A

From crash to Byzantine fault -~ /)
tolerance (and back, to \//
secure TEE storage)

Rodrigo Rodrigues
Instituto Superior Técnico (ULisboa) and INESC-ID

Lecture at SPTDC 2020
July 9, 2020
= [
@ Inescid
lisboa .2

TECNICO
inesc-id.pt W Ll S B OA

YEARS

@i escid

lisboa .»

TECNICO
LISBOA

PART 1 — CRASH AND BYZANTINE FAULT MODELS

2 | 27-Jun-19 Subject or Title

@ inescid

w -[Fg(,: Elg\lolgo * Suppose you manage a data center with 75,000 machines, 4 disks per machine

» According to recent studies, 3% of disks in data centers require replacement in a
given year
* How often do disks suffer such permanent faults?
— Once per week?
— Once per day?
— Once per hour?
— Once per minute?

Motivation: tolerating faults

« 75000 X 4 =300 000 disks
« 300 000 X .03 =9 000 disk faults per year
* 365 days X 24 hours = 8 760 hours per year

» These were just permanent disk faults, need to account for everything else!

3 27-Jun-19 Subject or Title

inesc |d

TECNICO
LISBOA

27-Jun-19

The first published replication protocol

A PRINCIPLE FOR RESILIENT SHARING OF DISTRIBUTED RESOURCES*

Peter A. Alsberg and John D. Day
Center for Advanced Computation
University of Illinois at Urbana-Champaign

Reywords: resilient protocols, resource sharing, dis-
tributed control, distributed computer systems, resil-
ient resource sharing

A technique is described which permits distributed
resources to be shared (services to be offered) in a
resilient manner. The essence of the technique is to a
priori declare one of the server hosts primary and the
others backups. Any of the servers can perform the
primary duties. Thus the role of primary can migrate
around the set of servers. The concept of n-host resil-
iency is introduced and the error detection and recov-

ICSE'76

be completely dissimilar (e.g., weather data may be
stored on the ARPANET datacomputer and processed on the
ILLIAC IV). Between these two extremes lie the re-
source sharing concerns of interest to most users.

The user expects a tolerable, as well as tolerant,
resource sharing environment. The user we are inter-~
ested in wants a maximum degree of automation and
transparency in his resource sharing. He wishes the
resource sharing to be resilient to host failures and,
when catastropic failures occur, he would like a "best
effort" recovery to be automatically initiated by the

£§ Protocols require:
inescid assumptions, assumptions, assumptions

server
hosf 4

TECNICO
LISBOA

Figure 3

Summary of the message flow for the resiliency scheme.

* Failure behavior:
— Stop executing protocol steps and sending messages
Emit wrong outputs
¢ Timing behavior:
Lecture — Upper bound on message transmission and processing time (faults are detectable)

Today’s

— No such upper bound (can’t distinguish slow vs. faulty participant)

Asynchronous model

5 27-Jun-19 Subject or Title

@inesc ig Crash fault tolerance (CFT)

w TL|ES(;: é\l O|g0 Assumes a crash fault model - nodes fail by silently halting
* Matches many real-world faults - used in most data center systems
» Some other faults can be turned into crash faults (e.g., by halting when exception is caught)

server &
Pin/ \Ong Pi‘/ Pix/

client

time

6 27-Jun-19 Subject or Title

@inesc id Protocols: specification versus implementation

W T|_|ES(’: é\l Olgo The specification describes what the protocol is supposed to do

Implementation is the protocol logic that should enforce that specification

Focus on a storage system with read/write operations on a single object
— For object store, create multiple instances of the same protocol

What are the possible specifications for a system with multiple clients and a read/write interface?

On Interprocess Communication

Leslie Lamport Distributed Computing 1, 2 (1986), 77-101.
Also as DEC SRC Research Report 8.

, December 25, 1985

@inesc id Specifications for a read/write object

TECNICO
LISBOA

Lamport’s paper specifies semantics for single-writer, multiple-reader
— Therefore, writes are not concurrent with one another

Safe semantics
— Reads that are not concurrent with any writes return the most recently written value
— Nothing is required from reads that are concurrent with writes

Regular semantics
— Reads that are not concurrent with any writes return the most recently written value
— Reads that are concurrent with writes return either the old or the new value

Atomic semantics (also applies to multiple writers)

— There is a total order of all operations, consistent with real-time order, such that reads return the most
recently written value according to that order

Simple generalization of safe/regular to multiple writers:
— There is a total order of writes consistent with real-time order, which is used to define “most recent” above

8 27-Jun-19 Subject or Title

@igesc id Examples

lisboa
TECNICO
LISBOA client 1
client 2

* Read returns 12
* Read returns 7

o Safe?
* Regular?

* Atomic?

9 | 27-Jun-19 Subject or Title

Write 7

Write 12

Read

Read’

time

@isgesc id Examples

TECNICO
LISBOA client 1

client 2

\F/ RS

* Readreturns 7
* Read returns 7

« Safe?

* Regular?

Atomic?

10 | 27-Jun-19 Subject or Title

Write 7

Write 12

Read

Read’

time

@isgesc id Examples

\RS

Write 12

TECNICO e
w LISBOA client 1

client 2

* Read returns 12
« Read returns@

o Safe?
* Regular?

* Atomic?

1 | 27-Jun-19 Subject or Title

Read

Read’

time

@ Crash fault-tolerant (CFT) implementation:

inescid ABD protocol (seen yesterday in Prof. Keidar’s lecture)
w TECNICO

LISBOA

client 1
write(12) ack
replica 1
replica 2
read-ack
(7,t=1)
repllca 3 query query- write ack read ‘Z‘:Zd;:;‘)‘ propagate Pprop
ack (t=1) (12, t=2) ’ (12,t=2) -ack

return->12
client 2

12 | 27-Jun-19 Subject or Title

@?igesc id Quorum intersection in CFT
lisboa .

TECNICO
w LISBOA

Write quorum Read quorum

13 | 27-Jun-19 Subject or Title

@inesc id Byzantine Fault Tolerance (BFT)

o

14 |

TECNICO
LISBOA

27-Jun-19

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information
to different parts of the system. This situation can be expressed abstractly in terms of a group of
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound
two loyal generals. With unforgeable written messages, the problem is solvable for any number of
generals and possible traitors. Applications of the solutions to reliable computer systems are then
discussed.

Subject or Title

@inesc id Byzantine fault model

TECNICO

LISBOA * Faulty processes may deviate arbitrarily from the algorithm assigned to it:
— due to both benign/unintentional faults, e.g., bugs
— ...as well as malicious faults: attacks, collusions
— ...and of course crashing or omitting steps

¢ Maximum number of Byzantine faults: f

* More expensive to tolerate than crashes:
— larger number of replicas
— cryptographic primitives

15 | 27-Jun-19 Subject or Title

@inesc id Digital signatures vs. authenticators

TECNICO
LISBOA

Digital signature
— Creator of message m has <PubKey,PrivKey> pair
— Sign: m = { Hash(m) }privkey
— Verify: Decrypt with PubKey corresponding to PrivKey, compare hashes
— Anyone who has access to PubKey can verify that the message was generated by its creator

MAC (Message Authentication Code)

— Communicating processes i and j share a common secret K

— Create authenticator: m - H(K]||m)
* Vulnerable to length extension attack, in practice uses H((K’ xor opad)||H(K’ xor ipad)||m))
— Verify: same as create, compare values

Unlike MACs, digital signatures are transferable (offer non-repudiation)
But signatures are computationally much more expensive

16 | 27-Jun-19 Subject or Title

@inesc ig Authenticated channels

w -[th,: EI;\I Olg\o * In the Byzantine model, we assume channels are authenticated
- e.g., by appendng HMACSs to every message that is sent
* Digital signatures will appear explicitly in the protocol description

17 | 27-Jun-19 Subject or Title

@"s_fgggc id Previous quorums no longer work

TECNICO
w LISBOA

Write quorum Read quorum

G

18 | 27-Jun-19 Subject or Title

@ Deriving Byzantine Quorum Systems
inescid (Called Dissemination Quorum System in the paper)

W TL|ES(;: é\l Olgo Need at least one non-faulty replica in the intersection between any two quorums
How to achieve this?

Q - quorum size
What is size of intersection?
N-(N-Q)-(N-Q)=2Q-N
To ensure that it contains at least one non-faulty replica: 2Q-N>f > Q> (N+f)/2
Furthermore, we need to ensure there is always a quorum available despite f unreachable replicas:
Q<=N-f

These two equations imply:

N = 3f+1
Or, with minimal replication costs: N=3f+1, Q=2f+1

19 | 27-Jun-19 Subject or Title

@ﬁggggc |d Byzantine (dissemination) quorum, f=2 > N=7

TECNICO
w LISBOA

Write quorum Read quorum

®00 0000

For the same number of replicas (N=7),
what happened if qguorums were smaller?
And what if the quorums were larger?

2| 27-Junt 9 Subject or Title

@inesc |d ABD Protocol: CFT =2 BFT

w T|_|ES(’: é\| dgﬂ Processes communicate through authenticated channels

Protocol should be driven by client, not through a proxy replica
— Client cannot trust a single replica’s reply

If no other changed are made to the ABD protocol, what is the required quorum / replica group size?
Is the previous change to quorums sufficient?

21 | 27-Jun-19 Subject or Title

@?i escid

I|sBoa 2

TECNICO
LISBOA
write (12) query- write

. query ack (t=1) (12, t=2)
client 1

Problematic execution

WWN,WN/W

A/

AR\ Am

A /AN

— W

22 | 27-Jun-19 Subject or Title

read read-ack

propagate
(99, t=5) prop-ack

return->99

@“g esc id Problem: intersection was insufficient

TECNICO
w LISBOA

Write quorum Read quorum

what is the required intersection condition, without further protocol changes?

23 | 27-Jun-19 Subject or Title

@inesc id Masking quorum systems

TECNICO * Need a majority of non-faulty replicas in the intersection between any two quorums
LISBOA : .
* How to achieve this?
* Q- quorum size
* What is size of intersection?
* N-(N-Q)-(N-Q)=2Q-N
» To ensure that it contains at least one non-faulty replica: 2Q-N>2f > Q> (N+2f)/2

* Furthermore, we need to ensure there is always a quorum available despite f unreachable replicas:
* Q<=N-f

* These two equations imply:

o N = 4f+ 1
e Or, with minimal replication costs: N=4f+1, Q=3f+1

24 | 27-Jun-19 Subject or Title

- Inesc |d Masking quorum system, f=2 - N=9

TECNICO
w LISBOA

Write quorum Read quorum

Reads accept only values returned by at least f+1 replicas

25 | 27-Jun-19 Subject or Title

@ inesc '9 Does this solve the prior problematic execution?

I IS \/F/\Fg
write(12)

query- write
TECNICO query ack (t=1) (12, t=2)

mﬂ%mw%
N\ /.
\// \ // T

Y AN

<7

s /&\

client 2

read read-ack

&

lis

o

27 |

nesc id What is the resulting semantics for this protocol?| Safe

oa y’:,?rg

TECNICO
LISBOA client 1

client 2

replica 1
w replica 2
replica 3
replica 4

replica 5

27-Jun-19 Cl I gbq;llor %e

write
(12, t=2)

semantics

\

1\

(99, t=5)

\

\

(12,X2>

X

AN

A\

AW

Read returns _|

read

read-ack

@inesc id How to regain atomic semantics?

TECNICO
LISBOA

Problem in previous execution comes from being hard to filter out responses made up by Byzantine
replicas

» Solution: make it impossible to make up such responses. How?

« Self-verifying information

» Extend protocol with the following:

— Each client has <PubKey, PrivKey> pair

— Each process know the Public Keys of all clients

— Clients sign new <value,timestamp> pairs before writing to replicas

— Values that are not correctly signed are discarded (both by replicas and other clients when reading)

This allows us to use Dissemination Quorum Systems again (N=3f+1, Q=2f+1)

28 | 27-Jun-19 Subject or Title

@ﬁggggc |d BFT Atomic Read/Write Protocol (ABD-inspired)

TECNICO =
LISBOA client 1 il —
$ig,<26,3>)

client 2
\\ w (99,t=5,?)
w replica 1

replica 2 \ \ \(12 ,£=2,51g,<12,2>)]
rep“ca 3 X f \\(26,t=3,sig2<26,3>) /f \
repllca 4 / \\\ (7,t=1,sig<7,1>) f \s

A\

cl |§b!;1ttor %e propagate

read read-ack (26,t=3,51q.,<26,3>) return>26

write

@inesc id Other classes of specifications

W T|_|ES(,: é\| dgﬂ Move beyond the Read/Write model

We will not look at consensus, but to the Broadcast problem

Credit for the slides on Byzantine broadcast: Rachid Guerraoui, EPFL

30 | 27-Jun-19 Subject or Title

@inesc id Byzantine consistent broadcast: specification

TLFSFElﬁ\IOIg\O « BCB1: Validity: If a correct process p broadcasts a msg m, then every correct process
eventually delivers m.

« BCB2: No duplication: Every correct process delivers at most one message.

« BCBS3: Integrity: If some correct process delivers a message m with sender p and
process p is correct, then m was previously broadcast by p.

« BCB4: Consistency: If some correct process delivers a message m and another correct
process delivers a message m’, then m =m’.

Note: “Correct” means non-Byzantine-faulty

@inesc id Byzantine Consistent Broadcast: Algorithms

w TECNICO « Byzantine Consistent Broadcast

LISBOA — If the sender s is correct then every correct process should (at some point in time)
deliver m.

— If sis faulty, then every correct process delivers the same message, if it delivers one
atall.

e i.e., correct processes are not guaranteed to deliver the same set of messages
* Two algorithms:
— Authenticated Echo Broadcast
e exchanges a quadratic number of messages, uses MACs
— Signed Echo Broadcast
* linear no. of messages but uses digital signatures (costly)

@inesc ig Authenticated Echo Broadcast

w TLlES(:: é\ldg\o * exploits Byzantine (dissemination) quorums (N=3f+1, Q=2f+1)
— two rounds of message exchanges.

— 1stround: sender disseminates msg to all processes.
2"d round:
e every process acts as a witness for m
e resends min an ECHO message to all others.
 deliver only when received 2f+1 ECHOs

— Byzantine processes cannot cause a correct process to deliver a message m'/= m.
* relies on authenticated links
— prevent injection of forged messages

@inesc ig Authenticated Echo Broadcast

o

TECNICO
LISBOA

Implements:

ByzantineConsistentBroadcast, with sender s.
Uses:

AuthPerfectPointToPointLinks, instance al.

upon event (beb, Init) do
sentecho := FALSE;
delivered := FALSE;
echos = [1]N;

@ inescid

o

TECNICO
LISBOA

Authenticated Echo Broadcast

* upon event (bchb, Broadcast | m) do // only process s
forallg e lMdo
trigger (al, Send | q, [SEND, m]);

* upon event (al, Deliver | p, [SEND, m])
such that p = s and sentecho = FALSE do

sentecho := TRUE;

forallg e lMdo
trigger (al, Send | q, [ECHO, m]);

@ inescid

o

TECNICO
LISBOA

Authenticated Echo Broadcast

upon event (al, Deliver | p, [ECHO, m]) do
if echos[p] = 1 then
echos[p] := m;

° upon exists m != 1 such that :
l{p € I |echos[p] = m}| >= 2f+1 and delivered = FALSE do

delivered := TRUE;
trigger (beb, Deliver | s, m);

@inesc ig Authenticated Echo Broadcast

TECNICO
w LISBOA

bcb—-broadcast

\ A bcb—-deliver

SERYZ\N

AN .
SEND ECHO bcb—-deliver

@inesc ig Authenticated Echo Broadcast

i . —
bcb—broadcast m
P

.\
s N

AN .
SEND ECHO bcb—-deliver

N peb_deliver

r can never deliver m’, if g and s deliver m
(r can get at most 2 ECHOes for m', including its own)

@inesc ig Correctness

w TL|ES(:: é\l Olg\o BCB1: Validity: If a correct process p broadcasts a msg m, then every correct process eventually
delivers m.

Proof (sketch)
« if the sender is correct, then every correct process sends an ECHO message

» every correct process delivers at least N — f of them.
* N - f>=2f+1 under the assumption that N = 3f+1
=>» every correct process also delivers the message m contained in the ECHO messages

@inesc ig Correctness

w T|_|ES(’: é\l Olg\o - BCB2: No duplication: Every correct process delivers at most one message.

* Proof (sketch): enforced by the delivered variable in the algorithm

@inesc ig Correctness

T|_|ES(’: é\l dgo « BCBa3: Integrity: If some correct process delivers a message m with sender p and process p is
correct, then m was previously broadcast by p.

* Proof (sketch): by algorithm construction and the properties of Authenticated Perfect Links

@ inescid

TECNICO
LISBOA

Correctness

BCB4: Consistency: If some correct process delivers a message m and another correct process
delivers a message m'’, thenm =m".

For a correct process p to deliver some m, it needs to receive ECHO messages for m from a
Byzantine quorum.
Two Byzantine quorums overlap in at least one correct process.
Assume, by contradiction, that a different correct process p' that delivers some m'.
p' has received a Byzantine quorum of ECHO messages for m’

the correct process in the intersection of the two Byzantine quorums sent different ECHO messages to p
and to p’

Contradiction found!

@isgesc ;»d Signed echo broadcast

T|_|ESC é\IOIg\O * Exploits digital signatures:

— more powerful than MACs
— allow a third process to verify the authenticity of a message sent from a 15! process s to a 2"? process r
— avoid quadratic number of message exchanges of prev. algorithm

* Basic idea:
— Witnesses do not authenticate a request by sending an ECHO message to all processes
— instead, sign a statement that they return to the sender

— Sender collects a Byzantine quorum of these signed statements and relays them in a third communication
step to all processes.

@inesc id Signed Echo Broadcast

TECNICO
LISBOA bcb—broadcast

P o ek

\ / \

International Symposium on Distributed Computing
. DISC 2008: Distributed Computing pp 16-31 | Cite as

Matrix Signatures: From MACs to Digital Signatures in
Distributed Systems

Authors Authors and affiliations

Amitanand S. Aiyer, Lorenzo Alvisi, Rida A. Bazzi, Allen Clement

@inesc ig Conclusions

w T|_|ES(,: Elg\lolgo * Fault models matter

* Provide a tradeoff between correctness and performance

« Can provide strong security despite adversarial behavior

« Traditionally the world was split between Crash and Byzantine faults

* Intermediate models may be useful for addressing real-world problems

88 | 27-Jun-19 Subject or Title

@inesc ig
TECNICO
LISBOA

Questions?

inesc-id.pt

