
Alibaba Dragonwell: 
Towards a Java Runtime for Cloud Computing

Sanhong Li, Chief JVM Architect



Agenda

• Introduction: Java at Alibaba

• Alibaba Dragonwell: Optimizing OpenJDK for Our Needs

• ElasticHeap

• JWarmUp

• JFR Extensions

Joker 2019 2



2019 2019

...

System Software (OS / JVM / Virtualization)

Resource Scheduling / Cluster Management / Container

Database / Storage / Middleware / Computing Platform

Alibaba Infrastructure
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Alibaba lives on JVM
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Web & Application Server RPC Big DataIn-Memory Database

Usage in Alibaba (approx.)

10,000 developers

100,000 applications

1,000,000 JVM instances
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OpenJDK, AJDK and Dragonwell
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AJDK

GCIH

JWarmUpMulti-tenant

Wisp coroutine

ElasticHeap

JFRZenGC

JFR JWarmUp ElasticHeap

Plan to ‘ship’ ALL of them to Alibaba Dragonwell 

and talk to OpenJDK community for contribution

JETAppAOT

GC Runtime Compiler Tools
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Alibaba Dragonwell

• A customized downstream of OpenJDK with free LTS

• https://github.com/alibaba/dragonwell8

• GA in June 2019

• Default JDK distribution in Alibaba Cloud

• Released quarterly 

• Dragonwell11 will be available at end of 2019
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Characteristics of Cloud 
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 Consolidation(shared system with varied workloads) 

• CPU, memory, storage

 Isolation

• Virtualization for security 



JVM vs Hypervisor(Similar to Container)

• JVM is managing resources on 

behalf of user
• Hypervisor is managing 

resources used by each Guest
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Dynamic Memory Scalability

• Cloud offering model is “pay-as-you-use”

• JVM heap sizing strategy is “static”

• -Xmx must be configured statically at launch time

• Inability to return “unused” memory to OS

• Vertical Scalability:  scale up/down memory used by JVM on demand
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ElasticHeap: Scale memory utilization according to application’s needs



G1 Basic Concepts

• G1, introduced in Java 6, fully supported 

from Java7 u4, made as default in Java 9

• Generational

• Region-based
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E: Eden(young)
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‘Under the hood view’ of ElasticHeap

safepoint

S S S

F F F1

evaluate

uncommit queue
ElasticHeap 

Concurrent Thread

OS

munmap(addr, bytes)2

F F

Offload map/unmap operations from VM thread in STW to concurrent thread
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Startup WarmupSteady state

 Class loading

 Interpreter

 Profiling & Method Compilation

√

√

√
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Warmup Overhead in Java
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• Observation #1 High CPU consumption

• Compiler threads consume much more CPU

• Observation #2 Longer response time(RT) 

• Most methods are executed in interpreter
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Warmup Overhead in Real Case
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Warmup Overhead in Real Case



Startup Warmup Steady state

Mock requests

Traffic Control
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Warmup by Mock Requests

RISKY: may NOT produce desired optimization



Warmup Techniques in JVM

• Ahead-of-Time(AOT) compilation

• Experimental feature in JDK9

• Cache compilation 

• “Dynamic AOT” in OpenJ9

• “Compile Stashing” in Zing

• ‘Trace-and-Replay’ compilation

• ReadyNow in Zing

• JWarmUp in Alibaba Dragonwell
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2019JVM JVM

Beta Production

WarmUp

Profile

Record Warmup

JVM JVM

Traffic Control
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JWarmUp Overview



• WarmUp profile mainly contains

Class info

Method info

• Stored in binary format as file on disk

• Recorded once in previous run, distributed 

and used for all subsequent runs.

• Doesn’t support merge 
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WarmUp Profile



• Trigger warmup compilation after 

application startup is done.

• Let user requests come in after 

warmup compilation is done

github: https://github.com/alibaba/dragonwell8_jdk/blob/master/src/share/classes/com/alibaba/jwarmup/JWarmUp.java

Gives DevOps new control over JIT compilation

JWarmUp API
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https://github.com/alibaba/dragonwell8_jdk/blob/master/src/share/classes/com/alibaba/jwarmup/JWarmUp.java


Startup Warmup Full Speed run

Requests come in 

Trigger WarmUp

compilation eagerly

• Eagerly load/initialize necessary 

classes in safe way

• Submit for compilation

• Parse warmup profile

• compile methods if 

condition is satisfied. 

1

2

Check warmup is 

done

4

3

github wiki guide: https://github.com/alibaba/dragonwell8/wiki/Alibaba-Dragonwell8-User-Guide

JWarmup Compilation Process
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https://github.com/alibaba/dragonwell8/wiki/Alibaba-Dragonwell8-User-Guide


Pitfalls in Class Initialization
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new Foo().test(); 1 Foo.count 2  Bar.count

Normally, Bar.<clinit> is triggered by Bar.test() in Foo().test()



Pitfalls in Class Initialization
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1  Bar.count

Initializing Bar eagerly is WRONG!

Bar.<clinit>

NOT safe to initialize class EAGERLY!



notifyApplicationStartupIsDone() API

• Hint by application owner

• The initialization of application is done(assumption: almost of all classes have been 

initialized by application itself)

• Try best to do ‘SAFE’ initialization for remaining classes EAGERLY after calling API

notifyApplicationStartupIsDone()

initialized by application itself initialized by JWarmUp eagerly(safely)
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 Peak CPU usage has been reduced from 75% to 56%

 Time range in peak has been reduced from 8s to 2s

 99.9th response time has reduced from 100ms to 80ms

Optimized Results by JWarmUp
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JIT and JWarmUp

• Reactive compilation, user CAN NOT directly invoke

• Need runtime information as inputs, dynamically 

collected in runtime. 

• Resolution status for external references

• All of classes are resolved by runtime lazily 

• Runtime profiles

• Block profiling

• Edge profiling

• Value profiling

• Method profiling

• Proactive compilation, user can trigger it explicitly 

• Need runtime information as inputs, some of them 

are from log in previous run

• Resolution status for external references

• Some of classes are resolved eagerly(safely)

• Runtime profiles

• Only method profiling recorded in log in current 

implementation, used to proactively compile 

methods. 

JIT JWarmUp
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ReplayCompiles and JWarmUp

 Only existed in debug version

 Find root cause of crashed java 

process in compiled method

 Only repeats the compiling process 

for last compilation task

 Used in production

 Eliminate the warmup overhead at 

application startup.

 Repeats the compiling process for all 

recorded methods(concept is similar)
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Agenda

• Introduction: Java at Alibaba

• Alibaba Dragonwell: Optimizing OpenJDK for Our Needs

• ElasticHeap

• JWarmUp

• JFR Extensions

 Motivations

 Excessive GC pauses

 Excessive de-optimizations

 Implementation 
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Java Flight Recorder (JFR)

• Open Source in OpenJDK 11

• Backport into AlibabaJDK8 for internal use

• Included in Alibaba Dragonwell

• Working with the community to contribute back to OpenJDK8u  8u-jfr-incubator 
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GC Performance Basics

• Frequency

• How frequent are the GC pauses?

• Duration

• How long are those GC pauses (Stop-the-World) can you tolerate?
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Young GC (YGC) in G1
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• G1 uses Mark - Copy algorithm to do the collection

• Rule #1:  Frequency of a YGC event is dominated by 

• Application object allocation rate

• Size of eden space

• Rule #2:  Pause time of YGC is dominated by

• size of live objects, not dead.

Young  GC

y2

Eden Survivor Old

y3y1 s1 o1

y2y1 s1o1

y1， y2， s1Copy
Old
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Young GC (YGC) in G1
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• G1 uses Mark – Copy algorithm to do the collection [Cheney, 1970]

• Rule #1: Frequency of a YGC event is dominated by 

• Application object allocation rate

• Size of eden space

• Rule #2: Pause time of YGC is dominated by

• size of live objects, not dead.

Young  GC

y2

Eden Survivor Old

y3y1 s1 o1

y2y1 s1o1

y1， y2， s1Copy
Old



GC Challenge: Why Pause Happened Frequently?
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time

cpu%

ygc count

/10 min

GC Spikes 



Questions in YGC

• What allocated the most objects?

Joker 2019 45

Deciphering the GC log files is simply daunting
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JIT Basic Concepts

• Mix mode execution

• Profile Guided Optimization

• Optimization decision are made dynamically

• Bail to interpreter if the assumption is wrong
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interpreter

c1

c2

bail



2019

2019

• Unstable if

• Null check

• Class check

• Bimorphic

Top Reasons for Deoptimization

Deoptimization is very expensive if speculation is wrong:

fall back to interpreter and wait for re-compilation 
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JIT Challenge: Why Deoptimization Happened Frequently?
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Bursty traffic comes in



Questions in JIT Performance

• How we can  avoid JIT deoptimization?

(-XX:+PrintCompilation example)
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The JFR State of Art

• Support TLAB allocation statistics by

• EventObjectAllocationOutsideTLAB

• EventObjectAllocationInNewTLAB

• Very useful to check if the occurrence of allocations 

outside of the TLAB is significant 
eden

TLAB1 TLAB2 TLAB3

T1 T2 T3

Notes: all events only occurred in slow path(not in compiled code)!
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JFR Options

• -XX:+EnableJFR                       // Enable JFR feature.   

• -XX:FlightRecorderOptions            // Options for flight recorder

• sampleobjectallocations // true or false

• objectallocationssamplinginterval=2048

// sampling interval, measured by allocation count
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Sample Object Allocation

TLAB  in T1 TLAB in T2 Free Eden

current = tlab_top;
end = current + klass_size;
if (end > tlab_end) {

goto slow_path;
}
tlab_end = end;
init_obj(obj, end);
jfr_sample_fast_alloc
slow_path:
// synchronize with other threads to get new 
tlab
jfr_sample_slow_alloc

Do the object allocation 

sampling both in fast and 

slow path!

Eden End
tlab_top tlab_endpseudo code
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Sampling Implementation in Assembly

#1: Check if sampling flag 

is enabled

#2: Check if the current 

allocation is sampling target

#3: Do the sampling and fire JFR event

sampleobjectallocations

objectallocationssamplinginterval
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Object Allocation Events Extension

<!-- Allocation events -->

<event id=“                                           “ path="java/opto_instance_object_alloc" label="Opto instance object allocation" 

description="Allocation by Opto jitted method" has_thread="true" has_stacktrace="true" is_instant="true">

<value type="CLASS" field="objectClass" label="Object Class" description="Class of allocated instance objec  t"/>

<value type="ADDRESS" field="address" label="Opto Instance Object Allocation Address" description="Address

of allocated instance object"/>

</event>

<event id=“                                       " path="java/opto_array_object_alloc" label="Opto array object allocation " description="Array 

Allocation by Opto jitted method" has_thread="true" has_stacktrace="true" is_instant="true  ">

<value type="CLASS" field="objectClass" label="Object Class" description="Class of allocated array object"/  >

<value type="ADDRESS" field="address" label="Opto Array Object Allocation Address" description="Address of

allocated instance object"/>

<value type="BYTES64" field="allocationSize" label="Object Size" description="The Array Object Size" />

</event>

src/share/vm/trace/traceevents.xml

OptoInstanceObjectAllocation

OptoArrayObjectAllocation

Opto(prefix):  only generated in c2 compiled code
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Event Footprint Optimization

• For array objects，size cannot be determined statically

• array_length is a variant 

• record array size for every sample

• For instance object, object size can be determined from class

• instanceSize = ((InstanceKlass*) klass)->size_helper() * HeapWordSize 

• Record object size in class_constants of JFR binary.

Joker 2019 57

No need to record object size for every instance object event



Sample Biased

for (int i = 0; i < 1000; i ++) {

instance = new Object();

array = new int[1_000_000];

}

The above array allocation event will be missed if 

we take ‘2’ as the sampling interval

• Periodicity bias issue

• Consider introducing statistical distributions, e.g., Poisson, 

in future work 

1 allocation count3 5
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JMC Extension(JMCX) 

• JMCX: command line tool  to parse JFR event results

• Use the API provided by jmc-core library.

• Usage:  jmcx  flamegraph

*.jfr
*.jfr

jmcx

Use memory flame graph to identify the most frequent 

code-paths accurately
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Sampling Overhead 

• When ‘sampleobjectallocations’ is false.

 Sampling code will not even be generated (at compile time)

 Nothing impact on real workload.

• Otherwise

 The overhead is dictated by how often it samples object allocation event 

 ‘objectallocationssamplinginterval’
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Case Study: e-commerce Application

Optimization opportunity:

Most business objects are allocated 

here
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Reduce Object Allocation by Profiling Feedback 

Have been almost optimized 

out!

The YGC frequency has been

reduced by

~30%
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Traditional ‘Feedback Direct Optimization’ (FDO)

profile

GCC exe
cpp

cpp
GCC exe

feedback

instrumented
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FDO in AlibabaJDK
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JVM

compilation.jfr

JVM

user requests

compilation policy file

user requests

feedback to JITrecord1

jmcx  createcompilationpolicy : create compilation policy file from JFR events2

3

(original run) (subsequent run)



Deoptimization Event Extension

<event id="Deoptimization" path="vm/compiler/deoptimization" 

label="Deoptimization“ has_thread="false" is_instant="true">          

<value type="STRING" field="className" label="Class Name"/>    

<value type="STRING" field="classloaderName" label="Classloader Name"/>    

<value type="STRING" field="filePath" label="File Path"/>    

<value type="STRING" field="reason" label="Reason"/>    

<value type="STRING" field="methodName" label="Method Name"/>    

<value type="STRING" field="signature" label="Signature"/>  

</event>

src/share/vm/trace/traceevents.xml
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Compilation Policy File

• Generate code for all pathes. No uncommon trap

deoptimization reason

method name &signature

class entry

Usage:       -XX:+UseFeedbakDirectedOpt -XX:FDOPolicyFile=‘policy file name’

class entry

classloader

entry

method item
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FDO Performance in Production

 Baseline: normal JIT compilation

 FDO: disable speculative optimization based on feedback in previous 

run 

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101103105107109111113115117119

Baseline

FDO

cpu%

time

~10% cpu

saving at peak 

time

Joker 2019 69



Round-up

• Features of AlibabaJDK covered in this talk

• ElasticHeap

• JWarmUp

• JFR extensions

• JFR extension will come to the next release of Dragonwell (stay tuned!) 
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