
inesc-id.pt

Rodrigo Rodrigues
Instituto Superior Técnico (ULisboa) and INESC-ID

Lecture at SPTDC 2020
July 9, 2020

From crash to Byzantine fault
tolerance (and back, to
secure TEE storage)

PART 1 – CRASH AND BYZANTINE FAULT MODELS

27-Jun-19 Subject or Title2 |

Motivation: tolerating faults

• Suppose you manage a data center with 75,000 machines, 4 disks per machine
• According to recent studies, 3% of disks in data centers require replacement in a

given year
• How often do disks suffer such permanent faults?
– Once per week?
– Once per day?
– Once per hour?
– Once per minute?

• 75 000 X 4 = 300 000 disks
• 300 000 X .03 = 9 000 disk faults per year
• 365 days X 24 hours = 8 760 hours per year

• These were just permanent disk faults, need to account for everything else!

27-Jun-19 Subject or Title3

The first published replication protocol

27-Jun-19 Subject or Title4

ICSE’76

• Failure behavior:
– Stop executing protocol steps and sending messages
– Emit wrong outputs

• Timing behavior:
– Upper bound on message transmission and processing time (faults are detectable)
– No such upper bound (can’t distinguish slow vs. faulty participant)

Protocols require:
assumptions, assumptions, assumptions

27-Jun-19 Subject or Title5

Today’s
Lecture

Asynchronous model

• Assumes a crash fault model à nodes fail by silently halting
• Matches many real-world faults à used in most data center systems
• Some other faults can be turned into crash faults (e.g., by halting when exception is caught)

Crash fault tolerance (CFT)

27-Jun-19 Subject or Title6

client

server

ping ping pingpong

time

• The specification describes what the protocol is supposed to do
• Implementation is the protocol logic that should enforce that specification

• Focus on a storage system with read/write operations on a single object
– For object store, create multiple instances of the same protocol

• What are the possible specifications for a system with multiple clients and a read/write interface?

Protocols: specification versus implementation

27-Jun-19 Subject or Title7

Distributed Computing 1, 2 (1986), 77-101.
Also as DEC SRC Research Report 8.

• Lamport’s paper specifies semantics for single-writer, multiple-reader
– Therefore, writes are not concurrent with one another

• Safe semantics
– Reads that are not concurrent with any writes return the most recently written value
– Nothing is required from reads that are concurrent with writes

• Regular semantics
– Reads that are not concurrent with any writes return the most recently written value
– Reads that are concurrent with writes return either the old or the new value

• Atomic semantics (also applies to multiple writers)
– There is a total order of all operations, consistent with real-time order, such that reads return the most

recently written value according to that order

• Simple generalization of safe/regular to multiple writers:
– There is a total order of writes consistent with real-time order, which is used to define “most recent” above

Specifications for a read/write object

27-Jun-19 Subject or Title8

• Read returns 12
• Read’ returns 7

• Safe?

• Regular?

• Atomic?

Examples

27-Jun-19 Subject or Title9 |

client 2

client 1
Write 7

Read Read’

Write 12

time

• Read returns 7
• Read’ returns 7

• Safe?

• Regular?

• Atomic?

Examples

27-Jun-19 Subject or Title10 |

client 2

client 1
Write 7

Read Read’

Write 12

time

• Read returns 12
• Read’ returns

• Safe?

• Regular?

• Atomic?

Examples

27-Jun-19 Subject or Title11 |

client 2

client 1
Write 7

Read Read’

Write 12

time

Crash fault-tolerant (CFT) implementation:
ABD protocol (seen yesterday in Prof. Keidar’s lecture)

27-Jun-19 Subject or Title12 |

client 2

client 1

replica 1

replica 2

replica 3

write(12)

query query-
ack(t=1)

write
(12,t=2)

ack

read

read

read-ack
(7,t=1)

ack

propagate
(12,t=2)

prop
-ack

returnà12

read-ack
(12,t=2)

Quorum intersection in CFT

27-Jun-19 Subject or Title13 |

12 7

Write quorum Read quorum

12
12 2

Byzantine Fault Tolerance (BFT)

27-Jun-19 Subject or Title14 |

• Faulty processes may deviate arbitrarily from the algorithm assigned to it:
– due to both benign/unintentional faults, e.g., bugs
– …as well as malicious faults: attacks, collusions
– …and of course crashing or omitting steps

• Maximum number of Byzantine faults: f

• More expensive to tolerate than crashes:
– larger number of replicas
– cryptographic primitives

Byzantine fault model

27-Jun-19 Subject or Title15 |

• Digital signature
– Creator of message m has <PubKey,PrivKey> pair
– Sign: m à { Hash(m) }PrivKey
– Verify: Decrypt with PubKey corresponding to PrivKey, compare hashes
– Anyone who has access to PubKey can verify that the message was generated by its creator

• MAC (Message Authentication Code)
– Communicating processes i and j share a common secret K
– Create authenticator: m à H(K||m)
• Vulnerable to length extension attack, in practice uses H((K’ xor opad)||H(K’ xor ipad)||m))

– Verify: same as create, compare values

• Unlike MACs, digital signatures are transferable (offer non-repudiation)
• But signatures are computationally much more expensive

Digital signatures vs. authenticators

27-Jun-19 Subject or Title16 |

• In the Byzantine model, we assume channels are authenticated
– e.g., by appendng HMACs to every message that is sent

• Digital signatures will appear explicitly in the protocol description

Authenticated channels

27-Jun-19 Subject or Title17 |

Previous quorums no longer work

27-Jun-19 Subject or Title18 |

? 7

Write quorum Read quorum

12

• Need at least one non-faulty replica in the intersection between any two quorums
• How to achieve this?
• Q à quorum size
• What is size of intersection?
• N – (N – Q) – (N – Q) = 2Q – N
• To ensure that it contains at least one non-faulty replica: 2Q – N > f à Q > (N + f) / 2
• Furthermore, we need to ensure there is always a quorum available despite f unreachable replicas:
• Q <= N – f

• These two equations imply:
• N ≥ 3f + 1
• Or, with minimal replication costs: N=3f+1, Q=2f+1

Deriving Byzantine Quorum Systems
(Called Dissemination Quorum System in the paper)

27-Jun-19 Subject or Title19 |

Byzantine (dissemination) quorum, f=2 à N=7

27-Jun-19 Subject or Title20 |

Write quorum Read quorum

For the same number of replicas (N=7),
what happened if quorums were smaller?
And what if the quorums were larger?

• Processes communicate through authenticated channels

• Protocol should be driven by client, not through a proxy replica
– Client cannot trust a single replica’s reply

• If no other changed are made to the ABD protocol, what is the required quorum / replica group size?
• Is the previous change to quorums sufficient?

ABD Protocol: CFT à BFT

27-Jun-19 Subject or Title21 |

Problematic execution

27-Jun-19 Subject or Title22 |

replica 4

client 1

replica 1

replica 2

replica 3

write(12)
query

query-
ack(t=1)

write
(12,t=2) ack

read

(7,t=1)

propagate
(99,t=5) prop-ack returnà99

client 2

(12,t=2)

read-ack

(99,t=5)

Problem: intersection was insufficient

27-Jun-19 Subject or Title23 |

Write quorum Read quorum

12 2 5

what is the required intersection condition, without further protocol changes?

Masking quorum systems

27-Jun-19 Subject or Title24 |

• Need a majority of non-faulty replicas in the intersection between any two quorums
• How to achieve this?
• Q à quorum size
• What is size of intersection?
• N – (N – Q) – (N – Q) = 2Q – N
• To ensure that it contains at least one non-faulty replica: 2Q – N > 2f à Q > (N + 2f) / 2
• Furthermore, we need to ensure there is always a quorum available despite f unreachable replicas:
• Q <= N – f

• These two equations imply:
• N ≥ 4f + 1
• Or, with minimal replication costs: N=4f+1, Q=3f+1

Masking quorum system, f=2 à N=9

27-Jun-19 Subject or Title25 |

Write quorum Read quorum

Reads accept only values returned by at least f+1 replicas

Does this solve the prior problematic execution?

replica 4

client 1

replica 1

replica 2

replica 3

write(12)

query
query-

ack(t=1)
write

(12,t=2) ack

read

(7,t=1)

client 2

(12,t=2)

read-ack

(99,t=5)

replica 5

(12,t=2)

What is the resulting semantics for this protocol?

27-Jun-19 Subject or Title27 |

replica 4

client 1

replica 1

replica 2

replica 3

write
(12,t=2)

read

(7,t=1)

client 3

(26,t=3)

read-ack

(99,t=5)

replica 5

(12,t=2)

client 2
write

(26,t=3)

Read returns ⏊

Safe
semantics

...
...

• Problem in previous execution comes from being hard to filter out responses made up by Byzantine
replicas

• Solution: make it impossible to make up such responses. How?
• Self-verifying information
• Extend protocol with the following:
– Each client has <PubKey, PrivKey> pair
– Each process know the Public Keys of all clients
– Clients sign new <value,timestamp> pairs before writing to replicas
– Values that are not correctly signed are discarded (both by replicas and other clients when reading)

• This allows us to use Dissemination Quorum Systems again (N=3f+1, Q=2f+1)

How to regain atomic semantics?

27-Jun-19 Subject or Title28 |

BFT Atomic Read/Write Protocol (ABD-inspired)

Subject or Title

replica 3

client 1

replica 1

replica 2

read

(7,t=1,sigC<7,1>)

client 3

(26,t=3,sig2<26,3>)

read-ack

(99,t=5,?)

replica 4

(12,t=2,sig1<12,2>)

client 2

write
(26,t=3,

sig2<26,3>)

write
(12,t=2,

sig1<12,2>)

...

...

prop-ack

returnà26
propagate

(26,t=3,sig2<26,3>)

• Move beyond the Read/Write model
• We will not look at consensus, but to the Broadcast problem

• Credit for the slides on Byzantine broadcast: Rachid Guerraoui, EPFL

Other classes of specifications

27-Jun-19 Subject or Title30 |

Byzantine consistent broadcast: specification

• BCB1: Validity: If a correct process p broadcasts a msg m, then every correct process
eventually delivers m.

• BCB2: No duplication: Every correct process delivers at most one message.

• BCB3: Integrity: If some correct process delivers a message m with sender p and
process p is correct, then m was previously broadcast by p.

• BCB4: Consistency: If some correct process delivers a message m and another correct
process delivers a message m′, then m = m′.

Note: “Correct” means non-Byzantine-faulty

Byzantine Consistent Broadcast: Algorithms

• Byzantine Consistent Broadcast
– If the sender s is correct then every correct process should (at some point in time)

deliver m.
– If s is faulty, then every correct process delivers the same message, if it delivers one

at all.
• i.e., correct processes are not guaranteed to deliver the same set of messages

• Two algorithms:
– Authenticated Echo Broadcast
• exchanges a quadratic number of messages, uses MACs

– Signed Echo Broadcast
• linear no. of messages but uses digital signatures (costly)

Authenticated Echo Broadcast

• exploits Byzantine (dissemination) quorums (N=3f+1, Q=2f+1)
– two rounds of message exchanges.
– 1st round: sender disseminates msg to all processes.
– 2nd round:
• every process acts as a witness for m
• resends m in an ECHO message to all others.
• deliver only when received 2f+1 ECHOs
– Byzantine processes cannot cause a correct process to deliver a message m′ ̸= m.

• relies on authenticated links
– prevent injection of forged messages

Authenticated Echo Broadcast

• Implements:
ByzantineConsistentBroadcast, with sender s.

• Uses:
AuthPerfectPointToPointLinks, instance al.

• upon event ⟨ bcb, Init ⟩ do
sentecho := FALSE;
delivered := FALSE;
echos := [⊥]N ;

Authenticated Echo Broadcast

• upon event ⟨ bcb, Broadcast | m ⟩ do // only process s
forall q ∈ Π do

trigger ⟨ al, Send | q, [SEND, m] ⟩;

• upon event ⟨ al, Deliver | p, [SEND, m] ⟩
such that p = s and sentecho = FALSE do

sentecho := TRUE;
forall q ∈ Π do

trigger ⟨ al, Send | q, [ECHO, m] ⟩;

Authenticated Echo Broadcast

• upon event ⟨ al, Deliver | p, [ECHO, m] ⟩ do
if echos[p] = ⊥ then

echos[p] := m;

• upon exists m != ⊥ such that :
|{p ∈ Π |echos[p] = m}| >= 2f+1 and delivered = FALSE do

delivered := TRUE;
trigger ⟨ bcb, Deliver | s, m ⟩;

Authenticated Echo Broadcast
114 3 Reliable Broadcast

p

q

r

s

bcb−broadcast

bcb−deliver

bcb−deliver

SEND ECHO

Figure 3.11: Sample execution of authenticated echo broadcast with faulty sender p

from m because that would require three ECHO messages with a content different
from m. But this is impossible, since processes q and s sent an ECHO message
containing m. Because process p is faulty, we ignore whether it bcb-delivers any
message.

Correctness. Algorithm 3.16 implements a Byzantine consistent broadcast abstrac-
tion for N > 3f . The validity property follows from the algorithm because if the
sender is correct, then every correct process al-sends an ECHO message and every
correct process al-delivers at least N − f of them. Because N − f > (N + f)/2
under the assumption that N > 3f , every correct process also bcb-delivers the
message m contained in the ECHO messages.

The no duplication and integrity properties are straightforward to verify from the
algorithm.

The consistency property follows from the observation that in order for a correct
process p to bcb-deliver some m, it needs to receive (i.e., to al-deliver) more than
(N + f)/2 ECHO messages containing m. A set of more than (N + f)/2 processes
corresponds to a Byzantine quorum of processes (Sect. 2.7.3). Recall that every two
Byzantine quorums overlap in at least one correct process. Consider a different cor-
rect process p′ that bcb-delivers some m′. As p′ has received a Byzantine quorum of
ECHO messages containing m′, and because the correct process in the intersection
of the two Byzantine quorums sent the same ECHO message to p and to p′, it follows
that m = m′.

Performance. The algorithm requires two communication steps to bcb-deliver a
message to all processes. Because the second step involves all-to-all commu-
nication, the algorithm uses O(N2) messages. Every low-level message on the
authenticated perfect links contains essentially only the broadcast message itself.

3.10.4 Fail-Arbitrary Algorithm: Signed Echo Broadcast

A second implementation of Byzantine consistent broadcast that we call “Signed
Echo Broadcast” is shown in Algorithm 3.17. It uses an authenticated perfect links
abstraction and a cryptographic digital signature scheme (Sect. 2.3.3).

Authenticated Echo Broadcast
114 3 Reliable Broadcast

p

q

r

s

bcb−broadcast

bcb−deliver

bcb−deliver

SEND ECHO

Figure 3.11: Sample execution of authenticated echo broadcast with faulty sender p

from m because that would require three ECHO messages with a content different
from m. But this is impossible, since processes q and s sent an ECHO message
containing m. Because process p is faulty, we ignore whether it bcb-delivers any
message.

Correctness. Algorithm 3.16 implements a Byzantine consistent broadcast abstrac-
tion for N > 3f . The validity property follows from the algorithm because if the
sender is correct, then every correct process al-sends an ECHO message and every
correct process al-delivers at least N − f of them. Because N − f > (N + f)/2
under the assumption that N > 3f , every correct process also bcb-delivers the
message m contained in the ECHO messages.

The no duplication and integrity properties are straightforward to verify from the
algorithm.

The consistency property follows from the observation that in order for a correct
process p to bcb-deliver some m, it needs to receive (i.e., to al-deliver) more than
(N + f)/2 ECHO messages containing m. A set of more than (N + f)/2 processes
corresponds to a Byzantine quorum of processes (Sect. 2.7.3). Recall that every two
Byzantine quorums overlap in at least one correct process. Consider a different cor-
rect process p′ that bcb-delivers some m′. As p′ has received a Byzantine quorum of
ECHO messages containing m′, and because the correct process in the intersection
of the two Byzantine quorums sent the same ECHO message to p and to p′, it follows
that m = m′.

Performance. The algorithm requires two communication steps to bcb-deliver a
message to all processes. Because the second step involves all-to-all commu-
nication, the algorithm uses O(N2) messages. Every low-level message on the
authenticated perfect links contains essentially only the broadcast message itself.

3.10.4 Fail-Arbitrary Algorithm: Signed Echo Broadcast

A second implementation of Byzantine consistent broadcast that we call “Signed
Echo Broadcast” is shown in Algorithm 3.17. It uses an authenticated perfect links
abstraction and a cryptographic digital signature scheme (Sect. 2.3.3).

m’

m

r can never deliver m’, if q and s deliver m
(r can get at most 2 ECHOes for m', including its own)

Correctness

BCB1: Validity: If a correct process p broadcasts a msg m, then every correct process eventually
delivers m.

Proof (sketch)
• if the sender is correct, then every correct process sends an ECHO message
• every correct process delivers at least N − f of them.
• N − f >= 2f+1 under the assumption that N = 3f+1

è every correct process also delivers the message m contained in the ECHO messages

Correctness

• BCB2: No duplication: Every correct process delivers at most one message.
• Proof (sketch): enforced by the delivered variable in the algorithm

Correctness

• BCB3: Integrity: If some correct process delivers a message m with sender p and process p is
correct, then m was previously broadcast by p.

• Proof (sketch): by algorithm construction and the properties of Authenticated Perfect Links

Correctness

• BCB4: Consistency: If some correct process delivers a message m and another correct process
delivers a message m′, then m = m′.

• For a correct process p to deliver some m, it needs to receive ECHO messages for m from a
Byzantine quorum.

• Two Byzantine quorums overlap in at least one correct process.
• Assume, by contradiction, that a different correct process p′ that delivers some m′.
– p′ has received a Byzantine quorum of ECHO messages for m′
– the correct process in the intersection of the two Byzantine quorums sent different ECHO messages to p

and to p′

Contradiction found!

Signed echo broadcast

• Exploits digital signatures:
– more powerful than MACs
– allow a third process to verify the authenticity of a message sent from a 1st process s to a 2nd process r
– avoid quadratic number of message exchanges of prev. algorithm

• Basic idea:
– Witnesses do not authenticate a request by sending an ECHO message to all processes
– instead, sign a statement that they return to the sender
– Sender collects a Byzantine quorum of these signed statements and relays them in a third communication

step to all processes.

Signed Echo Broadcast
116 3 Reliable Broadcast

p

q

r

s
bcb−deliver

bcb−broadcast

bcb−deliver

ECHO FINALSEND

Figure 3.12: Sample execution of signed echo broadcast with faulty sender p

A sample execution of “Authenticated Echo Broadcast” with a faulty sender p
is shown in Fig. 3.12. Processes q and s sign a statement that they “echo” the
message m received from p in instance bcb, and return the signature to p. Again,
processes q and s bcb-deliver the same message, and process r does not bcb-deliver
any message.

It is important to include the identifier bcb of the algorithm instance in the argu-
ment to the digital signature scheme; otherwise, a Byzantine process might transport
a signature issued by a correct process to a different context and subvert the guar-
antees of the algorithm there. Recall that the symbol ‖ stands for concatenating two
bit strings.

Correctness. Given a digital signature scheme and an authenticated perfect links
abstraction, Algorithm 3.17 implements a Byzantine consistent broadcast abstrac-
tion for N > 3f . The only difference to Algorithm 3.16 lies in replacing the ECHO

message that a process sends directly to all others by a digital signature that conveys
the same information indirectly and is transmitted via the sender. When one replaces
the necessary Byzantine quorum of valid signatures in the verification of the FINAL

message by a Byzantine quorum of al-delivered ECHO messages, the consistency
property follows from the same argument as in Algorithm 3.16. The other three
properties of Byzantine consistent broadcast are easily verified in the same way.

Performance. The “Signed Echo Broadcast” algorithm involves three communica-
tion steps to deliver a message m from the sender to all processes, which is one
more than the “Authenticated Echo Broadcast” algorithm uses. But, the number of
messages sent over the point-to-point links is only O(N) instead of O(N2).

3.11 Byzantine Reliable Broadcast

This section presents the second broadcast primitive in the fail-arbitrary system
model, called Byzantine reliable broadcast. An instance of the primitive only deals
with broadcasting one message. It can be seen as the fail-arbitrary equivalent of the

• Fault models matter
• Provide a tradeoff between correctness and performance
• Can provide strong security despite adversarial behavior
• Traditionally the world was split between Crash and Byzantine faults
• Intermediate models may be useful for addressing real-world problems

Conclusions

27-Jun-19 Subject or Title88 |

inesc-id.pt

Questions?

