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JDK Version Numbering 
§  New scheme introduced in JDK 9 (JEP 223) 

– JDK	${MAJOR}.${MINOR}.${SECURITY}	
– Semantic versioning 
– Easier to understand by humans and computers 
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JDK Version Numbering 
§  New proposal for subsequent releases 

– JDK	${YEAR}.${MONTH}	
§ JDK 18.3, JDK 18.9, etc. 

– Same concept as used by Ubuntu 
– Many people not happy about this 

19 



© Copyright Azul Systems 2017 

JDK Version Numbering 
§  New, new scheme. Just proposed JEP 322 

– $FEATURE.$INTERIM.$UPDATE.$PATCH 

– FEATURE: Was MAJOR, i.e. 10, 11, etc. 
–  INTERIM: Was MINOR. Always zero, reserved for future use 
– UPDATE: Was SECURITY, but with different incrementing rule 
– PATCH: Emergency update outside planned schedule 
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Deprecated in JDK 9: Soon To Go 
§  Applets as a deployment mechanism 
§  CMS garbage collector 
§  Java policy tool, jconsole, Doclet API, other small things 
§  java.se.ee meta-module  

§ java.corba	
§ java.transaction	
§ java.activation	
§ java.xml.bind	
§ java.xml.ws	
§ java.xml.ws.annotation	
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Availability Of JDK Updates 
§  Oracle is switching to a long term support (LTS) model 

– ONLY for customers of commercial support 
§  There will be 3 years between LTS releases 

– JDK 8 has been classified as an LTS release 
§  It will have updates for more than 3 years 

– Next LTS release will be September, 2018 (JDK 11) 
§  Non-LTS releases are "Feature Releases" 

– JDK 9 is a feature release 
§  No overlap of support 
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Oracle Binaries 
§  Until now released under Oracle Binary Code License 

– Have to accept to download 
– Classic "field-of-use" restriction 

§  Moving forward 
– Binaries available under GPLv2 with CPE 
– No more 32-bit binaries 
– No more ARM binaries 
– Windows, Linux, Mac and Solaris SPARC only 

§ All 64-bit  
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JDK 11: All Change 
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JDK.${NEXT} 
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JDK 10 (JSR 383) 
§  JSR 383 submitted and expert group formed 

– Lead by Brian Goetz 
– Oracle, IBM, Red Hat, SAP and Azul (Me) 

§  Schedule approved 
– General Availability: 20/3/18  

§  Release candidate now available 
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JDK 10 
§  JEP 286: Local variable type inference 
var	list	=	new	ArrayList<String>();	//	infers	ArrayList<String>	
var	stream	=	list.stream();									//	infers	Stream<String>	

§  JEP 307: Parallel Full GC for G1 
– Still a full GC with potentially big pauses 

§  JEP 310: Application Class-Data Sharing 
§  JEP 317: Experimental Java-based JIT compiler (Graal) 
§  JEP 319: Root Certificates 
§  JEP 296: Consolidate JDK forests into single repo 
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JDK 10 
§  JEP 316: Heap allocation on alternative devices 

–  NV-RAM with same semantics as DRAM 

§  JEP 313: Remove javah tool 
– Same functionality through javac	

§  JEP 304: Garbage Collector Interface (Internal JVM) 
– Easier to add new algorithms 

§  JEP 312: Thread-Local Handshakes 
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JDK 10 
§  73 New APIs 

– List, Set, Map.copyOf(Collection) 
– Optional.orElseThrow() 
– Collectors 

§  toUnmodifiableList 
§  toUnmodifiableMap 
§  toUnmodifiableSet 
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JDK 10 
§  Miscellaneous 

– XMLInputFactory.newFactory() de-deprecated 
– com.sun.security.auth package  

§ Six deprecated classes removed 

–  java.lang.SecurityManager  
§ One deprecated field and seven methods removed 

– JVM now more Docker container aware 
§ Uses container CPU count and memory size 
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Longer Term JDK Futures 
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JDK 11 (JSR 384) 
§  Expert group same as JSR 383 (and JSR 379) 
§  More of a rolling JSR 
§  Features proposed so far 

– Epsilon GC (JEP 318) 
– Dynamic class file constants (JEP 309) 
– Remove the Java EE and CORBA modules (JEP 320) 
– Local variable syntax for Lambda parameters (JEP 323) 
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OpenJDK Projects 
§  Amber 

–  Simplifying syntax 

§  Loom 
–  Continuations and fibres 

§  Metropolis 
–  The JVM re-written in Java 

§  Panama 
–  FFI replacement for JNI 

§  Valhalla 
–  Value types and specialised generics 
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Project Amber: Pattern Matching 
§  JEP 305: Pattern matching 

– Type test and switch statement support to start 
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String	formatted;	
switch	(obj)	{	
				case	Integer	i:	formatted	=	String.format("int	%d",	i);	break;	
				case	Byte	b:				formatted	=	String.format("byte	%d",	b);	break;	
				case	Long	l:				formatted	=	String.format("long	%d",	l);	break;	
				case	Double	d:		formatted	=	String.format(“double	%f",	d);	break;	
				case	String	s:		formatted	=	String.format("String	%s",	s);	break	
				default:								formatted	=	obj.toString();	
}	
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Project Valhalla 
§  Java has: 

– Primitives: for performance 
– Objects: for encapsulation, polymorphism, inheritance, OO 

§  Problem is where we want to use primitives but can't 
– ArrayList<int> won't work 
– ArrayList<Integer> requires boxing and unboxing, 

object creation, heap overhead, indirection reference 
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Project Valhalla 
§  Value types 
§  "Codes like a class, works like a primitive" 

– Can have methods and fields 
– Can implement interfaces 
– Can use encapsulation 
– Can be generic 
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Project Loom 
§  Further work on making concurrent programming simpler 
§  Threads are too heavyweight 

– Too much interaction with operating system 
§  Loom will introduce fibres 

–  JVM level threads (remember green threads?) 
– Add continuations to the JVM 
– Use the ForkJoinPool scheduler 
– Much lighter weight than threads 

§ Less memory 
§ Close to zero overhead for task switching 
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Project Metropolis 
§  Run Java on Java 

– Rewrite most of the JVM in Java 
§  Use the Graal compiler project as significant input 
§  Easier ports to new platforms 

– Less native code to modify and compile 
§  Faster new features on front-end 

– Easier to write Java than C++ 
§  Performance is an issue to be explored and resolved 

– AOT compiler in JDK 9 is the start of this 
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Azul's Zulu Java 
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Zulu Java 
§  Azul’s binary distribution of OpenJDK 

– Passes all TCK tests 
– Multi-platform (Windows, Linux, Mac) 

§  JDK 6, 7, 8 and 9 available 
§  Wider platform support: 

– Intel 32-bit Windows and Linux 
– ARM 32 and 64-bit 
– PowerPC 

 

40 

www.zulu.org/download 
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Azul Support Timeline 
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Summary 
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Java Continues Moving Forward 
§  JDK 9 is out 

– But not an LTS 
– JPMS may require changes to existing applications 

§  Faster Java releases 
– Feature release every 6 months, LTS every 3 years 
– Support is a major consideration 

§  Lots of ideas to improve Java 
– Value types, better JNI, better type inference 
– Many smaller things 
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Thank you! 

Simon Ritter 
Deputy CTO, Azul Systems 
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