
Dual Data Structures

Michael L. Scott

www.cs.rochester.edu/research/synchronization/

jug.ru Hydra Conference
July 2019

Joint work with William N. Scherer, Doug Lea, and Joseph Izraelevitz

MLS 2

The University of Rochester

● Small private research
university

● 6400 undergraduates
● 4800 graduate students
● Set on the Genesee River in

Western New York State, near
the south shore of Lake Ontario

● 250km by road from Toronto;
590km from New York City

MLS 4

The Computer Science Dept.
● Founded in 1974
● 20 tenure-track faculty;

70 Ph.D. students
● Specializing in AI, theory,

HCI, and parallel and
distributed systems

● Among the best small
departments in the US

MLS 5

● Uniprocessor speed improvements stopped in 2004.
● Since then, all but the most basic processors have had multiple

cores on chip.
● Any program that wants to use the full power of the chip must be

written with multiple threads, which cooperate like a team of
people with a common goal.

The multicore revolution

MLS 6

● Threads interact by calling methods of shared data structures —
stacks, queues, linked lists, hash tables, skip lists, many kinds of
trees, and more.

● I’ll use queues as the example in this talk.
» Commonly used to pass work from threads in one stage of a program to

threads in the next stage — like work on a factory assembly line

Shared data structures

MLS 7

A typical sequential queue

head tail zero entries

head tail one entry

A

head tail two entries

A B etc.

(0)

(1)

(2)

MLS 8

A typical sequential queue

head tail

head tail

A

head tail

A B

(0)

(1)

(2)

● Enqueue transforms
state (0) to state (1),
state (1) to state (2), etc.,
by allocating a new node
and linking it in.

● Dequeue will unlink the head
node, if any, and return it.

● Each will read and write
multiple locations.

MLS 9

Concurrent updates are unsafe

head tail

A
next

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

MLS 10

head tail

A
next

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

Concurrent updates are unsafe

MLS 11

Concurrent updates are unsafe

head tail

A
next

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

MLS 12

head tail

A B

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

Concurrent updates are unsafe

MLS 13

head tail

A B

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

Concurrent updates are unsafe

MLS 14

head tail

A B

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

Concurrent updates are unsafe

MLS 15

head tail

A B

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

Concurrent updates are unsafe

MLS 16

head tail

A B

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

Concurrent updates are unsafe

MLS 17

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

head tail

A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

B

Concurrent updates are unsafe

MLS 18

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

head tail

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

B

Concurrent updates are unsafe

MLS 19

● Correct operations have to appear to happen “all at once”
● Easiest way to do that is with locks or, in Java, synchronized

blocks or methods:

synchronized(Q) {
perform operation

}

● Performs badly if scheduler preempts a thread that holds a lock

Atomicity

MLS 20

● Never use locks/synchronized blocks; never block progress when
a thread is preempted

● Operation seems to happen instantaneously at some “linearizing”
instruction — often compare-and-swap, expressed in Java as
r.compareAndSet(e, n)
» takes as argument a reference r, an expected value e, and a new value n
» replaces contents of r with n if and only if previous contents was e
» supported by hardware; operates atomically

Nonblocking data structures

MLS 21

● Everything before the linearizing instruction is harmless
preparation
» Doesn’t change the abstract state of the structure

● Everything after the linearizing instruction is merely clean-up
» Can be done by any thread

● Hard to write, but versions exist for almost all common data
structures
» Again, use a queue as an example

● All interleavings are acceptable!

Instantaneously?

MLS 22

● Empty queue consists of a queue object with
head, tail pointers to dummy node

M&S queue

—

Dummy

TailHead

MLS 23

● Head of linked list is still a dummy node
● Enqueue adds at tail; dequeue removes at head

M&S queue with data

— A Z…
Dummy Oldest Data Newest Data

TailHead

MLS 24

1) CAS next pointer of tail node to new node
2) Use CAS to swing tail pointer

M&S queue: enqueue

— A

TailHead

MLS 25

1) CAS next pointer of tail node to new node
2) Use CAS to swing tail pointer (any thread can help)

M&S queue: enqueue

— A

TailHead

MLS 26

1) Read data in dummy’s next node
2) CAS head pointer to dummy’s next node

M&S queue: dequeue

— A Z

Dummy Oldest Data Newest Data
…

TailHead

MLS 27

3) Discard old dummy node
4) Node from which we read is new dummy

M&S queue: dequeue II

— — Z

Dummy New Dummy Newest Data
…

TailHead

MLS 28

● With locks, a dequeuing thread can wait — tell the scheduler to
put it to sleep and release the lock
» Some later enqueuing thread, while holding the lock, will tell the

scheduler to make the sleeping thread runnable again

● In a nonblocking queue, this hasn’t traditionally been possible
» Does it even make sense to wait (block?) in a nonblocking structure?

What if the queue is empty?

MLS 29

● Dequeue on an empty queue fails immediately
● Calling thread must spin:

do {
t = q.dequeue()

} while (t == ^)

● This works but with
» high contention
» no guarantee of fairness (waiting threads can succeed out of order)

The traditional approach

MLS 30

● Data structure holds data or reservations
● Dequeuer (in general, consumer) removes data or inserts

reservation
● Enqueuer (in general, producer) inserts data or removes and

satisfies reservation
● Data structure controls which reservation to satisfy —

guaranteeing fairness
● Developed dual stack, queue, synchronous variants, exchanger,

LCRQ; generic construction
» focus here on the queue

Dual data structures

MLS 31

● When trying to dequeue from an empty queue, enqueue a
reservation instead

● When enqueuing, satisfy a reservation if present
● Mark pointers to the reservation nodes with a “tag” bit in the

pointer
» Can (mostly) tell queue state from tail pointer
» Easy in C; requires extra indirection in Java

● Symmetry between enqueues and dequeues
» Enqueue adds data or removes a reservation
» Dequeue removes data or adds a reservation

The dualqueue

MLS 32

1) Check for queue “empty” or full of reservations
2) If neither, try to dequeue data as before

Dualqueue: dequeue

— A Z

Dummy Oldest Data Newest Data
…

TailHead

MLS 33

3) If tail pointer is lagging, swing it and restart. Match
tag of tail node’s next pointer

Dualqueue: dequeue II

— A

TailHead

MLS 34

4) If queue is empty, enqueue a tagged marker node,
then swing tail pointer

Dualqueue: dequeue III

— —

TailHead

MLS 35

4) Next, spin on the old tail node. Note: when queue
holds reservations, dummy node is at tail end

Dualqueue: dequeue IV

A Z —

Oldest Waiter Newest Waiter Dummy
…

TailHead

MLS 36

1) Read head & tail pointers to see if queue looks empty or has
data in it

2) If so, do an enqueue just as in the M&S queue
3) Else, try to satisfy a reservation

Dualqueue: enqueue

MLS 37

1) CAS pointer to data node into reservation node, breaking spin
Alternatively, waiting thread can sleep on a semaphore, to which the
awakening thread can post

2) CAS reservation node out of queue (dequeuing thread may help CAS)
3) Dequeuer reads data, frees reservation & data nodes

Dualqueue: satisfying requests

MLS 38

● Joint work with Doug Lea, chief architect of
java.util.concurrent libraries

● In synchronous stacks & queues, producer waits for consumer;
in exchanger they swap values

● Synchronous dualstack 3x faster than previous
● Synchronous dualqueue 14x faster
● Throughput of Executor library increased by 2x in “unfair” mode

and 10x in “fair” mode
● Standard part of distribution since Java SE 6

Synchronous stacks,
queues, and exchangers

MLS 39

● The dualqueue satisfies reservations in FIFO order; the
dualstack in LIFO order

● We can write “quacks” and “steues” that use opposite orders
for data and reservations

● More generally, we can pair any nonblocking container for
data (e.g., a priority queue) with almost any nonblocking
container for reservations

Generic duals

MLS 40

● Reservation container must provide two special methods
» 〈r, k〉 = peek()

returns the highest priority reservation and a key
» s = removeConditional(k)

removes r if it still has highest priority; returns status

● The ability to peek lets us satisfy reservations in a way that is
amenable to helping

● We also employ a handshaking protocol to coordinate the two
containers

Almost any?

MLS 41

● Along with the generic construction [TOPC 2016] we also
presented dual versions of Morrison & Afek’s linked concurrent
ring queue (LCRQ), which is based on fetch-and-increment (FAI)

● The resulting C code can sustain over 30M ops/s on an 18-core,
3.6GHz Intel Xeon processor

● That’s almost 5x the throughput of the original M&S-based
dualqueue

● Difficult to add to Java due to extensive pointer tagging

How fast?

MLS 42

● Nonblocking operations really can wait
● Dualism improves the performance of

» stacks & queues, synchronous stacks & queues, exchangers, and more
» nonblocking and lock-based implementations

● Dualism also offers fairness: the data structure chooses which
waiting thread to satisfy

● Generic construction allows any container for data to be
combined with almost any container for reservations

Conclusions/contributions

MLS 43

● “Nonblocking Concurrent Data Structures with Condition Synchronization.”
W. N. Scherer III and M. L. Scott. 18th Annual Conf. on Distributed
Computing (DISC), Oct. 2004.

● “Scalable Synchronous Queues.” W. N. Scherer III, D. Lea, and M. L. Scott.
11th ACM Symp. on Principles and Practice of Parallel Programming
(PPoPP), Mar. 2006; Communications of the ACM, May 2009.

● “Generality and Speed in Nonblocking Dual Containers.” J. Izraelevitz and M.
L. Scott. ACM Transactions on Parallel Computing, Mar. 2017.

For more information

www.cs.rochester.edu/research/synchronization/
www.cs.rochester.edu/u/scott/

