
Apache Airflow 2.3 and beyond:
What comes next?

Ash Berlin-Taylor

Director of Airflow Engineering,
Astronomer.io

PMC member,
Apache Airflow project

Who Am I?

How did we get here?

We build our computer
(systems) the way we build
our cities: over time, without
a plan, on top of ruins

— Ellen Ulman

Filip Hodas

Airflow 2.2

AIP-39: Run DAGs on
customizable schedules

Why AIP-39?
Replace it with a new term all

together: "data interval"

Allow overlapping schedule and

"data" interval

Fully customizable timetable (user

provided class)

Execution date is confusing to

everyone

👋 execution_date
The concept of "execution_date" was

confusing to every new user

So we removed it (well deprecated it)

In its place we now have:

logical_date (aka execution_date)

data_interval_start (same value as

execution_date for built in)

data_interval_end

(next_execution_date)

AIP-40: Any operator can
"defer" itself

Why AIP-40
Generalisation of Smart Sensors

Many "cloud" operators follow a

"setup ⇒ poll" loop

Wasteful using a whole executor slot

Reducing resource usage for big

clusters

Deferrable Tasks
Allows tasks or sensors to free up worker resources when waiting for external

systems/events.

Deferrable
Operators

Submit
Job #1

Submit
Job #2
Submit
Job #2

Submit
Job #3 ...

Receive
Results

#2

Receive
Results

#1

Receive
Results

#3

Traditional
Operators

Submit & Receive Job #1 Submit...

airflow triggerer: new
daemon process that runs asyncio

event loop

with DAG(id="process_images",

 timetable=solar.Timetable('dusk_nautical', 'Australia/Melbourne')):

 @task

 def prepare():

 pod_bay.doors.open()

 @task

 def capture_images():

 ...

 @task

 def finalize():

 pod_bay.doors.close()

 prepare() >> solar.TimeSensorAsync('dusk_astronomical') >> capture_images() >> finalize()

Roadmap: A possible future

Making DAGs a joy to write

Airflow should be the go to
orchestrator for every data
workflow job

Airflow should be easier to
operate confidently

Roadmap Concepts

● Making DAGs a joy to write

● Airflow should be the go to

orchestrator for every data

workflow job

● Airflow should be easier to

operate confidently

The near future

Dynamic DAGs

@task
def get_files_from_s3():
 return [...]

my_files = get_files_from_s3()
s3_delete_files = MyFileProcessOperator.partial(
 aws_conn_id="my-aws-conn-id",
 bucket="my-bucket"
).map(key=my_files)

Mapped tasks
● Mapped tasks are a "template" that is expanded Just In Time

● Replaced with n new Task Instances

● Can map over: XCom, Variables, or static literals

@dag
def my_dag(markets: list[str], campaigns: dict[str, list[int]]):
 @task
 def ingest(market):
 ...
 @task
 def calculate_roi(market, campaign):
 ...
 @task
 def aggregate_rois(market, campaign_rois):
 total = 0
 n = 0
 for campaign_roi in campaign_rois:
 n +=1
 total += campaign_roi
 return campaign_roi/total

 data = ingest.map(markets)
 rois = calculate_roi.map(market, data)
 stats = aggregate_rois(market, rois)

airflowctl: CLI over the API

Untrusted workers

DAG/task lifecycle hooks
and easier notifications

task = MyOperator(

 task_id = "something",

 on_failure_callback=send_slack_message(

 channels=['#data-ops'],

 mentions=['@ash'],

),

)

@task(on_failure_callback=[send_slack_message(), send_email]

def my_task():

 ...

A better cross-DAG story

Event triggered DAGs

New concept: a Data object

result = Data("mycompany/vendor_a/summary")

@dag(schedule_interal="@daily")

def summarizer():

 cluster = EmrCreateJobFlowOperator(task_id="create_job_flow",

job_flow_overrides=...)

 EmrRunStepsOperatorAsync(task_id="summarize", job_flow_id=cluster.output,

 steps={

 "Name": "calculate_pi",

 "ActionOnFailure": "CONTINUE",

 "HadoopJarStep": {

 "Jar": "command-runner.jar",

 "Args": ["s3://example-spark-airflow/summarize-table.py",

"{{data_interval_start}}", "{{data_interval_end}}", "{{results.tablename}}"],

 },

 },

 outlets=[result])

dag1 = summarizer()

result = DataRef("mycompany/vendor_a/summary")

@dag(schedule_on=result)

def consumer():

 @task

 def get_result(data_obj):

 S3Hook.get_file(data_obj.resolve())

 get_result(result)

dag2 = consumer()

Looking further ahead

DAG versioning
Make the UI accurate if DAG

structure changes over time

Make the "version" of DAG used for a

single DagRun consistent.

Easier DAG deployment

Streaming

Better support for Machine
Learning

Of course we're hiring
https://www.astronomer.io/careers

