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The University of Rochester

● Small private research 
university

● 6400 undergraduates
● 4800 graduate students
● Set on the Genesee River in 

Western New York State, near 
the south shore of Lake Ontario

● 250km by road from Toronto; 
590km from New York City
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The Computer Science Dept.
● Founded in 1974
● 20 tenure-track faculty; 

70 Ph.D. students
● Specializing in AI, theory, 

HCI, and parallel and 
distributed systems

● Among the best small 
departments in the US
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● Uniprocessor speed improvements stopped in 2004.
● Since then, all but the most basic processors have had multiple 

cores on chip.
● Any program that wants to use the full power of the chip must be 

written with multiple threads, which cooperate like a team of 
people with a common goal.

The multicore revolution
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● Threads interact by calling methods of shared data structures —
stacks, queues, linked lists, hash tables, skip lists, many kinds of 
trees, and more.

● I’ll use queues as the example in this talk.
» Commonly used to pass work from threads in one stage of a program to 

threads in the next stage — like work on a factory assembly line

Shared data structures
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A typical sequential queue

head tail zero entries

head tail one entry

A

head tail two entries

A B etc.

(0)

(1)

(2)
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A typical sequential queue

head tail

head tail

A

head tail

A B

(0)

(1)

(2)

● Enqueue transforms
state (0) to state (1),
state (1) to state (2), etc.,
by allocating a new node
and linking it in.

● Dequeue will unlink the head 
node, if any, and return it.

● Each will read and write 
multiple locations.
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Concurrent updates are unsafe

head tail

A
next

Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B
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Thread 1: dequeue A

● reads head
● reads tail (sees single entry)

● sets head and tail to null

● deletes A

head tail

Thread 2: enqueue B
● reads tail
● assumes A.next is null
● creates new node B

● sets A.next to B

● sets tail to B

B

Concurrent updates are unsafe
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● Correct operations have to appear to happen “all at once”
● Easiest way to do that is with locks or, in Java, synchronized 

blocks or methods:

synchronized(Q) {
perform operation

}

● Performs badly if scheduler preempts a thread that holds a lock

Atomicity
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● Never use locks/synchronized blocks; never block progress when 
a thread is preempted

● Operation seems to happen instantaneously at some “linearizing” 
instruction — often compare-and-swap, expressed in Java as 
r.compareAndSet(e, n) 
» takes as argument a reference r, an expected value e, and a new value n
» replaces contents of r with n if and only if previous contents was e
» supported by hardware; operates atomically

Nonblocking data structures
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● Everything before the linearizing instruction is harmless 
preparation
» Doesn’t change the abstract state of the structure

● Everything after the linearizing instruction is merely clean-up
» Can be done by any thread

● Hard to write, but versions exist for almost all common data 
structures
» Again, use a queue as an example

● All interleavings are acceptable!

Instantaneously?
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● Empty queue consists of a queue object with 
head, tail pointers to dummy node

M&S queue

—

Dummy

TailHead
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● Head of linked list is still a dummy node
● Enqueue adds at tail; dequeue removes at head

M&S queue with data

— A Z…
Dummy Oldest Data Newest Data

TailHead
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1) CAS next pointer of tail node to new node
2) Use CAS to swing tail pointer

M&S queue: enqueue

— A

TailHead
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1) CAS next pointer of tail node to new node
2) Use CAS to swing tail pointer (any thread can help)

M&S queue: enqueue

— A

TailHead
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1) Read data in dummy’s next node
2) CAS head pointer to dummy’s next node

M&S queue: dequeue

— A Z

Dummy Oldest Data Newest Data
…

TailHead
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3) Discard old dummy node
4) Node from which we read is new dummy

M&S queue: dequeue II

— — Z

Dummy New Dummy Newest Data
…

TailHead
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● With locks, a dequeuing thread can wait — tell the scheduler to 
put it to sleep and release the lock
» Some later enqueuing thread, while holding the lock, will tell the 

scheduler to make the sleeping thread runnable again

● In a nonblocking queue, this hasn’t traditionally been possible
» Does it even make sense to wait (block?) in a nonblocking structure?

What if the queue is empty?
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● Dequeue on an empty queue fails immediately
● Calling thread must spin:

do {
t = q.dequeue()

} while (t == ^)

● This works but with
» high contention
» no guarantee of fairness (waiting threads can succeed out of order)

The traditional approach
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● Data structure holds data or reservations
● Dequeuer (in general, consumer) removes data or inserts 

reservation
● Enqueuer (in general, producer) inserts data or removes and 

satisfies reservation
● Data structure controls which reservation to satisfy —

guaranteeing fairness
● Developed dual stack, queue, synchronous variants, exchanger, 

LCRQ; generic construction
» focus here on the queue

Dual data structures
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● When trying to dequeue from an empty queue, enqueue a 
reservation instead

● When enqueuing, satisfy a reservation if present
● Mark pointers to the reservation nodes with a “tag” bit in the 

pointer
» Can (mostly) tell queue state from tail pointer
» Easy in C; requires extra indirection in Java

● Symmetry between enqueues and dequeues
» Enqueue adds data or removes a reservation
» Dequeue removes data or adds a reservation

The dualqueue
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1) Check for queue “empty” or full of reservations
2) If neither, try to dequeue data as before

Dualqueue: dequeue

— A Z

Dummy Oldest Data Newest Data
…

TailHead
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3) If tail pointer is lagging, swing it and restart.  Match 
tag of tail node’s next pointer

Dualqueue: dequeue II

— A

TailHead
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4) If queue is empty, enqueue a tagged marker node, 
then swing tail pointer

Dualqueue: dequeue III

— —

TailHead
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4) Next, spin on the old tail node. Note: when queue 
holds reservations, dummy node is at tail end

Dualqueue: dequeue IV

A Z —

Oldest Waiter Newest Waiter Dummy
…

TailHead
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1) Read head & tail pointers to see if queue looks empty or has 
data in it

2) If so, do an enqueue just as in the M&S queue
3) Else, try to satisfy a reservation

Dualqueue: enqueue
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1) CAS pointer to data node into reservation node, breaking spin
Alternatively, waiting thread can sleep on a semaphore, to which the 
awakening thread can post

2) CAS reservation node out of queue (dequeuing thread may help CAS)
3) Dequeuer reads data, frees reservation & data nodes

Dualqueue: satisfying requests
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● Joint work with Doug Lea, chief architect of 
java.util.concurrent libraries

● In synchronous stacks & queues, producer waits for consumer;
in exchanger they swap values

● Synchronous dualstack 3x faster than previous
● Synchronous dualqueue 14x faster
● Throughput of Executor library increased by 2x in “unfair” mode 

and 10x in “fair” mode
● Standard part of distribution since Java SE 6

Synchronous stacks, 
queues, and exchangers



MLS 39

● The dualqueue satisfies reservations in FIFO order; the 
dualstack in LIFO order

● We can write “quacks” and “steues” that use opposite orders 
for data and reservations

● More generally, we can pair any nonblocking container for 
data (e.g., a priority queue) with almost any nonblocking 
container for reservations

Generic duals
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● Reservation container must provide two special methods
» 〈r, k〉 = peek()

returns the highest priority reservation and a key
» s = removeConditional(k)

removes r if it still has highest priority; returns status

● The ability to peek lets us satisfy reservations in a way that is 
amenable to helping

● We also employ a handshaking protocol to coordinate the two 
containers 

Almost any?
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● Along with the generic construction [TOPC 2016] we also 
presented dual versions of Morrison & Afek’s linked concurrent 
ring queue (LCRQ), which is based on fetch-and-increment (FAI)

● The resulting C code can sustain over 30M ops/s on an 18-core, 
3.6GHz Intel Xeon processor

● That’s almost 5x the throughput of the original M&S-based 
dualqueue

● Difficult to add to Java due to extensive pointer tagging

How fast?
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● Nonblocking operations really can wait
● Dualism improves the performance of

» stacks & queues, synchronous stacks & queues, exchangers, and more
» nonblocking and lock-based implementations

● Dualism also offers fairness: the data structure chooses which 
waiting thread to satisfy

● Generic construction allows any container for data to be 
combined with almost any container for reservations

Conclusions/contributions
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