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Where Are Your Files?
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Where’s your data?
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Distributed Storage

• Scales
• Cost-effective: can even 

be made up of many 
cheap, low-reliability
storage nodes

• Provides reliability via 
redundancy

Google’s 1st server
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Failures Happen

• Nodes (storage/compute) crash
– Sometimes recover

• Processes are unresponsive (asynchronous)
– E.g., due to GC stalls

• Networks delay/drop messages (async., lossy)
– Buffer overflows, config errors, bad NICs

• Networks go down for periods 
– Routing loops, router failures, net maintenance
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Anecdotal Evidence

• Microsoft: 40.8 link failures/day
– 5 min to one week long
– Path redundancy reduces loss by 43%

• Google: in cluster’s 1st year
– 5 racks see 50% packet loss
– 8 net maintenance/year, 30 min loss in 4
– 3 router failures/year

• Companies report partition post-mortems
– Netflix, Github, AWS, ….
– Resulted in split brain
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Asynchrony

• Unresponsive node indistinguishable from 
crashed one
– Timeout without making sure it’s dead

• Delays indistinguishable from drops
• Perfect failure detection impossible

– “false suspicions” inevitable
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Fault-Tolerant Distributed Storage 
Model

n servers

f can fail (crash)

∞ clients (all can fail)

asynchronous
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Fault-Tolerance 101

• Replication
– Multiple copies (e.g., 3) of each data item
– Copies on distinct storage nodes

• Disaster recovery
– Copies geographically dispersed
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Emulating Shared Memory

• Can we provide the illusion of reliable atomic 
shared-memory in a message-passing system?

• In an asynchronous system?
• Where clients and servers can fail?
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Shared Memory Emulation

Reliable emulation
Object’s API

n servers

f < n can 
crash

Clients (processes)
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Simple Read/Write Emulation

Reliable register emulation
Read/Write

n servers

f < n can 
crash

Clients (processes)
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Register

• Holds a value
• Can be read
• Can be written
• Interface: 

– int read();              // returns last written value
– void write(int v); // returns ack
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Atomic (Linearizable) Register

• Each API call should –
– “Take effect”

• Effect defined by the sequential specification

– Instantaneously
• Take 0 time 

– Between its invocation and response 
• Real-time order
• A pending call (invocation and no response) can either 

occur after its invocation or not at all

Reliable Distributed Storage, Idit Keidar 14



15

Example 1

time

write(0)

write(1)

time

read(0)write(1)

linearizable
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Example 2

time

read(1)write(0)

write(1)

time

read(0)write(1)
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Example 2

time

read(1)write(0)

write(1)

time

read(0)

write(1) happened 
after write(0)

not linearizable



Liveness: Wait-Freedom

• Wait-free
– Every operation by a correct process p eventually 

completes 
– In a finite number of p’s steps
– Regardless of steps taken/not taken by other 

processes
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Emulating A Register

• Can we emulate a wait-free atomic shared 
register?

• In an asynchronous system?
• Where clients and servers can fail?
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Take I: Failure-Free Case

(No server failures)
• Each server keeps a local copy of the register
• Let’s try state machine replication
• Using atomic broadcast:

– broadcast(m)
– deliver(m)
– Messages are delivered in the same order at all 

servers
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Emulation with Atomic Broadcast 
(Failure-Free)

• Upon client request (read/write)
– Broadcast the request

• Upon deliver write request 
– Write to local copy of register
– If from local client, return ack to client

• Upon deliver read request
– If from local client, return local register value to 

client
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What If Processes Can Crash? 

• Does the same solution work?

• FLP says: no consensus/state machine 
replication
– In asynchronous network
– With crash failures
– But consensus with eventual synchrony/failure 

detectors possible (Paxos, ZooKeeper, Raft)

Reliable Distributed Storage, Idit Keidar 22



Take II: 1-Reader 1-Writer (SRSW)

• Single-reader – there is only one process that 
can read from the register

• Single-writer – there is only one process that 
can write to the register

• The reader and writer are just 2 processes
– The other n-2 processes are there to help

For simplicity, we eliminate the distinction 
between clients and servers for now
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Trivial Solution?

• Writer simply sends message to reader 
– When does it return ack?
– What about failures?

• We want a wait-free solution: 
– If the reader (writer) fails, the writer (reader) 

should be able to continue writing (reading)
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ABD: Fault-Tolerant Emulation
[Attiya, Bar-Noy, Dolev 95]

• Assumes up to f<n/2 processes can fail
• Main ideas: 

– Store value at majority of processes before write
completes

– read from majority
– read intersects write, hence sees latest value
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Example: Reliable Storage Emulation

Can’t wait 
forever

f can fail
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Example: Reliable Storage Emulation

Write to n-f, 
i.e., majority
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Example: Reliable Storage Emulation
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Example: Reliable Storage Emulation

Read from n-f, 
i.e., majority
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Example: Reliable Storage Emulation

Every two majorities intersect 
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Example: Reliable Storage Emulation

Write to majority
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Example: Reliable Storage Emulation

Read from majority
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Example: Reliable Storage Emulation

1 1 2 2 2

Use timestamps
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Example: Reliable Storage Emulation

1 1 2 2 2

Return value with 
biggest timestamp
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SRSW Algorithm: Variables

• At each process:
– x, a copy of the register
– t, initially 0,  unique tag associated with latest 

write
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SRSW Algorithm: Write

• write(x,v)
– choose tag > t
– set x ← v; t ← tag
– send (“write”, v, t) to all 

• Upon receive (“write”, v, tag) 
– if (tag > t) then set x ← v; t ← tag fi
– send (“ack”, v, tag) to writer

• When writer receives (“ack”, v, t) from majority 
(counting an ack from itself too)
– return ack to client 

Reliable Distributed Storage, Idit Keidar 36



SRSW Algorithm: Read

• read(x,v)
– send (“read”) to all

• Upon receive (“read”) 
– send (“read-ack”, x, t) to reader

• When reader receives (“read-ack”, v, tag) from 
majority (including local values of x and t)
– choose value v associated with largest tag
– store these values in x,t
– return x
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Does This Work?

• Only possible overlap is between read and write
– why?

• When a read does not overlap any write –
– It reads at least one copy that was written by the latest 

write (why?)
– This copy has the highest tag (why?)

• What is the linearization order when there is overlap 
between read and write?

• What if 2 reads overlap the same write?
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Example

time

read(1) read(?)

write(1)

time
write(1) already 

happened

finds a copy that 
was written

does not find a 
written copy
but local copy 

written by read
linearizable
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Wait-Freedom

• Only waiting is for majority of responses
• There is a correct majority
• All correct processes respond to all requests

– Respond even if the tag is smaller
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Take III: n-Reader 1-Writer (MRSW)

• n-reader – all the processes can read
• Does the previous solution work?
• What if 2 reads by different processes overlap 

the same write?
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Example

time

read(1)

read(?)

write(1)

time
write(1) already 

happened

finds a copy that 
was written

does not find a 
written copy,

returns 0not linearizable
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MRSW Algorithm 
Extending the Read

• When reader receives (“read-ack”, v, tag) from majority 
– choose value v associated with largest tag
– store these values in x,t
– send (“propagate”, x, t) to all (except writer)

• Upon receive (“propagate”, v, tag) from process i
– if (tag > t) then set x ← v; t ← tag fi
– send (“prop-ack”, x, t) to process i

• When reader receives (“prop-ack”, v, tag) from majority 
(including itself)
– return x
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The Complete Read

S1S1 S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

S1

(“read”) (“read-ack”,v, t)

Phase 1: Read Phase 2 : Write-Back
Multi-reader only

read() return

(“propagate”, v, t)
(“prop-ack”)
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Take IV: n-Reader n-Writer (MRMW)

• n-writer – all the processes can write to the 
register

• Does the previous solution work?
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Playing Tag

• What if two writers use the same tag for 
writing different values?

• Need to ensure unique tags
– That’s easy: break ties, e.g., by process id

• What if a later write uses a smaller tag than an 
earlier one?
– Must be prevented (why?)
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MRMW Algorithm 
Extending the Write

• To perform write(x,v)
– send (“query”) to all

• Upon receive (“query”)  from i
– send (“query-ack”, t) to i

• When writer receives (“query-ack”, tag) from 
majority (counting its own tag)
– choose unique tag > all received tags
– continue as in 1-writer algorithm

• What if another writer chooses a higher tag before 
write completes?
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The Complete Write

S1S1 S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

S1

(“query”) (“query-ack”, t)

Phase 1: Read
Multi-writer only

Phase 2: Write

write(v) ack

(“write”, v, t) (“ack”)
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Can We Emulate Every Atomic Object 
the Same Way?

• We only emulated a read/write object
• Think of a general object type, with some data 

members and some methods
– Queue, stack, counter, … 

• Can we support it the same way?
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R/W Registers vs. Consensus

• ABD works even if the system is completely 
asynchronous

• In consensus (e.g., Paxos), there is no progress 
when there are multiple leaders

• Here, there is always progress – multiple 
writers can write concurrently
– One will prevail (which?)



Disk Paxos
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Consensus in Shared Memory

• A shared object supporting a method 
decidei(vi) returning a value di

• Satisfying:
– Agreement: for all i and j di=dj

– Validity: di=vj for some j 
– Termination: decide returns
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Solving Consensus in/with
Shared Memory

• Assume asynchronous shared memory system 
with atomic R/W registers

• Can we solve consensus?
– Consensus is not solvable if even one process can 

fail (shared-memory version of [FLP])
– Yes, if no process can fail
– Yes, with eventual synchrony or failure detectors
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Shared Memory (SM) Paxos

• Consensus 
– In asynchronous shared memory 
– Using wait-free regular R/W registers

• As emulated by ABD
– And leader-election failure detector W

• Wait-free 
– Any number of processes may fail (t < n)

• Unlike message-passing model



Leader Election Failure Detector

• W – Leader  
– Outputs one trusted process
– Stable from some point on: 

All correct procs. trust the same correct proc.

• Is the weakest for consensus
[Chandra, Hadzilacos, Toueg 96]
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Regular Registers

• SM Paxos can use registers that provide 
weaker semantics than atomicity

• SWMR regular register: a read returns
– Either a value written by an overlapping write 

or 
– The register’s value before the first write that 

overlaps the read
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write(0)

Regular versus Atomic 

time

read(1)

read(0)

write(1)

time
write(1) already 

happened

Regular can
return 0 not linearizable
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Variables

• Paxos variables are:
– BallotNum, AcceptVal, AcceptNum

• SM version uses shared regular registers:
– xi = á bal, val, num, decision ñi for each process i
– Initially á á0,0ñ, ^, á0,0ñ, ^ ñ
– Writeable by i, readable by all (SWMR) 

• Each process  keeps local variables b, v, n
– Initially á á0,0ñ, ^ , á0,0ñ ñ
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SM Paxos: Phase I  

if leader (by W) then
b ¬ choose new unique ballot
write á b, v, n, ^ ñ to xi
read all xj’s

if some xj.bal > b then start over
if all read xj.val’s = ^ then 

v ¬ initial value
else v¬ read val with highest num

Write is like 
sending to all

Read instead of 
waiting for acks

No ack: 
someone 

moved on!

Only b changed 
in this phase



Phase I Summary

• Classical Paxos: 
– Leader chooses new 

ballot, sends to all
– Others ack if they did 

not move on to a later 
ballot

– If no majority, try again
– Otherwise, move to 

Phase 2

• SM Paxos:
– Leader chooses new 

ballot, writes its variable
– Leader reads to check if 

anyone moved on to a 
later ballot

– If any one moved on, try 
again

– Otherwise, move to 
Phase 2
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SM Paxos: Phase II
Leader Cont’d

n ¬ b
write áb,v,n ,^ñ to xi

read all xj’s
if some xi.bal > b then start over

write áb,v,n,vñ to xi
return v

Read to see if 
all would have 
accepted this 

proposal

When don’t they?

Like sending 
“accept” to all

v,n changed in 
this phase

Decide
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Why Read Twice?

readwrite(b) write read

readwrite(b’>b)

write(b’) did not 
complete

writeread

read does not see b’

decides

doesn’t 
decide
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Adding The Non-Leader Code

while (true)
if leader (by W) then

[ leader code from previous slides ]
else

read xld ,were ld is leader
if xld.decision ≠ ^ then

return xld.decision

start over means 
go here
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Liveness

• The shared memory is reliable
• The non-leaders don’t write

– They don’t even need to be “around”

• The leader only fails if there is contention
– Another leader competes with it
– By W, eventually only one leader will compete
– In shared memory systems, W is called a contention 

manager
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Validity

• By induction
• Leader always proposes its own value or one 

previously proposed by an earlier leader
– Regular registers suffice
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Agreement “By Example”

readwrite(b) write(v) read write decision

no write(b’) for 
b’>b completed

write(b’>b) read

read does not see 
any b’>b

write

read sees b,v writes v
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Agreement Proof Idea

• Look at lowest ballot, b,  in which some process 
decides v

• By uniqueness of b, no v’≠ v is decided with b
• Prove by induction that every decision with b’>b is  v
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Termination

• When one correct leader exists
– It eventually chooses a higher b than all those 

written before
– No other process writes a higher ballot
– So it does not start over, and hence decides

• Any number of processes can fail
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Optimization

• The first write (of b) does not write consensus 
values

• A leader running multiple consensus instances 
can perform the first write once and for all 
and then perform only the second write for 
each consensus instance
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Leases

• We need eventually accurate leader (W)
– But what does this mean in shared memory?

• We would like to have mutual exclusion
– Not fault-tolerant!

• Lease: fault-tolerant, time-based mutual 
exclusion
– Live but not safe in eventual synchrony model



71

Using Leases

• A client that has something to write tries to 
obtain the lease 
– Lease holder = leader
– May fail…

• Example implementation:
– Upon failure, backoff period

• Leases have limited duration, expire
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Lock versus Lease

Lock Lease

D Blocking
• Using locks is not wait-
free
• If lock holder fails, 
we’re in trouble

C Non-blocking
• Expires regardless 
whether holder fails

C Always safe
• Never two lock-holders

DUnsafe
• Two lease-holders 
possible due to 
asynchrony
• OK for algorithms like 
Paxos
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Disk Paxos

• Consensus using n ³ 2t+1 fault-prone disks
– Disks can incur crash failures

• Solution combines:
– m-process shared memory Paxos and
– ABD-like emulation of shared registers from fault-

prone ones
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Disk Paxos Data Structures
m

 p
ro

ce
ss

es

n disks
(storage nodes)

1

2
3

4

5

áb,v,n,dñ

1 2 3

Process i can write block[i][j] in each disk j, 
can read all blocks

x2
áb,v,n,dñ áb,v,n,dñ
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Read Emulation

• In order to read xi
– Issue read block[i][j] for each disk j
– Wait for majority of disks to respond
– Choose block with largest b,n

• Is this enough?
• How did ABD’s read emulation work?
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does not find a 
written copy,

returns 0

write(0)

One Read Round Enough for Regular 

time

read(1)

read(0)

write(1)

time

returning 0 is OK 
for regularfinds a copy that 

was written
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Write Emulation

• In order to write xi
– Issue write block[i][j], for each disk j
– Wait for majority of disks to respond

• Is this enough?



Summary

• ABD: Emulate reliable shared memory 
– In asynchronous system
– Using fault-prone storage nodes (minority)

• SM Paxos: Solve consensus 
– In asynchronous reliable shared memory
– Using leader-election failure detector
– Tolerate any number of client failures

• Disk Paxos: Combine the two
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Additional Challenges 
& New Results

Reconfiguration
Codes to Mitigate Storage Blow Up
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Reconfiguration

• Limited availability: always need C, D, and E
• After removing A, B, need two of {C,D,E} 

A B C D E
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The Challenge

A B C D
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The Challenge

A B C D E

Add ERemove D

Majority of 
{A,B,C,D,E}

Majority of 
{A,B,C}

Split Brain!
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Dynamic Reconfiguration: 
Abstraction and Optimal 
Asynchronous Solution

A. Spiegelman, I. Keidar, and D. 
Malkhi, DISC 2017
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Dynamic Reliable Objects

84

Reliable emulation
Object’s API Extend 

API with 
reconfig

operation

ChangeConfig(-S1,+S4)

s1s3 s2s4



What Now?

85

Reliable emulation
Object’s API

ChangeConfig(-S1,+S4)
When can I shut S1 
down?

s1s3 s2s4



Contributions

• Clean model for dynamic objects

– API,  failure condition, complexity metrics

• General abstraction for reconfiguration

• Optimal asynchronous register emulation 

– see paper
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Storage Blow Up
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k-of-n Erasure Codes

decode

nD

k

encode
!D k
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Why Codes? 

To tolerate one failure
• With replication

• With erasure codes

Reliable Distributed Storage, Idit Keidar 89



Reliable Storage Example

• 𝐧 = 𝟐𝐟 + 𝐤

n = 4

f = 1

decode k = 2
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Write
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Write Generate
timestamp

encode
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Write Generate
timestamp

encode
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Write

Can’t wait forever
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Write

Wait for n-f
replies
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Read
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Read
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Read

Wait for n-f
replies
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Read

decode
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What About Concurrency?
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Write
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Write
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Write

Overwrite?
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Write

Overwrite?
Suppose yes, if 
timestamp is 

bigger
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Write
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Write Read
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Write Read
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Write Read

No written value 
can be restored!
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Write Read

Forever!
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What About Replication?
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Write Read

No problem!
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Write Read

No problem!

Reliable Distributed Storage, Idit Keidar 115



Back to Coding …
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Overwrite?
No!
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Overwrite
Green?
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Overwrite 
Yellow?
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Suppose 
yes
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Read

cannot be 
restored!
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What can be 
overwritten?

Nothing!
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Distributed Storage: Space Bounds

• Spiegelman et al. PODC 2016: W(D×min(f,c)) 
– Lock-free multi-writer
– f failures, 
– c concurrent writes
– Value size D

• Berger et al. DISC 2018: W(k×min(2D,R))
– k-out-of-n coding
– R visible readers; R infinite with invisible readers
– Value size  
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