
The cost of client-side
distributed transactions

Denis Rystsov
@rystsov

derystso@microsoft.com
Microsoft / Cosmos DB

mailto:derystso@microsoft.com

Do we need them?

–Life beyond Distributed Transactions: an Apostate’s Opinion

“When application developers attempt
to use distributed transactions, the

projects founder because the … costs
and fragility make them impractical”

•What did fragility mean in 2000s?

•What did fragility mean in 2000s?
•Are distributed transactions still fragile in 2019?

•What did fragility mean in 2000s?
•Are distributed transactions still fragile in 2019?
•What’s the cost of using distributed
transactions now?

“if ... transaction coordinator becomes unavailable,
then transactions and their associated data ...

cannot be changed until the transaction outcome
is resolved ... by external intervention”

CAP theorem

Availability or Strict Serializability

SNOW theorem

SNOW theorem
•Strict serializability

SNOW theorem
•Strict serializability

•Non blocking

SNOW theorem
•Strict serializability

•Non blocking

•return One value per read & do only One read

SNOW theorem
•Strict serializability

•Non blocking

•return One value per read & do only One read

•no conflicts with Write transactions

•What did fragility mean in 2000s (availability)?
•Do distributed transactions lead to unavailability in 2019?
•What’s the cost of using distributed transactions now?

How to calculate cost?

How to calculate cost?
•Writing a distributed database isn’t a easy endeavor

How to calculate cost?
•Writing a distributed database isn’t a easy endeavor
•Deficiency in any one of a number of factors dooms it to failure

How to calculate cost?
•Writing a distributed database isn’t a easy endeavor
•Deficiency in any one of a number of factors dooms it to failure
•Happy family are all alike; every unhappy family is unhappy in

its own way

How to calculate cost?
•Writing a distributed database isn’t a easy endeavor
•Deficiency in any one of a number of factors dooms it to failure
•Happy family are all alike; every unhappy family is unhappy in

its own way
•Calculate the cost with one DB, extrapolate on others

•The cost of all database operations is normalized by Azure
Cosmos DB and is expressed by Request Units (RU)

•The cost of all database operations is normalized by Azure
Cosmos DB and is expressed by Request Units (RU)

•RU provided for each request

•The cost of all database operations is normalized by Azure
Cosmos DB and is expressed by Request Units (RU)

•RU provided for each request
•Sum RUs to calculate cost of different protocols on
the same workload

Why does the cost matter?

•$$$

•measure of work

•easy to measure

Workload
•A mixed workload with 80% reads and 20% writes

Workload
•A mixed workload with 80% reads and 20% writes
•Write tx transfers “money” between two accounts

Workload
•A mixed workload with 80% reads and 20% writes
•Write tx transfers “money” between two accounts
•Read tx reads balance from three accounts

Workload
•A mixed workload with 80% reads and 20% writes
•Write tx transfers “money” between two accounts
•Read tx reads balance from three accounts
•Fixed rate of collisions between keys of concurrent
transaction

Workload
•A mixed workload with 80% reads and 20% writes
•Write tx transfers “money” between two accounts
•Read tx reads balance from three accounts
•Fixed rate of collisions between keys of concurrent
transaction

•Retry until a fixed number of transactions are successfully
executed

Workload
•A mixed workload with 80% reads and 20% writes
•Write tx transfers “money” between two accounts
•Read tx reads balance from three accounts
•Fixed rate of collisions between keys of concurrent transaction
•Retry until a fixed number of transactions are successfully executed
•Normalize total the cost by the number of successfully executed
transactions

Granola Janus Sagas

RAMP Calvin Cure

Paxos Commit TAPIR COPS

Eiger 2PC Occult

ROCOCO Percolator MDCC

Spanner Omid Walter

Selection criteria

•familiar model (ACID)

Selection criteria

•familiar model (ACID)
•can be used with existing storages

Selection criteria

•familiar model (ACID)
•can be used with existing storages
•doesn’t require specific hardware like atomic clocks

Serializability Snapshot Isolation RA (Read Committed+)

2 phase commit (2PC) Percolator RAMP

Paxos Commit (PC)

Eiger

Granola

Two-Phase Commit

Baseline 9 RU

2PC 14 RU

2PC 55%

2PC Problems

•Availability
•Scalability

2PC

•If a coordinator loses its state the databases will be blocked
and require a DBA intervention

2PC + Paxos

•If a coordinator loses its state the databases will be blocked
and require a DBA intervention

•A consensus (replication) protocol may help with state
reliability

2PC + Paxos = Paxos Commit

•If a coordinator loses its state the databases will be blocked
and require a DBA intervention

•A consensus (replication) protocol may help with state
reliability

•A combination of Paxos and 2PC allows to have multiple
solves availability problem and allow multiple coordinators
coexist and distribute load

Paxos Commit

2PC 55%

Paxos Commit (PC) 88%

Conflicts

Two Phase Commit availability and scalability

Paxos Commit scalability or high cost on conflicts

with coordinator

clients as
coordinators

without
contention

clients as
coordinators with
100% contention

2PC 55%

PC 88% 788% 4322%

with coordinator
clients as

coordinators
without conflicts

clients as
coordinators with
100% conflicts

2PC 55%

PC 88% 788% 4322%

PC + Double reads 122% 555%

Eiger

i
≤max keyi.changeTime

i
min keyi.nodeTime

with coordinator
clients as

coordinators
without conflicts

clients as
coordinators with
100% conflicts

2PC 55%

PC 88% 788% 4322%

PC + Double reads 122% 555%

PC + Eiger 111% 555%

Granola

Independent transactions

a=100;
b=100;

a=a-50;
b=b+50;

Abort when “a” or
“b” is in a blacklist;
a=a-50;
b=b+50;

with coordinator
clients as

coordinators
without conflicts

clients as
coordinators with
100% conflicts

2PC 55%

PC 88% 788% 4322%

PC + Double
reads 122% 555%

PC + Eiger 111% 555%

Granola 77% 77%

Correctness vs Performance

Isolation Stale read Write skew Lost update Read skew

Strict
serializability

Serializability ✓

Snapshot
isolation ✓ ✓

Read Atomic ✓ ✓ ✓

Read
Committed ✓ ✓ ✓ ✓

Write skew
a : 100

b : 100

a : 0

b : 0

if b > 0:
a = 0

if a > 0:
b = 0

Snapshot isolation

Snapshot isolation

Execute a transaction unless global condition changed:
•please do X if I’m still a leader

Snapshot isolation

Execute a transaction unless global condition changed:
•please do X if I’m still a leader
•please do X if a cached value hasn’t changed

•Previous workload: transfers between two accounts and
reading three accounts.

•Previous workload: transfers between two accounts and
reading three accounts.

•Each initiator of a transaction caches a blacklist

•Previous workload: transfers between two accounts and
reading three accounts.

•Each initiator of a transaction caches a blacklist
•If any of the accounts in a transaction is in the blacklist the
transaction is rejected before its even started

•Previous workload: transfers between two accounts and
reading three accounts.

•Each initiator of a transaction caches a blacklist
•If any of the accounts in a transaction is in the blacklist the
transaction is rejected before its even started

•We want to avoid a divergence between the cached
blacklist and the actual blacklist to prevent fraud ASAP

•Previous workload: transfers between two accounts and
reading three accounts.

•Each initiator of a transaction caches a blacklist
•If any of the accounts in a transaction is in the blacklist the
transaction is rejected before its even started

•We want to avoid a divergence between the cached
blacklist and the actual blacklist to prevent fraud ASAP

•A solution is to include a condition on the blacklist’s
version into all transactions

with coordinator
clients as

coordinators without
conflicts

clients as
coordinators with
100% conflicts

2PC 81%

PC 100% 5218% 4854%

PC + Double reads 1009% 1336%

PC + Eiger 990% 1045%

Granola 118% 118%

Percolator

with coordinator
clients as

coordinators without
conflicts

clients as
coordinators with
100% conflicts

2PC 81%

PC + Eiger 990% 1045%

Granola 118% 118%

Percolator 90% 90% 900%

Isolation Stale read Write skew Lost update Read skew

Strict
serializability

Serializability ✓

Snapshot
isolation ✓ ✓

Read Atomic ✓ ✓ ✓

Read
Committed ✓ ✓ ✓ ✓

Lost update
a : 100

c : 100

a : 50

b : 150

a -= 50
b += 50

b -= 50
c += 50

b : 100
b : 50

Read Atomic
Use cases
•backups
•secondary indexing
•materialized view
maintenance

RAMP

How to write

How to read

with coordinator
clients as

coordinators
without conflicts

clients as
coordinators with
100% conflicts

2PC 55%

PC 88% 788% 4322%

PC + Eiger 111% 555%

Granola 77% 77%

RAMP 66% 66%

Key takeaway
•new protocols were invented since 2000s

Key takeaway
•new protocols were invented since 2000s
•distributed transactions became practical

Key takeaway
•new protocols were invented since 2000s
•distributed transactions became practical
•the cost (work / latency) overhead is 70-120% depending
on a protocol and workload

Key takeaway
•new protocols were invented since 2000s
•distributed transactions became practical
•the cost (work / latency) overhead is 70-120% depending
on a protocol and workload

•read papers, make experiment

• https://bitcointalk.org/index.php?topic=499580

• https://twitter.com/bradfitz/status/885288352244576256

• https://m.habr.com/ru/post/258449/

• Life beyond TX: https://queue.acm.org/detail.cfm?id=3025012

• https://www.oracle.com/technetwork/products/clustering/overview/distributed-transactions-and-xa-163941.pdf

• https://en.wikipedia.org/wiki/CAP_theorem

• SNOW: https://www.usenix.org/system/files/conference/osdi16/osdi16-lu.pdf

• Cosmos DB: https://docs.microsoft.com/en-us/azure/cosmos-db/introduction

• Paxos Commit: https://lamport.azurewebsites.net/video/consensus-on-transaction-commit.pdf

• Eiger: https://www.cs.cmu.edu/~dga/papers/eiger-nsdi2013.pdf

• Granola: https://www.usenix.org/system/files/conference/atc12/atc12-final118.pdf

• Percolator: https://ai.google/research/pubs/pub36726

• RAMP: http://www.bailis.org/papers/ramp-sigmod2014.pdf

http://www.oracle.com/technetwork/products/clustering/overview/distributed-transactions-and-xa-163941.pdf
http://www.oracle.com/technetwork/products/clustering/overview/distributed-transactions-and-xa-163941.pdf
http://www.usenix.org/system/files/conference/osdi16/osdi16-lu.pdf
http://www.usenix.org/system/files/conference/osdi16/osdi16-lu.pdf
http://www.cs.cmu.edu/%7Edga/papers/eiger-nsdi2013.pdf
http://www.cs.cmu.edu/%7Edga/papers/eiger-nsdi2013.pdf
http://www.cs.cmu.edu/%7Edga/papers/eiger-nsdi2013.pdf
http://www.usenix.org/system/files/conference/atc12/atc12-final118.pdf
http://www.usenix.org/system/files/conference/atc12/atc12-final118.pdf
http://www.bailis.org/papers/ramp-sigmod2014.pdf

Спасибо!
Denis Rystsov

email: derystso@microsoft.com
twitter: @rystsov

mailto:derystso@microsoft.com

