The cost of client-side
distributed transactions

Denis Rystsov
@rystsov
derystso@microsoft.com
Microsoft / Cosmos DB

mailto:derystso@microsoft.com

Do we need them?

. $34.95 balance on this Apple Gift Card | keep losing and forgetting to use for
years. You're probably better at spending it than me. Enjoy.

i) . Aaron Parecki @ @aaronpk - 13 Jul 2017 S
e Brad Fitzpatrick @ @bradfitz - 13 Jul 2017 \7 @ ETEEerraten

Shipment 1 Ships: In Stock
SR SYP i e T P : ED. Delivers: Mon Jul 17 by Free 2 Business Day Shipping

Lightning to SD Card Camera Reader $29.00
Payment Method n ...9597 $29.00
Q 6) O 80 &
- 1 8
‘ Harry Heymann @harryh - 13 Jul 2017 v Q = Y]
Thanks!
‘ Harry Heymann < —_— > 9
¥ @harryh
Shipment 1 Ships: In Stock
Delivers: Sat Jul 15 by Free 2 Business Day Shipping Replying to @aaronpk @bradfitz
Apple 45W MagSafe 2 Power Adapter for $79.00 A SynchrOnlzatlon bug |n Apple's glft Card

MacBook Air

handling code? | would be shocked, just
shocked to learn such a thing was possible!

* Homakov 21 maa 2015

Kak s B3noman Starbucks ans 6esanumutHoro Kkoge

3TO uctopusa o ToM, Kak %3 ' a3 Fr . d"—"'a €HHOEe YNCO0 AeHer Ha NoaapoYHbIe
KapTbl cTapbakca, TeM Ce H oW | haCke HecnnaTHbin Kode, HY UIn YKpacTb y
b Al Starbucks for a life
NTakK, He Tak JaBHO MHe tl me COffee SU ply pbakca no $5 kaxpgas.

BTC Stolen from Poloniex -
% March 04, 2014, 08:31:32 AM

(

All deposits, withdrawals, and markets are functioning normally. No further BTC will
be deducted from anyone's balance.

On March 4th, 2014, about 12.3% of the BTC on Poloniex was stolen.

How Did It Happen?

The hacker found a vulnerability in the code that takes withdrawals. Here's what happens when
you place a withdrawal:

. Input validation.
. Your balance is checked to see if you have enough funds.
. If you do, your balance is deducted.
. The withdrawal is inserted into the database.
. The confirmation email is sent.
. After you confirm the withdrawal, the withdrawal daemon picks it up and processes the

W|thd rawal.

O\U'I-hwl\)l—*

The hacker discovered that if you place several withdrawals all in practically the same instant,
they will get processed at more or less the same time. This will result in a negative balance,
but valid insertions into the database, which then get picked up by the withdrawal daemon.

life beyond distributed transactions Pull requests Issues Marketplace Explore

Repositories 0 Showing 230,780 available code results ® S
Cod - - . . -

oee &= Life beyond Distributed Transactions: N
Commits S an Apostate’s Opinion
. @ Position Paper
Packages

705 Fifth Ave South

v Pat Helland e’
Marketplace 0 2 Q 0 ? Amazon.Com
0

pC
Topics Seattle, WA 98104
USA
Wikis 90| PHelland@Amazon.com
— . . T : . - Ar
Users 0 The positions expressed in this paper are Instea.d, apphce.ltlons are built I%Slng differer
personal opinions and do not in any way reflect techniques which do not provide the sa
the positions of my employer Amazon.com. transactional guarantees but still meet the need
of their businesses.
Languages ABSTRACT This paper explores and names some of the
. practical approaches used in the implementations
Text 79,739) Many decades g PE DT TGS el it of laree seale mission_critical applications in 2
\ ributed transactions including I nrhinh PRIEATE Mictrihnfa e

& 59,975
: “[Coffee] (https://www.enterpriseintegrationpatterns.com/ramblings/18_starbt

"When application developers attempt
to use distributed transactions, the
projects founder because the ... costs
and fragility make them impractical”

—Life beyond Distributed Transactions: an Apostate’s Opinion

POW 05 Cﬁlv““’"\’{’"\' ‘* E‘ e ;’
j Pehr(/o lﬂ“‘ o\)‘ B PA“F

*What did fragility mean in 2000s?

*What did fragility mean in 2000s?
®Are distributed transactions still fragile in 2019?

*What did fragility mean in 2000s?

®Are distributed transactions still fragile in 2019?

*What's the cost of using distributed
transactions now?

5 Answers

active oldest votes

The best way to distribute transactions over more than one database is: Don't.

30 Some people will point you to XA but XA (or Two Phase Commit) is a lie (or marketese).

share edit flag answered May 20 '09 at 11:38

Vv

“If ... transaction coordinator becomes unavailable,
then transactions and their associated data ...
cannot be changed until the transaction outcome
IS resolved ... by external intervention”

CAP theorem

Availability or Strict Serializability

SNOW theorem

SNOW theorem

Strict serializabllity

SNOW theorem

Strict serializabllity

*Non blocking

SNOW theorem

Strict serializability
*Non blocking

‘return One value per read & do only One read

SNOW theorem

Strict serializability
*Non blocking
‘return One value per read & do only One read

no conflicts with Write transactions

O\A/'hat Aic afll MmMaan 1IN AlAlA n/ailahi

w W \J W B\ \ L__J A\ \J w ' w L A R J

*Do distributed transactions lead to unavailability in 20197

*What's the cost of using distributed transactions now?

How to calculate cost?

How to calculate cost?

*Writing a distributed database isn't a easy endeavor

How to calculate cost?

*Writing a distributed database isn't a easy endeavor
®Deficiency in any one of a number of factors dooms it to failure

How to calculate cost?

*Writing a distributed database isn't a easy endeavor

®Deficiency in any one of a number of factors dooms it to failure

*Happy family are all alike; every unhappy family is unhappy in
Its own way

How to calculate cost?

*Writing a distributed database isn't a easy endeavor

®Deficiency in any one of a number of factors dooms it to failure

*Happy family are all alike; every unhappy family is unhappy in
Its own way

® Calculate the cost with one DB, extrapolate on others

Azure Cosmos DB

Microsoft's globally distributed, massively scalable, multi-model database service

\ :
— | mlin
2 Gre
D G = (V,E)
{LEAF} M DR
Js ohgove
el -
e ¢--000 o0
//// ‘. O .
SQL g o ‘ o Co""'mn-fam"y Document
i P W O e e e i
// ######
e Key-value - ——
/,/ e Guaranteed low latency at
P i the 99t percentile
L Elastic scale out of storage
//,/ & throughput
//
P
/// Turnkey global

distribution ?

\\
—
—
—

(3

Y

cassandra

—
—
S—

—

—

Five well-defined
consistency models

Y

/C('/ZL S e

E ALY

Comprehensive
SLAS

®*The cost of all database operations is normalized by Azure
Cosmos DB and is expressed by Request Units (RU)

®*The cost of all database operations is normalized by Azure
Cosmos DB and is expressed by Request Units (RU)

*RU provided for each request

®*The cost of all database operations is normalized by Azure
Cosmos DB and is expressed by Request Units (RU)

*RU provided for each request

*Sum RUs to calculate cost of different protocols on
the same workload

Why does the cost matter?

*353

*measure of work

*easy to measure

Workload

* A mixed workload with 80% reads and 20% writes

Workload

*A mixed workload with 80% reads and 20% writes
*Write tx transfers "money” between two accounts

Workload

* A mixed workload with 80% reads and 20% writes

*Write tx transfers "money” between two accounts
*Read tx reads balance from three accounts

Workload

* A mixed workload with 80% reads and 20% writes

*Write tx transfers "money” between two accounts
*Read tx reads balance from three accounts

*Fixed rate of collisions between keys of concurrent
transaction

Workload

* A mixed workload with 80% reads and 20% writes
*Write tx transfers "money” between two accounts
*Read tx reads balance from three accounts

*Fixed rate of collisions between keys of concurrent
transaction

*Retry until a fixed number of transactions are successfully
executed

Workload

* A mixed workload with 80% reads and 20% writes

*Write tx transfers "money” between two accounts

*Read tx reads balance from three accounts

*Fixed rate of collisions between keys of concurrent transaction
*Retry until a fixed number of transactions are successfully executed

*Normalize total the cost by the number of successfully executed
transactions

Granola Janus Sagas
RAMP Calvin Cure
Paxos Commit TAPIR COPS
Eiger 2PC Occult
ROCOCO Percolator MDCC
Spanner Omid Walter

Selection criteria

*tfamiliar model (ACID)

Selection criteria

*tfamiliar model (ACID)
®*can be used with existing storages

Selection criteria

*tfamiliar model (ACID)

®*can be used with existing storages
*doesn’t require specific hardware like atomic clocks

Serializability

Snapshot Isolation

RA (Read Committed+)

2 phase commit (2PC)

Percolator

RAMP

Paxos Commit (PC)

Eiger

Granola

Two-Phase Commit

A

(o)

(oo

X

(o

(oo

X

prepare (a)

(o

prepare (b)

(oo

tx1
a=a-50%
b = b+ 50%

X

(oo

Kl

a
[a: 100]
prepare (a)
- prepare (b)
[a : locked J
a:100
— b :100

>

[b : locked J

tx1
a=a-50%
b = b+ 50%

evaluate tx1

(oo

>

[b : locked J

% a
[a: 100]
-
prepare (a)
- prepare (b)
[a : locked]
a:100
<+ — b:100
-+
a=>50

b =150

% a b
tx1 /

a=a-50% a: 100 b : 100
b = b+ 50%
J
|
prepare (a) -
repare (b
prepare (b) >
[a : locked] [b : locked J
a:100
4 — b:100
-+ —
a=50
evaluate tx1 b = 150
commit (a, 50)
- commit (b, 150)

% a b
tx1 /

a=a-50% a: 100 b : 100
b = b+ 50%
J
|
prepare (a) -
repare (b
prepare (b) >
[a : locked] [b : locked J
a:100
4 — b:100
-+ —
a=50
evaluate tx1 [b = 150 }
commit (a, 50)
- commit (b, 150)
|

3 (o

tx1
a=a-50%
b = b+ 50%

evaluate tx1

ok

(oo

>

[b : locked J

(o

% a
[a: 100]
-
prepare (a)
- prepare (b)
[a : locked]
a:100
<+ — b:100
-+
a=>50
b =150
commit (a, 50)
- commit (b, 150)
[a: 50 J
ok
-] ok
4

Baseline O RU

__

a=a-508
b = b+ 508

evaluate tx1 [

> prepare (a) .l
prepare (b)
>
[a Iocked] [b:locked]
- ———um -
= — —— — — — — — — — — — — — — — — —
a=50
b=150]
commit (a, 50)
>
® .

2PC Problems

®*Availability
*Scalability

2PC

®|If a coordinator loses its state the databases will be blocked
and require a DBA intervention

2PC + Paxos

®|If a coordinator loses its state the databases will be blocked
and require a DBA intervention

® A consensus (replication) protocol may help with state
reliability

2PC + Paxos = Paxos Commit

®|If a coordinator loses its state the databases will be blocked
and require a DBA intervention

® A consensus (replication) protocol may help with state
reliability

®* A combination of Paxos and 2PC allows to have multiple
solves availability problem and allow multiple coordinators
coexist and distribute load

Paxos Commit

Consensus on Transaction Commit

Jim Gray and Leslie Lamport

Microsoft Research

1 January 2004
revised 19 April 2004, 8 September 2005, 5 July 2017

MSR-TR-2003-96

This paper appeared in ACM Transactions on Database Systems, Volume 31, Issue
1, March 2006 (pages 133-160). This version should differ from the published one
only in formatting, except that it corrects one minor error on the last page.

Copyright 2005 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
to republish, to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept, ACM Inc.,
fax +1 (212) 869-0481, or permissions@acm.org.

™

[

=
T o
i1l
oo
+
o1 U1

R

a=a-50
b=b+50

X

create (tx1)

-

tx1 keys:a,b
status: pending
created

pu—

(oo

2

1 a=a-50
b=b+50

X

tx
- create (tx1)
-
tx1 keys:a,b
status: pending
created
-4 —

a

(oo

prepare (a, tx1)

prepare (b, tx1)

b

2

evaluate tx1

b

()

>

[b : locked (100, txl)J

—

/ tx a
- create (tx1) [a:100 j
|
tx1 keys:a,b
status: pending
created
-4 — prepare (a, tx1) prepare (b, tx1)
[a: locked (100, txl)J
- a:100] b : 100
-+
=50

a=
b =150

evaluate tx1

b

2

>

[b : locked (100, txl)J

—

/ tx a
- create (tx1) [a:100 j
tx1 keys:a,b
status: pending
created
<] prepare (a, tx1) orepare (b, tx1)
[a: locked (100, txl)J

- a:100 _ b : 100

-+
a=>50
b =150

commit (tx1, 50, 150)

If pending

b

a-50
b+ 50

evaluate tx1

b

2

>

[b : locked (100, txl)J

—

/ tx a
- create (tx1) [a:100 j
tx1 keys:a,b
status: pending
created
<] prepare (a, tx1) orepare (b, tx1)
[a: locked (100, txl)J

- a:100 _ b : 100

-+
a=>50
b =150

commit (tx1, 50, 150)

commited \.

If pending

(ﬂ keys: a, b

values: 50, 150

status: commited

a

(oo

prepare (a, tx1)

prepare (b, tx1)

b

2

>

[a: locked (100, txl)J

[b : locked (100, txl)J

a:100

—

b:100

—

J

tx1 a=a-50 tx
b =b+ 50 /
- create (tx1)
-
tx1 keys:a,b
status: pending
created
- —
-
-+
luate tx1 a =50
evaluate tx b = 150
commit (tx1, 50, 150)
If pending
(tx1 keys:a, b
status: commited
values: 50, 150
ok commited \.
- 4

commit (a, 50)

commit (b, 150)

>

(o

(o)

a

(oo

prepare (a, tx1)

prepare (b, tx1)

b

2

>

[a: locked (100, txl)J

a:100

—

[b : locked (100, txl)J

b:100

—

J

commit (a, 50)

commit (b, 150)

>

, =

—

ok

(o)

P—

tx1 a=a-50 tx
b =b+ 50 /
- create (tx1)
-
tx1 keys:a,b
status: pending
created

- —
-
-+
luate tx1 a =50
evaluate tx b = 150

commit (tx1, 50, 150)
If pending
(tx1 keys:a, b
status: commited
values: 50, 150
ok commited \-
- 4
delete (tx1)
|

Paxos Commit (PC) 88 %

(o

>

b : locked (100, tx1) J

o

(o

tx a
xi
a=a-50%
b =b+ 503 [a:lOO] [a:mo]
create (tx1)
>
tx1 keys:a, b
status: pending
-4 created — prepare (a, tx1)
prepare (b, tx1)
[a : locked (100, txl)j
a: 100
- — b:100
-4
a=>50
b =150 evaluate tx1
commit (tx1, 50, 150) >
if pending ~ ~
tx1 keys: a,b
status: commited
values: 50, 150
commited - J _ 50
— commit (a, i
il () - commit (b, 150)
[a:50 J
~s i - ok
delete (tx1)
|

Conflicts

tx2
a=a-50%
c=c+50%

create (tx1)

tx

|

tx1 keys:a, b
status: pending

prepare (a, tx1)

(oo

a:100

|

[a : locked (100, tx1) J

—

Ixi tx2
a=a-50% a=a-50%
b = b + 50% c = c + 50% tx
N create (tx1)
>
tx1 keys:a, b

status: pending

prepare (a, tx1)

(oo

a:100

|

[a : locked (100, tx1) J

—

create (tx2)

et

tx2 keys: a, c
status: pending

|

created

tx2
a=a-50%
c=c+50%

create (tx1)

tx

|

tx1 keys:a, b
status: pending

prepare (a, tx1)

(oo

a:100

|

[a : locked (100, tx1) J

—

create (tx2)

created

et

tx2 keys: a, c
status: pending

|

prepare (a, tx2)

k8

conflict (tx1)

(tx2

(o

|

[a : locked (100, tx1) J

—

Ix1
a=a-50% a=a-50%
b = b + 50% c = c + 50% tx
N create (tx1)
.
tx1 keys:a, b
status: pending
-4 — prepare (a, tx1)
- a: 100
create (tx2)
el
tx2 keys: a, c
status: pending
created
il — prepare (a, tx2)
- conflict (tx1)
abort (tx1) >
if pending
tx1 keys:a, b
status: aborted
aborted

(oo

|

[a : locked (100, tx1) J

—

>

x1 2
a=a-50% a=a-50%
b = b + 50% c = c + 50% tx
N / create (tx1)
>
tx1 keys:a, b
status: pending
€ — prepare (a, tx1)
< a: 100
create (tx2)
el
tx2 keys: a, c
status: pending
created
il — prepare (a, tx2)
- conflict (tx1)
abort (tx1) >
if pending
tx1 keys: a, b
status: aborted
aborted
< — prepare (a, tx2, tx1)
a: 100
-¢—

[a : locked (100, tx2) J

cost multipher

11

10

10

20

30

40 50 60
% of conflicting transactions

70

80

20

100

Two Phase Commit availability and scalability

Paxos Commit scalability or high cost on conflicts

clients as

coordinators clients as
with coordinator coordinators with

W|thogt 100% contention
contention

2PC 55%

PC 88% 788% 4322%

tl

t2

tl

t2

t3

t4

with coordinator

clients as
coordinators
without conflicts

clients as

coordinators with
100% conflicts

2PC 55%
PC 88 % 788% 4322%
PC + Double reads 122% 555%

Elger

To appear in Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI'13), Lombard, IL, April 2013

Stronger Semantics for Low-Latency Geo-Replicated Storage

Wyatt Lloyd*, Michael J. Freedman*, Michael Kaminsky', and David G. Andersen?
*Princeton University, Tintel Labs, ftCarnegie Mellon University

Abstract

We present the first scalable, geo-replicated storage sys-
tem that guarantees low latency, offers a rich data model,
and provides “stronger” semantics. Namely, all client
requests are satisfied in the local datacenter in which
they arise; the system efficiently supports useful data
model abstractions such as column families and counter
columns; and clients can access data in a causally-
consistent fashion with read-only and write-only transac-
tional support, even for keys spread across many servers.

The primary contributions of this work are enabling
scalable causal consistency for the complex column-
family data model, as well as novel, non-blocking al-
gorithms for both read-only and write-only transactions.
Our evaluation shows that our system, Eiger, achieves
low latency (single-ms), has throughput competitive with
eventually-consistent and non-transactional Cassandra
(less than 7% overhead for one of Facebook's real-world
workloads), and scales out to large clusters almost lin-
carly (averaging 96% increases up to 128 server clusters).

1 Introduction

Large-scale data stores are a critical infrastructure com-
ponent of many Internet services. In this paper, we
address the problem of building a geo-replicated data
store targeted at applications that demand fast response
times. Such applications are now common: Amazon,
EBay, and Google all claim that a slight increase in
user-perceived latency translates into concrete revenue
loss [25, 26, 41, 50].

Providing low latency to the end-user requires two
properties from the underlying storage system. First, stor-
age nodes must be near the user to avoid long-distance
round trip times; thus, data must be replicated geographi-
cally to handle users from diverse locations. Second, the
storage layer itself must be fast: client reads and writes
must be local to that nearby datacenter and not traverse
the wide area. Geo-replicated storage also provides the
important benefits of availability and fault tolerance.

Beyond low latency, many services benefit from a
rich data model. Key-value storage—perhaps the sim-

plest data model provided by data stores—is used by a
number of services today [4, 29]. The simplicity of this
data model, however, makes building a number of in-
teresting services overly arduous, particularly compared
to the column-family data models offered by systems
like BigTable [19] and Cassandra [37]. These rich data
models provide hierarchical sorted column-families and
numerical counters. Column-families are well-matched
to services such as Facebook, while counter columns are
particularly useful for numerical statistics, as used by
collaborative filtering (Digg, Reddit), likes (Facebook),
or re-tweets (Twitter).

Unfortunately, to our knowledge, no existing geo-
replicated data store provides guaranteed low latency,
a rich column-family data model, and stronger consis-
tency semantics: consistency guarantees stronger than
the weakest choice—eventual consistency—and support
for atomic updates and transactions. This paper presents
Eiger, a system that achieves all three properties.

The consistency model Eiger provides is tempered by
impossibility results: the strongest forms of consistency—
such as linearizability, sequential, and serializability—
are impossible to achieve with low latency [8, 42] (that is,
latency less than the network delay between datacenters).
Yet, some forms of stronger-than-eventual consistency
are still possible and useful, e.g., causal consistency [2],
and they can benefit system developers and users. In addi-
tion, read-only and write-only transactions that execute a
batch of read or write operations at the same logical time
can strengthen the semantics provided to a programmer.

Many previous systems satisfy two of our three design
goals. Traditional databases, as well as the more re-
cent Walter [52], MDCC [35], Megastore [9], and some
Cassandra configurations, provide stronger semantics
and a rich data model, but cannot guarantee low latency.
Redis [48], CouchDB [23], and other Cassandra config-
urations provide low latency and a rich data model, but
not stronger semantics. Our prior work on COPS [43]
supports low latency, some stronger semantics—causal
consistency and read-only transactions—but not a richer
data model or write-only transactions (see §7.8 and §8
for a detailed comparison).

A key challenge of this work is to meet these three
goals while scaling to a large numbers of nodes in a

max key..changeTime = min key..nodeTime
j j

with coordinator

clients as
coordinators
without conflicts

clients as

coordinators with
100% conflicts

2PC 55%
PC 88% 788% 4322%
PC + Double reads 122% 555%
PC + Eiger 111% 555%

Granola

Granola: Low-Overhead Distributed Transaction Coordination

James Cowling
MIT CSAIL

Abstract

This paper presents Granola, a transaction coordination
infrastructure for building reliable distributed storage ap-
plications. Granola provides a strong consistency model,
while significantly reducing transaction coordination over-
head. We introduce specific support for a new type of
independent distributed transaction, which we can serial-
ize with no locking overhead and no aborts due to write
conflicts. Granola uses a novel timestamp-based coordina-
tion mechanism to order distributed transactions, offering
lower latency and higher throughput than previous systems
that offer strong consistency.

Our experiments show that Granola has low overhead,
is scalable and has high throughput. We implemented
the TPC-C benchmark on Granola, and achieved 3 the
throughput of a platform using a locking approach.

1 Introduction

Online storage systems run at very large scale and typically
partition their state among many nodes to provide fast
access and sufficient storage space. These systems need to
provide persistence, availability, and good performance.

It is also highly desirable to run operations as atomic
transactions, since this greatly simplifies the reasoning
that application developers must do. Transactions allow
users to ignore concurrency, since all operations appear
to run sequentially in some serial order. Most distributed
storage systems do not provide serializable transactions,
however, because of concerns about performance and par-
tition tolerance. Instead, they provide weaker semantics,
e.g., eventual consistency [14] or causality [26].

This paper presents Granola, an infrastructure for build-
ing distributed storage applications where data resides
at multiple storage repositories. Granola supports atomic
transactions, and provides serializability across all oper-
ations. Granola also provides persistence and high avail-
ability, along with low per-transaction overhead.

Barbara Liskov
MIT CSAIL

Granola provides transaction ordering, atomicity and
reliability on behalf of storage applications that run on the
platform. Applications specify their own operations, and
Granola does not interpret operation semantics. Granola
can thus be used to support a wide variety of storage sys-
tems, such as databases and object stores. Granola imple-
ments atomic one-round transactions. These execute in one
round of communication between a user and the storage
system, and are used extensively in online transaction pro-
cessing workloads to avoid the cost of user stalls [7,20,32].

Granola supports three classes of one-round transac-
tions. Single-repository transactions execute on a single
storage node; we expect that most transactions will be
in this class, since data is likely to be well-partitioned.
Coordinated distributed transactions execute atomically
across multiple storage nodes, and commit only if all par-
ticipants vote to commit; these transactions are what is
provided by traditional two-phase commit. We also sup-
port a new transaction class, which we term independent
distributed transactions. These execute atomically across
a set of nodes, but do not require agreement, since each
participant will independently come to the same commit
decision. Examples include an operation to give everyone
a raise, an atomic update of a replicated table, or a read-
only query that obtains a snapshot of distributed tables.

Granola uses a timestamp-based coordination mecha-
nism to provide serializability for single-repository and
independent transactions without locking, using clients to
propagate timestamp ordering constraints between repos-
itories. This provides a substantial reduction in overhead
from locking, log management and aborts, and a con-
sequent improvement in throughput. Granola provides
this lock-free coordination protocol while handling single-
repository and independent transactions, and adopts a lock-
based protocol when handling coordinated transactions.
Granola’s throughput is similar to existing state-of-the-art
approaches when operating under the locking protocol, but
significantly higher when it is not.

Granola provides low latency for all transaction types:

-+
=

a=a-50%
b=Db+50%

time:5

(")
a:100

s

time : 10

\

)

4 A
b:100

-+
=

a=a-50%
b=Db+50%

execute (tx1)

time:5

(")
a:100

s

time : 10

\

)

4 A
b:100

-+
=

a=a-50%
b=Db+50%

execute (tx1)

s

time : 10

\

)

4 A
b:100

tx1
a=a-50%
b=b+50%
_ J 4) 4)
time:5 time : 10
. J _
4 I) 4 : N
a: 100 b:100
execute (tx1) N y N y
|
[time : 6 J
- ' N\
tx1 ts: 5
a=a-50
b=b+50
N y execute (tx1, ts : 5)

-+
=

a=a-50%
b=Db+50%

execute (tx1)

execute (tx1, ts : 5)

s

time :

N
10

)

4 A
b:100

>

[time :

“)

)

-
tx1 ts: 10

a=a-50

b=b

\

+ 50

J

execute tx1
at 10

|

-+
=

a=a-50%
b=>b+50%
4 N 4 ™
time:5 time : 10
N |]
4 (")
a:100 b:100
execute (tx1) N y N y
o
[time : 6 J
' A
X1 ts: 5
a=a-50
b=b+50
y execute (tx1, ts : 5)
|
[time : 11]
)
~ N
tx1 ts: 10
a=a-50
b=b+50
ok (ts : 10) N J
-

execute tx1
at 10

|

execute tx1
at 10

|

-+
=

\

J

execute tx1
at 10

|

a=a-50%
b=>b+50%
4 N 4 ™
time:5 time : 10
.
|]
4 (")
a:100 b:100
execute (tx1) N y N y
o
[time : 6 J
:)
tx1 ts: 5
a=a-50
b=b+50
y execute (tx1, ts : 5)
|
[time : 11]
)
-
tx1 ts: 10
a=a-50
b=b+50
ok (ts : 10) N
< — | execute tx1
at 10
rt' 11\
ime :
L |) [b:150]
[a:50)
\- J executed (tx1)
>
executed (tx1)
-

-+
=

a=a-50%
b=Db+50%

execute (tx1)

ok

- A

time:5 time : 10
.
4 : (:)
a:100 b:100
\ J \. J
|
[time : 6 J
' A
tx1 ts: 5
a=a-50
b=b+50
y execute (tx1, ts : 5)
>
[time : 11]
)
~ N
tx1 ts: 10
a=a-50
b=b+50
ok (ts : 10) N J
-
— | execute tx1 execute tx1
at 10 at 10
(] 11\
time :
L |) [b: 150]
[a:50 |
\- J executed (tx1)
>
executed (tx1)
-
%Y delete (tx1) %) delete (tx1)

Independent transactions

Abort when “a” o
“b” Is In a blacklist;

a=a-50;
b=b+50;

with coordinator

clients as
coordinators
without conflicts

clients as

coordinators with
100% conflicts

2PC 55%
PC 88% 788% 4322%
PC + Double 1220/, 5550,
reads
PC + Eiger 111% 555%
Granola 77% 77%

Correctness vs Performance

Isolation Stale read | Write skew | Lost update | Read skew
Strict
serializability
Serializability v/
Snhapshot
Isolation v v
Read Atomic e v e
Read / / / /

Committed

Write skew

. k
if b >0:

a= 0

m —

Snapshot isolation

Snapshot isolation

Execute a transaction unless global condition changea:
*please do Xif I'm still a leader

Snapshot isolation

Execute a transaction unless global condition changea:

*please do Xif I'm still a leader
*please do Xif a cached value hasn’'t changed

*Previous workload: transfers between two accounts and
reading three accounts.

*Previous workload: transfers between two accounts and
reading three accounts.

*Each initiator of a transaction caches a blacklist

*Previous workload: transfers between two accounts and
reading three accounts.

*Each initiator of a transaction caches a blacklist

®If any of the accounts in a transaction is in the blacklist the
transaction is rejected before its even started

*Previous workload: transfers between two accounts and
reading three accounts.

*Each initiator of a transaction caches a blacklist

®If any of the accounts in a transaction is in the blacklist the
transaction is rejected before its even started

*We want to avoid a divergence between the cached
blacklist and the actual blacklist to prevent fraud ASAP

*Previous workload: transfers between two accounts and
reading three accounts.

*Each initiator of a transaction caches a blacklist

®If any of the accounts in a transaction is in the blacklist the
transaction is rejected before its even started

*We want to avoid a divergence between the cached
blacklist and the actual blacklist to prevent fraud ASAP

®* A solution is to include a condition on the blacklist’s
version Into all transactions

with coordinator

clients as
coordinators without

clients as
coordinators with

conflicts 100% conflicts
2PC 81%
PC 100% 5218% 4854%
PC + Double reads 1009% 1336%
PC + Eiger 990% 1045%
Granola 118% 118%

Percolator

Large-scale Incremental Processing
Using Distributed Transactions and Notifications

Daniel Peng and Frank Dabek

dpengf@google.com,

fdabek@gocgle.com

Google, Inc.

Abstract

Updating an index of the web as documents are
crawled requires continuously transforming a large
repository of existing documents as new documents ar-
rive. This task is one example of a class of data pro-
cessing tasks that transform a large repository of data
via small, independent mutations. These tasks lie in a
gap between the capabilities of existing infrastructure.
Databases do not meet the storage or throughput require-
ments of these tasks: Google’s indexing system stores
tens of petabytes of data and processes billions of up-
dates per day on thousands of machines. MapReduce and
other batch-processing systems cannot process small up-
dates individually as they rely on creating large batches
for efficiency.

We have built Percolator, a system for incrementally
processing updates to a large data set, and deployed it
to create the Google web search index. By replacing a
batch-based indexing system with an indexing system
based on incremental processing using Percolator, we
process the same number of documents per day, while
reducing the average age of documents in Google search
results by 50%.

1 Introduction

Consider the task of building an index of the web that
can be used to answer search queries. The indexing sys-
tem starts by crawling every page on the web and pro-
cessing them while maintaining a set of invariants on the
index. For example, if the same content is crawled un-
der multiple URLs, only the URL with the highest Page-
Rank [28] appears in the index. Each link is also inverted
so that the anchor text from each outgoing link is at-
tached to the page the link points to. Link inversion must
work across duplicates: links to a duplicate of a page
should be forwarded to the highest PageRank duplicate
if necessary.

This is a bulk-processing task that can be expressed
as a series of MapReduce [13] operations: one for clus-
tering duplicates, one for link inversion, etc. It's easy to
maintain invariants since MapReduce limits the paral-

lelism of the computation; all documents finish one pro-
cessing step before starting the next. For example, when
the indexing system is writing inverted links to the cur-
rent highest-PageRank URL, we need not worry about
its PageRank concurrently changing; a previous MapRe-
duce step has already determined its PageRank.

Now, consider how to update that index after recrawl-
ing some small portion of the web. It’s not sufficient to
run the MapReduces over just the new pages since, for
example, there are links between the new pages and the
rest of the web. The MapReduces must be run again over
the entire repository, that is, over both the new pages
and the old pages. Given enough computing resources,
MapReduce’s scalability makes this approach feasible,
and, in fact, Google's web search index was produced
in this way prior to the work described here. However,
reprocessing the entire web discards the work done in
earlier runs and makes latency proportional to the size of
the repository, rather than the size of an update.

The indexing system could store the repository in a
DBMS and update individual documents while using
transactions to maintain invariants. However, existing
DBMSs can’t handle the sheer volume of data: Google’s
indexing system stores tens of petabytes across thou-
sands of machines [30]. Distributed storage systems like
Bigtable [9] can scale to the size of our repository but
don’t provide tools to help programmers maintain data
invariants in the face of concurrent updates.

An ideal data processing system for the task of main-
taining the web search index would be optimized for in-
cremental processing; that is, it would allow us to main-
tain a very large repository of documents and update it
efficiently as each new document was crawled. Given
that the system will be processing many small updates
concurrently, an ideal system would also provide mech-
anisms for maintaining invariants despite concurrent up-
dates and for keeping track of which updates have been
processed.

The remainder of this paper describes a particular in-
cremental processing system: Percolator. Percolator pro-
vides the user with random access to a multi-PB reposi-
tory. Random access allows us to process documents in-

tx1

if blacklist =12
a=a-50%
b=Db+50$ /

tx1

if blacklist =12
a=a-50%
b=b+50%

tss=1

X

get time()

ok(1)

>

blacklist

tx1

if blacklist =12
a=a-50%
b=b+50%

tss=1

X

get time()

ok(1)

read(a)@tss

(o

. read(b)@tss

i >
b blacklist
N~ N~

ESlES

read(blacklist)

> @tss

tx1

if blacklist =12
a=a-50%
b=b+50%

tss=1

blacklist = 12
a=100
b=100

/

get time()

ok(1)

read(a)@tss

(o

. read(b)@tss

i >
b blacklist
N~ N~

ESlES

read(blacklist)

> @tss

Ty

tx1

if blacklist =12
a=a-50%
b=b+50%

tss=1

blacklist = 12
a=100
b=100

/

get time()

ok(1)

read(a)@tss

(o

. read(b)@tss

i >
b blacklist
N~ N~

ESlES

read(blacklist)

> @tss

Ty

tx1
tss=1
a=50%
b =150%

X

tx1
tss=1
a=50%
b =150%

prepare(a, tx1, tss)

prepare(b, tx1, tss)

X

prepare(a, tx1, tss)

prepare(b, tx1, tss)

».
4)
tx1
tss=1
a=50%
b =150%
\ ,
-
-—
get time()
ok(2)

tsc=2 |a&

/

prepare(a, tx1, tss)

prepare(b, tx1, tss)

».
4)
tx1
tss=1
a =50%
b = 150%
& J
-
-
get time()
ok(2)
tsc=2 |a&

commit(tx1)

/

prepare(a, tx1, tss)

prepare(b, tx1, tss)

».
4)
tx1
tss=1
a =50%
b = 150%
& J
-
-¢—
get time()
ok(2)
tsc=2 |a&
commit(tx1)
ok .

commit(tx1, a, 50, tsc)

commit(tx1, b, 150, tsc)

/

tx1
tss=1
a=50%

b = 150%

tsc=2

prepare(a, tx1, tss)

prepare(b, tx1, tss)

¥

get time()

commit(tx1)

ok .

ok(2)

commit(tx1, a, 50, tsc)

commit(tx1, b, 150, tsc)

¥

delete(tx1)

clients as clients as
with coordinator |coordinators without| coordinators with
conflicts 100% conflicts
2PC 81%
PC + Eiger 990% 1045%
Granola 118% 118%
Percolator 90% 90% 900%

|solation Stale read Write skew | Lost update | Read skew
Strict
L ahili
Serializability v/
Shapshot
- olab 4 v
Read Atomic 4 v v
Read / / / /

Committed

L ost update
N

—50

. = L= ==

b -=150
. — .

Read Atomic

Use cases
*backups
*secondary indexing

*materialized view
maintenance

RAMP

Scalable Atomic Visibility with RAMP Transactions

Peter Bailis, Alan Fekete', Ali Ghodsi, Joseph M. Hellerstein, lon Stoica
UC Berkeley and TUniversity of Sydney

ABSTRACT

Databases can provide scalability by partitioning data across several
servers. However, multi-partition, multi-operation transactional ac-
cess is often expensive, employing coordination-intensive locking,
validation, or scheduling mechanisms. Accordingly, many real-
world systems avoid mechanisms that provide useful semantics for
multi-partition operations. This leads to incorrect behavior for a
large class of applications including secondary indexing, foreign key
enforcement, and materialized view maintenance. In this work, we
identify a new isolation model—Read Atomic (RA) isolation—that
matches the requirements of these use cases by ensuring atomic vis-
ibility: either all or none of each transaction’s updates are observed
by other transactions. We present algorithms for Read Atomic Multi-
Partition (RAMP) transactions that enforce atomic visibility while
offering excellent scalability, guaranteed commit despite partial
failures (via synchronization independence), and minimized com-
munication between servers (via partition independence). These
RAMP transactions correctly mediate atomic visibility of updates
and provide readers with snapshot access to database state by using
limited multi-versioning and by allowing clients to independently
resolve non-atomic reads. We demonstrate that, in contrast with ex-
isting algorithms, RAMP transactions incur limited overhead—even
under high contention—and scale linearly to 100 servers.

1. INTRODUCTION

Faced with growing amounts of data and unprecedented query
volume, distributed databases increasingly split their data across
multiple servers, or partitions, such that no one partition contains
an entire copy of the database [7,13,18,19,22,29 43]. This strategy
succeeds in allowing near-unlimited scalability for operations that
access single partitions. However, operations that access multiple
partitions must communicate across servers—often synchronously—
in order to provide correct behavior. Designing systems and algo-
rithms that tolerate these communication delays is a difficult task
but is key to maintaining scalability [17, 28,29, 35].

In this work, we address a largely underserved class of appli-
cations requiring multi-partition, atomically visible! transactional
access: cases where all or none of each transaction’s effects should
be visible. The status quo for these multi-partition atomic transac-
tions provides an uncomfortable choice between algorithms that

"Our use of “atomic” (specifically, Read Atomic isolation) concems all-or-nothing
visibility of updates (1.e., the ACID solation effects of ACID atomicty; Section 3).
Thas daflers from uses of “atomacity” to denote serializability (8] or ineanzabality [4).
Permission 1o make digital or hard copies of all or part of this work lor personal or
classroom use 18 granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permutted. To copy otherwase, or
republish, 1o post on servers or (o redistnbulte to lists, requires prior specafic permission
andfor a fee. Request permissions from permissions @ acm.org.

SIGMOD'14, June 22-27, 2014, Snowbird, UT, USA.

Copynght is held by the owned/author(s). Publication nights licensed to ACM.

ACM 978-1-4503-2376-5/14/06 _..§15.00.
hupe//dx.dos.org/10.1145/2588555. 2588 562.

are fast but deliver inconsistent results and algorithms that de-
liver consistent results but are often slow and unavailable under
failure. Many of the largest modern, real-world systems opt for
protocols that guarantee fast and scalable operation but provide
few—if any—transactional semantics for operations on arbitrary
sets of data items [11, 13, 15,22,26,38,44]. This results in incor-
rect behavior for use cases that require atomic visibility, includ-
ing secondary indexing, foreign key constraint enforcement, and
materialized view maintenance (Section 2). In contrast, many tra-
ditional transactional mechanisms correctly ensure atomicity of
updates [8, 17,43]. However, these algorithms—such as two-phase
locking and variants of optimistic concurrency control—are often
coordination-intensive, slow, and, under failure, unavailable in a
distributed environment [5, 18, 28, 35]. This dichotomy between
scalability and atomic visibility has been described as “a fact of
life in the big cruel world of huge systems” [25]. The prolifera-
tion of non-transactional multi-item operations is symptomatic of a
widespread “fear of synchronization™ at scale [9].

Our contribution in this paper is to demonstrate that atomically
visible transactions on partitioned databases are not at odds with
scalability. Specifically, we provide high-performance implementa-
tions of a new, non-serializable isolation model called Read Atomic
(RA) isolation. RA ensures that all or none of each transaction’s
updates are visible to others and that each transaction reads from an
atomic snapshot of database state (Section 3)—this is useful in the
applications we target. We subsequently develop three new, scalable
algorithms for achieving RA isolation that we collectively title Read
Atomic Multi-Partition (RAMP) transactions (Section 4). RAMP
transactions guarantee scalability and outperform existing atomic
algorithms because they satisfy two key scalability constraints. First,
RAMP transactions guarantee synchronization independence: one
client’s transactions cannot cause another client’s transactions to
stall or fail. Second, RAMP transactions guarantee partition inde-
pendence: clients never need to contact partitions that their trans-
actions do not directly reference. Together, these properties ensure
guaranteed completion, limited coordination across partitions, and
horizontal scalability for multi-partition access.

RAMP transactions are scalable because they appropriately con-
trol the visibility of updates without inhibiting concurrency. Rather
than force concurrent reads and writes to stall, RAMP transactions
allow reads to “race” writes: RAMP transactions can autonomously
detect the presence of non-atomic (partial) reads and, if necessary,
repair them via a second round of communication with servers. To
accomplish this, RAMP writers attach metadata to each write and
use limited multi-versioning to prevent readers from stalling. The
three algorithms we present offer a trade-off between the size of this
metadata and performance. RAMP-Small transactions require con-
stant space (a timestamp per write) and two round trip time delays
(RTTs) for reads and writes. RAMP-Fast transactions require meta-
data size that is linear in the number of writes in the transaction but
only require one RTT for reads in the common case and two in the
worst case. RAMP-Hybrid transactions employ Bloom filters [10] to
provide an intermediate solution. Traditional techniques like locking

How to write

tx1
a=50%
b =50%

get time()

time=1

tx1
a=50%
b =50%

get time()

time=1

prepare(a, 50, 1, [b])

> prepare(b, 50, 1, [a])

tx1
a=50%
e ([afofon[*]| ([b]oJo]q
get time()
-
time=1 prepare(a, 50, 1, [b])
prepare(b, 50, 1, [a])
501 |[b] 501 |[a]
0 1 0 1

tx1
a=50%
o ofo[g[] ([bJoTo]n
get time()
-
time=1 prepare(a, 50, 1, [b])
prepare(b, 50, 1, [a])
501 |[b] 501 |[a]
0 0
ok []) . []
-4 ok
-—
commit(a, 1)
commit(b, 1)

tx1
a=50%
o ofo[g[] ([bJoTo]n
get time()
-
time=1 prepare(a, 50, 1, [b])
prepare(b, 50, 1, [a])
501 |[b] 501 |[a]
0 0
ok []) . []
-4 ok
-t
commit(a, 1)
commit(b, 1)
50 (1 |[b]
p
0 [50[1 [[a]

i

tx1
a=50%
o ofo[g[] ([bJoTo]n
get time()
-
time=1 prepare(a, 50, 1, [b])
prepare(b, 50, 1, [a])
501 |[b] 501 |[a]
0 0
ok []) . []
-4 ok
-t
commit(a, 1)
commit(b, 1)
50 (1 |[b]
p
0 [50[1 [[a]
ok g
- \ 0 1
ok
-

x1
read(a)
read(b)

a [50[1 [[0][*

@]

NN

How to read

x1
read(a)
read(b)

read(a)

50

[b]

I

read(b)

50

a]

1

tx1

rea_d(a)
read(b)

read(a)

50

[b]

I

read(b)

50

a]

1

i

50

[b]

1

tx1

rea_d(a)
read(b)

read(a)

50

[b]

I

read(b)

50

a]

1

i

50

[b]

1

read(b)@1

Ix1
read(a)
read(b)

read(a)

50

[b]

I

read(b)

50

a]

1

i

50

[b]

1

read(b)@1

50

[b]

50

[a]

with coordinator

clients as
coordinators
without conflicts

clients as

coordinators with
100% conflicts

2PC 55%
PC 88% 788% 4322%
PC + Eiger 111% 555%
Granola 77% 77%
RAMP 66 % 66 %

Key takeaway

*new protocols were invented since 2000s

Key takeaway

*new protocols were invented since 2000s
*distributed transactions became practical

Key takeaway

*new protocols were invented since 2000s

*distributed transactions became practical

*the cost (work / latency) overhead is 70-120% depending
on a protocol and workload

Key takeaway

*new protocols were invented since 2000s

*distributed transactions became practical

*the cost (work / latency) overhead is 70-120% depending
on a protocol and workload

®read papers, make experiment

https://bitcointalk.org/index.php?topic=499580

https://twitter.com/bradfitz/status/885288352244 576256

hitps://m.habr.com/ru/post/258449/

Life beyond TX: https://queue.acm.org/detail.cfm?id=3025012

https://www.oracle.com/technetwork/products/clustering/overview/distributed-transactions-and-xa-163941 .pdf

https://en.wikipedia.org/wiki/CAP_theorem

SNOW: https://www.usenix.org/system/files/conference/osdi16/osdi16-lu.pdf

Cosmos DB: https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

Paxos Commit: https://lamport.azurewebsites.net/video/consensus-on-transaction-commit.pdf

Eiger: https://www.cs.cmu.edu/~dga/papers/eiger-nsdi2013.pdf

Granola: https://www.usenix.orqg/system/files/conference/atc12/atc12-final118.pdf

Percolator: https://ai.google/research/pubs/pub36726

RAMP: http://www.balilis.org/papers/ramp-sigmod2014.pdf

http://www.oracle.com/technetwork/products/clustering/overview/distributed-transactions-and-xa-163941.pdf
http://www.oracle.com/technetwork/products/clustering/overview/distributed-transactions-and-xa-163941.pdf
http://www.usenix.org/system/files/conference/osdi16/osdi16-lu.pdf
http://www.usenix.org/system/files/conference/osdi16/osdi16-lu.pdf
http://www.cs.cmu.edu/%7Edga/papers/eiger-nsdi2013.pdf
http://www.cs.cmu.edu/%7Edga/papers/eiger-nsdi2013.pdf
http://www.cs.cmu.edu/%7Edga/papers/eiger-nsdi2013.pdf
http://www.usenix.org/system/files/conference/atc12/atc12-final118.pdf
http://www.usenix.org/system/files/conference/atc12/atc12-final118.pdf
http://www.bailis.org/papers/ramp-sigmod2014.pdf

Cnacunoo!

Denis Rystsov
email: derystso@microsoft.com
twitter: @rystsov

mailto:derystso@microsoft.com

