
Distributed Storage
Fundamentals

Idit Keidar, Technion

Reliable Distributed Storage, Idit Keidar 1



Where Are Your Files?

Reliable Distributed Storage, Idit Keidar 2



Where’s your data?

Reliable Distributed Storage, Idit Keidar 3



Distributed Storage

• Scales
• Cost-effective: can even 

be made up of many 
cheap, low-reliability
storage nodes

• Provides reliability via 
redundancy

Google’s 1st server

Reliable Distributed Storage, Idit Keidar 4



Failures Happen

• Nodes (storage/compute) crash
– Sometimes recover

• Processes are unresponsive (asynchronous)
– E.g., due to GC stalls

• Networks delay/drop messages (async., lossy)
– Buffer overflows, config errors, bad NICs

• Networks go down for periods 
– Routing loops, router failures, net maintenance

Reliable Distributed Storage, Idit Keidar 5



Anecdotal Evidence

• Microsoft: 40.8 link failures/day
– 5 min to one week long
– Path redundancy reduces loss by 43%

• Google: in cluster’s 1st year
– 5 racks see 50% packet loss
– 8 net maintenance/year, 30 min loss in 4
– 3 router failures/year

• Companies report partition post-mortems
– Netflix, Github, AWS, ….
– Resulted in split brain

Reliable Distributed Storage, Idit Keidar 6



Asynchrony

• Unresponsive node indistinguishable from 
crashed one
– Timeout without making sure it’s dead

• Delays indistinguishable from drops
• Perfect failure detection impossible

– “false suspicions” inevitable

Reliable Distributed Storage, Idit Keidar 7



Fault-Tolerant Distributed Storage 
Model

n servers

f can fail (crash)

∞ clients (all can fail)

asynchronous

Reliable Distributed Storage, Idit Keidar 8



Fault-Tolerance 101

• Replication
– Multiple copies (e.g., 3) of each data item
– Copies on distinct storage nodes

• Disaster recovery
– Copies geographically dispersed

Reliable Distributed Storage, Idit Keidar 9



Emulating Shared Memory

• Can we provide the illusion of reliable atomic 
shared-memory in a message-passing system?

• In an asynchronous system?
• Where clients and servers can fail?

Reliable Distributed Storage, Idit Keidar 10



Shared Memory Emulation

Reliable emulation
Object’s API

n servers

f < n can 
crash

Clients (processes)

Reliable Distributed Storage, Idit Keidar

11



Simple Read/Write Emulation

Reliable register emulation
Read/Write

n servers

f < n can 
crash

Clients (processes)

Reliable Distributed Storage, Idit Keidar 12



Register

• Holds a value
• Can be read
• Can be written
• Interface: 

– int read();              // returns last written value
– void write(int v); // returns ack

Reliable Distributed Storage, Idit Keidar 13



Atomic (Linearizable) Register

• Each API call should –
– “Take effect”

• Effect defined by the sequential specification

– Instantaneously
• Take 0 time 

– Between its invocation and response 
• Real-time order
• A pending call (invocation and no response) can either 

occur after its invocation or not at all

Reliable Distributed Storage, Idit Keidar 14



15

Example 1

time

write(0)

write(1)

time

read(0)write(1)

linearizable



16

Example 2

time

read(1)write(0)

write(1)

time

read(0)write(1)



17

Example 2

time

read(1)write(0)

write(1)

time

read(0)

write(1) happened 
after write(0)

not linearizable



Liveness: Wait-Freedom

• Wait-free
– Every operation by a correct process p eventually 

completes 
– In a finite number of p’s steps
– Regardless of steps taken/not taken by other 

processes

Reliable Distributed Storage, Idit Keidar 18



Emulating A Register

• Can we emulate a wait-free atomic shared 
register?

• In an asynchronous system?
• Where clients and servers can fail?

Reliable Distributed Storage, Idit Keidar 19



Take I: Failure-Free Case

(No server failures)
• Each server keeps a local copy of the register
• Let’s try state machine replication
• Using atomic broadcast:

– broadcast(m)
– deliver(m)
– Messages are delivered in the same order at all 

servers

Reliable Distributed Storage, Idit Keidar 20



Emulation with Atomic Broadcast 
(Failure-Free)

• Upon client request (read/write)
– Broadcast the request

• Upon deliver write request 
– Write to local copy of register
– If from local client, return ack to client

• Upon deliver read request
– If from local client, return local register value to 

client

Reliable Distributed Storage, Idit Keidar 21

linearizable



What If Processes Can Crash? 

• Does the same solution work?

• FLP says: no consensus/state machine 
replication
– In asynchronous network
– With crash failures
– But consensus with eventual synchrony/failure 

detectors possible (Paxos, ZooKeeper, Raft)

Reliable Distributed Storage, Idit Keidar 22



Take II: 1-Reader 1-Writer (SRSW)

• Single-reader – there is only one process that 
can read from the register

• Single-writer – there is only one process that 
can write to the register

• The reader and writer are just 2 processes
– The other n-2 processes are there to help

For simplicity, we eliminate the distinction 
between clients and servers for now

Reliable Distributed Storage, Idit Keidar 23



Trivial Solution?

• Writer simply sends message to reader 
– When does it return ack?
– What about failures?

• We want a wait-free solution: 
– If the reader (writer) fails, the writer (reader) 

should be able to continue writing (reading)

Reliable Distributed Storage, Idit Keidar 24



ABD: Fault-Tolerant Emulation
[Attiya, Bar-Noy, Dolev 95]

• Assumes up to f<n/2 processes can fail
• Main ideas: 

– Store value at majority of processes before write
completes

– read from majority
– read intersects write, hence sees latest value

Reliable Distributed Storage, Idit Keidar 25



Example: Reliable Storage Emulation

Can’t wait 
forever

f can fail

Reliable Distributed Storage, Idit Keidar 26



Example: Reliable Storage Emulation

Write to n-f, 
i.e., majority

Reliable Distributed Storage, Idit Keidar 27



Example: Reliable Storage Emulation

Reliable Distributed Storage, Idit Keidar 28



Example: Reliable Storage Emulation

Read from n-f, 
i.e., majority

Reliable Distributed Storage, Idit Keidar 29



Example: Reliable Storage Emulation

Every two majorities intersect 
Reliable Distributed Storage, Idit Keidar 30



Example: Reliable Storage Emulation

Write to majority

Reliable Distributed Storage, Idit Keidar 31



Example: Reliable Storage Emulation

Read from majority

Reliable Distributed Storage, Idit Keidar 32

?



Example: Reliable Storage Emulation

1 1 2 2 2

Use timestamps

Reliable Distributed Storage, Idit Keidar 33



Example: Reliable Storage Emulation

1 1 2 2 2

Return value with 
biggest timestamp

Reliable Distributed Storage, Idit Keidar 34



SRSW Algorithm: Variables

• At each process:
– x, a copy of the register
– t, initially 0,  unique tag associated with latest 

write

Reliable Distributed Storage, Idit Keidar 35



SRSW Algorithm: Write

• write(x,v)
– choose tag > t
– set x ← v; t ← tag
– send (“write”, v, t) to all 

• Upon receive (“write”, v, tag) 
– if (tag > t) then set x ← v; t ← tag fi
– send (“ack”, v, tag) to writer

• When writer receives (“ack”, v, t) from majority 
(counting an ack from itself too)
– return ack to client 

Reliable Distributed Storage, Idit Keidar 36



SRSW Algorithm: Read

• read(x,v)
– send (“read”) to all

• Upon receive (“read”) 
– send (“read-ack”, x, t) to reader

• When reader receives (“read-ack”, v, tag) from 
majority (including local values of x and t)
– choose value v associated with largest tag
– store these values in x,t
– return x

Reliable Distributed Storage, Idit Keidar 37



Does This Work?

• Only possible overlap is between read and write
– why?

• When a read does not overlap any write –
– It reads at least one copy that was written by the latest 

write (why?)
– This copy has the highest tag (why?)

• What is the linearization order when there is overlap 
between read and write?

• What if 2 reads overlap the same write?

Reliable Distributed Storage, Idit Keidar 38



39

Example

time

read(1) read(?)

write(1)

time
write(1) already 

happened

finds a copy that 
was written

does not find a 
written copy
but local copy 

written by read
linearizable



40

Wait-Freedom

• Only waiting is for majority of responses
• There is a correct majority
• All correct processes respond to all requests

– Respond even if the tag is smaller



41

Take III: n-Reader 1-Writer (MRSW)

• n-reader – all the processes can read
• Does the previous solution work?
• What if 2 reads by different processes overlap 

the same write?



42

Example

time

read(1)

read(?)

write(1)

time
write(1) already 

happened

finds a copy that 
was written

does not find a 
written copy,

returns 0not linearizable



43

MRSW Algorithm 
Extending the Read

• When reader receives (“read-ack”, v, tag) from majority 
– choose value v associated with largest tag
– store these values in x,t
– send (“propagate”, x, t) to all (except writer)

• Upon receive (“propagate”, v, tag) from process i
– if (tag > t) then set x ← v; t ← tag fi
– send (“prop-ack”, x, t) to process i

• When reader receives (“prop-ack”, v, tag) from majority 
(including itself)
– return x



44

The Complete Read

S1S1 S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

S1

(“read”) (“read-ack”,v, t)

Phase 1: Read Phase 2 : Write-Back
Multi-reader only

read() return

(“propagate”, v, t)
(“prop-ack”)



45

Take IV: n-Reader n-Writer (MRMW)

• n-writer – all the processes can write to the 
register

• Does the previous solution work?



46

Playing Tag

• What if two writers use the same tag for 
writing different values?

• Need to ensure unique tags
– That’s easy: break ties, e.g., by process id

• What if a later write uses a smaller tag than an 
earlier one?
– Must be prevented (why?)



47

MRMW Algorithm 
Extending the Write

• To perform write(x,v)
– send (“query”) to all

• Upon receive (“query”)  from i
– send (“query-ack”, t) to i

• When writer receives (“query-ack”, tag) from 
majority (counting its own tag)
– choose unique tag > all received tags
– continue as in 1-writer algorithm

• What if another writer chooses a higher tag before 
write completes?



48

The Complete Write

S1S1 S1

S2

Sn

.

.

.

S1

S2

Sn

.

.

.

S1

(“query”) (“query-ack”, t)

Phase 1: Read
Multi-writer only

Phase 2: Write

write(v) ack

(“write”, v, t) (“ack”)



49

Can We Emulate Every Atomic Object 
the Same Way?

• We only emulated a read/write object
• Think of a general object type, with some data 

members and some methods
– Queue, stack, counter, … 

• Can we support it the same way?



50

R/W Registers vs. Consensus

• ABD works even if the system is completely 
asynchronous

• In consensus (e.g., Paxos), there is no progress 
when there are multiple leaders

• Here, there is always progress – multiple 
writers can write concurrently
– One will prevail (which?)



Disk Paxos

Reliable Distributed Storage, Idit Keidar 51



52

Consensus in Shared Memory

• A shared object supporting a method 
decidei(vi) returning a value di

• Satisfying:
– Agreement: for all i and j di=dj

– Validity: di=vj for some j 
– Termination: decide returns



53

Solving Consensus in/with
Shared Memory

• Assume asynchronous shared memory system 
with atomic R/W registers

• Can we solve consensus?
– Consensus is not solvable if even one process can 

fail (shared-memory version of [FLP])
– Yes, if no process can fail
– Yes, with eventual synchrony or failure detectors



54

Shared Memory (SM) Paxos

• Consensus 
– In asynchronous shared memory 
– Using wait-free regular R/W registers

• As emulated by ABD
– And leader-election failure detector W

• Wait-free 
– Any number of processes may fail (t < n)

• Unlike message-passing model



Leader Election Failure Detector

• W – Leader  
– Outputs one trusted process
– Stable from some point on: 

All correct procs. trust the same correct proc.

• Is the weakest for consensus
[Chandra, Hadzilacos, Toueg 96]

55



56

Regular Registers

• SM Paxos can use registers that provide 
weaker semantics than atomicity

• SWMR regular register: a read returns
– Either a value written by an overlapping write 

or 
– The register’s value before the first write that 

overlaps the read



57

write(0)

Regular versus Atomic 

time

read(1)

read(0)

write(1)

time
write(1) already 

happened

Regular can
return 0 not linearizable



58

Variables

• Paxos variables are:
– BallotNum, AcceptVal, AcceptNum

• SM version uses shared regular registers:
– xi = á bal, val, num, decision ñi for each process i
– Initially á á0,0ñ, ^, á0,0ñ, ^ ñ
– Writeable by i, readable by all (SWMR) 

• Each process  keeps local variables b, v, n
– Initially á á0,0ñ, ^ , á0,0ñ ñ



59

SM Paxos: Phase I  

if leader (by W) then
b ¬ choose new unique ballot
write á b, v, n, ^ ñ to xi
read all xj’s

if some xj.bal > b then start over
if all read xj.val’s = ^ then 

v ¬ initial value
else v¬ read val with highest num

Write is like 
sending to all

Read instead of 
waiting for acks

No ack: 
someone 

moved on!

Only b changed 
in this phase



Phase I Summary

• Classical Paxos: 
– Leader chooses new 

ballot, sends to all
– Others ack if they did 

not move on to a later 
ballot

– If no majority, try again
– Otherwise, move to 

Phase 2

• SM Paxos:
– Leader chooses new 

ballot, writes its variable
– Leader reads to check if 

anyone moved on to a 
later ballot

– If any one moved on, try 
again

– Otherwise, move to 
Phase 2

60



61

SM Paxos: Phase II
Leader Cont’d

n ¬ b
write áb,v,n ,^ñ to xi

read all xj’s
if some xi.bal > b then start over

write áb,v,n,vñ to xi
return v

Read to see if 
all would have 
accepted this 

proposal

When don’t they?

Like sending 
“accept” to all

v,n changed in 
this phase

Decide



62

Why Read Twice?

readwrite(b) write read

readwrite(b’>b)

write(b’) did not 
complete

writeread

read does not see b’

decides

doesn’t 
decide



63

Adding The Non-Leader Code

while (true)
if leader (by W) then

[ leader code from previous slides ]
else

read xld ,were ld is leader
if xld.decision ≠ ^ then

return xld.decision

start over means 
go here



64

Liveness

• The shared memory is reliable
• The non-leaders don’t write

– They don’t even need to be “around”

• The leader only fails if there is contention
– Another leader competes with it
– By W, eventually only one leader will compete
– In shared memory systems, W is called a contention 

manager



65

Validity

• By induction
• Leader always proposes its own value or one 

previously proposed by an earlier leader
– Regular registers suffice



66

Agreement “By Example”

readwrite(b) write(v) read write decision

no write(b’) for 
b’>b completed

write(b’>b) read

read does not see 
any b’>b

write

read sees b,v writes v



67

Agreement Proof Idea

• Look at lowest ballot, b,  in which some process 
decides v

• By uniqueness of b, no v’≠ v is decided with b
• Prove by induction that every decision with b’>b is  v



68

Termination

• When one correct leader exists
– It eventually chooses a higher b than all those 

written before
– No other process writes a higher ballot
– So it does not start over, and hence decides

• Any number of processes can fail



69

Optimization

• The first write (of b) does not write consensus 
values

• A leader running multiple consensus instances 
can perform the first write once and for all 
and then perform only the second write for 
each consensus instance



70

Leases

• We need eventually accurate leader (W)
– But what does this mean in shared memory?

• We would like to have mutual exclusion
– Not fault-tolerant!

• Lease: fault-tolerant, time-based mutual 
exclusion
– Live but not safe in eventual synchrony model



71

Using Leases

• A client that has something to write tries to 
obtain the lease 
– Lease holder = leader
– May fail…

• Example implementation:
– Upon failure, backoff period

• Leases have limited duration, expire



72

Lock versus Lease

Lock Lease

D Blocking
• Using locks is not wait-
free
• If lock holder fails, 
we’re in trouble

C Non-blocking
• Expires regardless 
whether holder fails

C Always safe
• Never two lock-holders

DUnsafe
• Two lease-holders 
possible due to 
asynchrony
• OK for algorithms like 
Paxos



73

Disk Paxos

• Consensus using n ³ 2t+1 fault-prone disks
– Disks can incur crash failures

• Solution combines:
– m-process shared memory Paxos and
– ABD-like emulation of shared registers from fault-

prone ones



74

Disk Paxos Data Structures
m

 p
ro

ce
ss

es

n disks
(storage nodes)

1

2
3

4

5

áb,v,n,dñ

1 2 3

Process i can write block[i][j] in each disk j, 
can read all blocks

x2
áb,v,n,dñ áb,v,n,dñ



75

Read Emulation

• In order to read xi
– Issue read block[i][j] for each disk j
– Wait for majority of disks to respond
– Choose block with largest b,n

• Is this enough?
• How did ABD’s read emulation work?



76

does not find a 
written copy,

returns 0

write(0)

One Read Round Enough for Regular 

time

read(1)

read(0)

write(1)

time

returning 0 is OK 
for regularfinds a copy that 

was written



77

Write Emulation

• In order to write xi
– Issue write block[i][j], for each disk j
– Wait for majority of disks to respond

• Is this enough?



Summary

• ABD: Emulate reliable shared memory 
– In asynchronous system
– Using fault-prone storage nodes (minority)

• SM Paxos: Solve consensus 
– In asynchronous reliable shared memory
– Using leader-election failure detector
– Tolerate any number of client failures

• Disk Paxos: Combine the two

Reliable Distributed Storage, Idit Keidar 78



Additional Challenges 
& New Results

Reconfiguration
Codes to Mitigate Storage Blow Up

Reliable Distributed Storage, Idit Keidar 79



Reconfiguration

• Limited availability: always need C, D, and E
• After removing A, B, need two of {C,D,E} 

A B C D E

Reliable Distributed Storage, Idit Keidar 80



The Challenge

A B C D

Reliable Distributed Storage, Idit Keidar 81



The Challenge

A B C D E

Add ERemove D

Majority of 
{A,B,C,D,E}

Majority of 
{A,B,C}

Split Brain!

Reliable Distributed Storage, Idit Keidar 82



Dynamic Reconfiguration: 
Abstraction and Optimal 
Asynchronous Solution

A. Spiegelman, I. Keidar, and D. 
Malkhi, DISC 2017

Reliable Distributed Storage, Idit Keidar 83



Dynamic Reliable Objects

84

Reliable emulation
Object’s API Extend 

API with 
reconfig

operation

ChangeConfig(-S1,+S4)

s1s3 s2s4



What Now?

85

Reliable emulation
Object’s API

ChangeConfig(-S1,+S4)
When can I shut S1 
down?

s1s3 s2s4



Contributions

• Clean model for dynamic objects

– API,  failure condition, complexity metrics

• General abstraction for reconfiguration

• Optimal asynchronous register emulation 

– see paper

86



Storage Blow Up

Reliable Distributed Storage, Idit Keidar 87



k-of-n Erasure Codes

decode

nD

k

encode
!D k

Reliable Distributed Storage, Idit Keidar 88



Why Codes? 

To tolerate one failure
• With replication

• With erasure codes

Reliable Distributed Storage, Idit Keidar 89



Reliable Storage Example

• 𝐧 = 𝟐𝐟 + 𝐤

n = 4

f = 1

decode k = 2

Reliable Distributed Storage, Idit Keidar 90



Write

Reliable Distributed Storage, Idit Keidar 91



Write Generate
timestamp

encode

Reliable Distributed Storage, Idit Keidar 94



Write Generate
timestamp

encode

Reliable Distributed Storage, Idit Keidar 95



Write

Can’t wait forever

Reliable Distributed Storage, Idit Keidar 96



Write

Wait for n-f
replies

Reliable Distributed Storage, Idit Keidar 97



Read

Reliable Distributed Storage, Idit Keidar 98



Read

Reliable Distributed Storage, Idit Keidar 99



Read

Wait for n-f
replies

Reliable Distributed Storage, Idit Keidar 100



Read

decode

Reliable Distributed Storage, Idit Keidar 101



What About Concurrency?

Reliable Distributed Storage, Idit Keidar 102



Write

Reliable Distributed Storage, Idit Keidar 103



Write

Reliable Distributed Storage, Idit Keidar 104



Write

Overwrite?

Reliable Distributed Storage, Idit Keidar 106



Write

Overwrite?
Suppose yes, if 
timestamp is 

bigger

Reliable Distributed Storage, Idit Keidar 107



Write

Reliable Distributed Storage, Idit Keidar 108



Write Read

Reliable Distributed Storage, Idit Keidar 109



Write Read

Reliable Distributed Storage, Idit Keidar 110



Write Read

No written value 
can be restored!

Reliable Distributed Storage, Idit Keidar 111



Write Read

Forever!

Reliable Distributed Storage, Idit Keidar 112



What About Replication?

Reliable Distributed Storage, Idit Keidar 113



Write Read

No problem!

Reliable Distributed Storage, Idit Keidar 114



Write Read

No problem!

Reliable Distributed Storage, Idit Keidar 115



Back to Coding …

Reliable Distributed Storage, Idit Keidar 116



Reliable Distributed Storage, Idit Keidar 117



Overwrite?
No!

Reliable Distributed Storage, Idit Keidar 119



Reliable Distributed Storage, Idit Keidar 120



Reliable Distributed Storage, Idit Keidar 121



Overwrite
Green?

Reliable Distributed Storage, Idit Keidar 122



Overwrite 
Yellow?

Reliable Distributed Storage, Idit Keidar 123



Suppose 
yes

Reliable Distributed Storage, Idit Keidar 124



Reliable Distributed Storage, Idit Keidar 125



Reliable Distributed Storage, Idit Keidar 126



Reliable Distributed Storage, Idit Keidar 127



Reliable Distributed Storage, Idit Keidar 128



Reliable Distributed Storage, Idit Keidar 129



Read

cannot be 
restored!

Reliable Distributed Storage, Idit Keidar 130



What can be 
overwritten?

Nothing!

Reliable Distributed Storage, Idit Keidar 131



Reliable Distributed Storage, Idit Keidar 132



Reliable Distributed Storage, Idit Keidar 133



Reliable Distributed Storage, Idit Keidar 134



Distributed Storage: Space Bounds

• Spiegelman et al. PODC 2016: W(D×min(f,c)) 
– Lock-free multi-writer
– f failures, 
– c concurrent writes
– Value size D

• Berger et al. DISC 2018: W(k×min(2D,R))
– k-out-of-n coding
– R visible readers; R infinite with invisible readers
– Value size  

Reliable Distributed Storage, Idit Keidar 135


