
Alibaba Dragonwell:
Towards a Java Runtime for Cloud Computing

Sanhong Li, Chief JVM Architect

Agenda

• Introduction: Java at Alibaba

• Alibaba Dragonwell: Optimizing OpenJDK for Our Needs

• ElasticHeap

• JWarmUp

• JFR Extensions

Joker 2019 2

2019 2019

...

System Software (OS / JVM / Virtualization)

Resource Scheduling / Cluster Management / Container

Database / Storage / Middleware / Computing Platform

Alibaba Infrastructure

Joker 2019 3

Alibaba lives on JVM

Joker 2019 4

Web & Application Server RPC Big DataIn-Memory Database

Usage in Alibaba (approx.)

10,000 developers

100,000 applications

1,000,000 JVM instances

2019 2019

OpenJDK, AJDK and Dragonwell

Joker 2019 5

AJDK

GCIH

JWarmUpMulti-tenant

Wisp coroutine

ElasticHeap

JFRZenGC

JFR JWarmUp ElasticHeap

Plan to ‘ship’ ALL of them to Alibaba Dragonwell

and talk to OpenJDK community for contribution

JETAppAOT

GC Runtime Compiler Tools

2019 2019

Alibaba Dragonwell

• A customized downstream of OpenJDK with free LTS

• https://github.com/alibaba/dragonwell8

• GA in June 2019

• Default JDK distribution in Alibaba Cloud

• Released quarterly

• Dragonwell11 will be available at end of 2019

Joker 2019 6

https://github.com/alibaba/dragonwell8

Agenda

• Introduction: Java at Alibaba

• Alibaba Dragonwell: Optimizing OpenJDK for Our Needs

• ElasticHeap

• JWarmUp

• JFR Extensions

Joker 2019 7

Characteristics of Cloud

Joker 2019 8

 Consolidation(shared system with varied workloads)

• CPU, memory, storage

 Isolation

• Virtualization for security

JVM vs Hypervisor(Similar to Container)

• JVM is managing resources on

behalf of user
• Hypervisor is managing

resources used by each Guest

Joker 2019 9

Operating

System

Process

B

Operating

System

Process

A

Hardware

Hypervisor’s view

Operating System

Hardware

JVM’s view

Application

JVM vs

Dynamic Memory Scalability

• Cloud offering model is “pay-as-you-use”

• JVM heap sizing strategy is “static”

• -Xmx must be configured statically at launch time

• Inability to return “unused” memory to OS

• Vertical Scalability: scale up/down memory used by JVM on demand

Joker 2019 10

ElasticHeap: Scale memory utilization according to application’s needs

G1 Basic Concepts

• G1, introduced in Java 6, fully supported

from Java7 u4, made as default in Java 9

• Generational

• Region-based

Joker 2019 11

E: Eden(young)

S: Survivor(young)

O: Old(old)

H: Humongous

F: Free

S

E E

O OO

H S

F

F

F F

F

‘Under the hood view’ of ElasticHeap

safepoint

S S S

F F F1

evaluate

uncommit queue
ElasticHeap

Concurrent Thread

OS

munmap(addr, bytes)2

F F

Offload map/unmap operations from VM thread in STW to concurrent thread

Joker 2019 12

20

19

20

19

CPU utilization

Memory usage

traffic peak

starts
traffic peak

ends

acquire memory

from OS

memory

job job job job

memory

job job job job
Offline

job

Offline

job

User Story of ElasticHeap

Joker 2019 13

20

19

20

19

CPU utilization

Memory usage

traffic peak

starts
traffic peak

ends

acquire memory

from OS

return memory

back to OS

memory

job job job job

memory

job job job job
Offline

job

Offline

job

User Story of ElasticHeap

Joker 2019 14

Agenda

• Introduction: Java at Alibaba

• Alibaba Dragonwell: Optimizing OpenJDK for Our Needs

• ElasticHeap

• JWarmUp

• JFR Extensions

Joker 2019 15

Startup WarmupSteady state

 Class loading

 Interpreter

 Profiling & Method Compilation

√

√

√

Joker 2019 16

Warmup Overhead in Java

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

c
p

u
%

time(in seconds)

cpu%(in user time)

app starts

• Observation #1 High CPU consumption

• Compiler threads consume much more CPU

• Observation #2 Longer response time(RT)

• Most methods are executed in interpreter

Joker 2019 17

Warmup Overhead in Real Case

0

20

40

60

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

c
p

u
%

time(in seconds)

cpu%(in user time)

app starts

• Observation #1 High CPU consumption

• Compiler threads consume much more CPU

• Observation #2 Longer response time(RT)

• Most methods are executed in interpreter

Joker 2019 18

Warmup Overhead in Real Case

Startup Warmup Steady state

Mock requests

Traffic Control

Joker 2019 19

Warmup by Mock Requests

RISKY: may NOT produce desired optimization

Warmup Techniques in JVM

• Ahead-of-Time(AOT) compilation

• Experimental feature in JDK9

• Cache compilation

• “Dynamic AOT” in OpenJ9

• “Compile Stashing” in Zing

• ‘Trace-and-Replay’ compilation

• ReadyNow in Zing

• JWarmUp in Alibaba Dragonwell

Joker 2019 20

Warmup Techniques in JVM

• Ahead-of-Time(AOT) compilation

• Experimental feature in JDK9

• Cache compilation

• “Dynamic AOT” in OpenJ9

• “Compile Stashing” in Zing

• ‘Trace-and-Replay’ compilation

• ReadyNow in Zing

• JWarmUp in Alibaba Dragonwell

Joker 2019 21

Warmup Techniques in JVM

• Ahead-of-Time(AOT) compilation

• Experimental feature in JDK9

• Cache compilation

• “Dynamic AOT” in OpenJ9

• “Compile Stashing” in Zing

• ‘Trace-and-Replay’ compilation

• ReadyNow in Zing

• JWarmUp in Alibaba Dragonwell

Joker 2019 22

2019JVM JVM

Beta Production

WarmUp

Profile

Record Warmup

JVM JVM

Traffic Control

Joker 2019 23

JWarmUp Overview

• WarmUp profile mainly contains

Class info

Method info

• Stored in binary format as file on disk

• Recorded once in previous run, distributed

and used for all subsequent runs.

• Doesn’t support merge

Joker 2019 24

WarmUp Profile

• Trigger warmup compilation after

application startup is done.

• Let user requests come in after

warmup compilation is done

github: https://github.com/alibaba/dragonwell8_jdk/blob/master/src/share/classes/com/alibaba/jwarmup/JWarmUp.java

Gives DevOps new control over JIT compilation

JWarmUp API

Joker 2019 25

https://github.com/alibaba/dragonwell8_jdk/blob/master/src/share/classes/com/alibaba/jwarmup/JWarmUp.java

Startup Warmup Full Speed run

Requests come in

Trigger WarmUp

compilation eagerly

• Eagerly load/initialize necessary

classes in safe way

• Submit for compilation

• Parse warmup profile

• compile methods if

condition is satisfied.

1

2

Check warmup is

done

4

3

github wiki guide: https://github.com/alibaba/dragonwell8/wiki/Alibaba-Dragonwell8-User-Guide

JWarmup Compilation Process

Joker 2019 26

https://github.com/alibaba/dragonwell8/wiki/Alibaba-Dragonwell8-User-Guide

Pitfalls in Class Initialization

Joker 2019 27

new Foo().test(); 1 Foo.count 2  Bar.count

Normally, Bar.<clinit> is triggered by Bar.test() in Foo().test()

Pitfalls in Class Initialization

Joker 2019 28

1  Bar.count

Initializing Bar eagerly is WRONG!

Bar.<clinit>

NOT safe to initialize class EAGERLY!

notifyApplicationStartupIsDone() API

• Hint by application owner

• The initialization of application is done(assumption: almost of all classes have been

initialized by application itself)

• Try best to do ‘SAFE’ initialization for remaining classes EAGERLY after calling API

notifyApplicationStartupIsDone()

initialized by application itself initialized by JWarmUp eagerly(safely)

Joker 2019 29

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13

c
p

u
%

time(in seconds)

cpu%(in user time)

Base JWarmUp

 Peak CPU usage has been reduced from 75% to 56%

 Time range in peak has been reduced from 8s to 2s

 99.9th response time has reduced from 100ms to 80ms

Optimized Results by JWarmUp

Joker 2019 30

JIT and JWarmUp

• Reactive compilation, user CAN NOT directly invoke

• Need runtime information as inputs, dynamically

collected in runtime.

• Resolution status for external references

• All of classes are resolved by runtime lazily

• Runtime profiles

• Block profiling

• Edge profiling

• Value profiling

• Method profiling

• Proactive compilation, user can trigger it explicitly

• Need runtime information as inputs, some of them

are from log in previous run

• Resolution status for external references

• Some of classes are resolved eagerly(safely)

• Runtime profiles

• Only method profiling recorded in log in current

implementation, used to proactively compile

methods.

JIT JWarmUp

Joker 2019 31

JIT and JWarmUp

• Reactive compilation, user CAN NOT directly invoke

• Need runtime information as inputs, dynamically

collected in runtime.

• Resolution status for external references

• All of classes are resolved by runtime lazily

• Runtime profiles

• Block profiling

• Edge profiling

• Value profiling

• Method profiling

• Proactive compilation, user can trigger it explicitly

• Need runtime information as inputs, some of them

are from log in previous run

• Resolution status for external references

• Some of classes are resolved eagerly(safely)

• Runtime profiles

• Only method profiling recorded in log in current

implementation, used to proactively compile

methods.

JIT JWarmUp

Joker 2019 32

JIT and JWarmUp

• Reactive compilation, user CAN NOT directly invoke

• Need runtime information as inputs, dynamically

collected in runtime.

• Resolution status for external references

• All of classes are resolved by runtime lazily

• Runtime profiles

• Block profiling

• Edge profiling

• Value profiling

• Method profiling

• Proactive compilation, user can trigger it explicitly

• Need runtime information as inputs, some of them

are from log in previous run

• Resolution status for external references

• Some of classes are resolved eagerly(safely)

• Runtime profiles

• Only method profiling recorded in log in current

implementation, used to proactively compile

methods.

JIT JWarmUp

Joker 2019 33

JIT and JWarmUp

• Reactive compilation, user CAN NOT directly invoke

• Need runtime information as inputs, dynamically

collected in runtime.

• Resolution status for external references

• All of classes are resolved by runtime lazily

• Runtime profiles

• Block profiling

• Edge profiling

• Value profiling

• Method profiling

• Proactive compilation, user can trigger it explicitly

• Need runtime information as inputs, some of them

are from log in previous run

• Resolution status for external references

• Some of classes are resolved eagerly(safely)

• Runtime profiles

• Only method profiling recorded in log in current

implementation, used to proactively compile

methods.

JIT JWarmUp

Joker 2019 34

ReplayCompiles and JWarmUp

 Only existed in debug version

 Find root cause of crashed java

process in compiled method

 Only repeats the compiling process

for last compilation task

 Used in production

 Eliminate the warmup overhead at

application startup.

 Repeats the compiling process for all

recorded methods(concept is similar)

Joker 2019 35

ReplayCompiles and JWarmUp

 Only existed in debug version

 Find root cause of crashed java

process in compiled method

 Only repeats the compiling process

for last compilation task

 Used in production

 Eliminate the warmup overhead at

application startup.

 Repeats the compiling process for all

recorded methods(concept is similar)

Joker 2019 36

ReplayCompiles and JWarmUp

 Only exists in debug version

 Find root cause of crashed java

process in compiled method

 Only repeats the compiling process

for last compilation task

 Used in production

 Eliminate the warmup overhead at

application startup.

 Repeats the compiling process for all

recorded methods(concept is similar)

Joker 2019 37

Agenda

• Introduction: Java at Alibaba

• Alibaba Dragonwell: Optimizing OpenJDK for Our Needs

• ElasticHeap

• JWarmUp

• JFR Extensions

 Motivations

 Excessive GC pauses

 Excessive de-optimizations

 Implementation

Joker 2019 38

Java Flight Recorder (JFR)

• Open Source in OpenJDK 11

• Backport into AlibabaJDK8 for internal use

• Included in Alibaba Dragonwell

• Working with the community to contribute back to OpenJDK8u  8u-jfr-incubator

Joker 2019 39

GC Performance Basics

• Frequency

• How frequent are the GC pauses?

• Duration

• How long are those GC pauses (Stop-the-World) can you tolerate?

Joker 2019 40

Young GC (YGC) in G1

Joker 2019 41

• G1 uses Mark - Copy algorithm to do the collection

• Rule #1: Frequency of a YGC event is dominated by

• Application object allocation rate

• Size of eden space

• Rule #2: Pause time of YGC is dominated by

• size of live objects, not dead.

Young GC

y2

Eden Survivor Old

y3y1 s1 o1

y2y1 s1o1

y1， y2， s1Copy
Old

Young GC (YGC) in G1

Joker 2019 42

• G1 uses Mark – Copy algorithm to do the collection

• Rule #1: Frequency of a YGC event is dominated by

• Application object allocation rate

• Size of eden space

• Rule #2: Pause time of YGC is dominated by

• size of live objects, not dead.

Young GC

y2

Eden Survivor Old

y3y1 s1 o1

y2y1 s1o1

y1， y2， s1Copy
Old

Young GC (YGC) in G1

Joker 2019 43

• G1 uses Mark – Copy algorithm to do the collection [Cheney, 1970]

• Rule #1: Frequency of a YGC event is dominated by

• Application object allocation rate

• Size of eden space

• Rule #2: Pause time of YGC is dominated by

• size of live objects, not dead.

Young GC

y2

Eden Survivor Old

y3y1 s1 o1

y2y1 s1o1

y1， y2， s1Copy
Old

GC Challenge: Why Pause Happened Frequently?

Joker 2019 44

time

cpu%

ygc count

/10 min

GC Spikes

Questions in YGC

• What allocated the most objects?

Joker 2019 45

Deciphering the GC log files is simply daunting

Agenda

• Introduction: Java at Alibaba

• Alibaba Dragonwell: Optimizing OpenJDK for Our Needs

• ElasticHeap

• JWarmUp

• JFR Extensions

 Motivations

 Excessive GC pauses

 Excessive de-optimizations

 Implementation

Joker 2019 46

JIT Basic Concepts

• Mix mode execution

• Profile Guided Optimization

• Optimization decision are made dynamically

• Bail to interpreter if the assumption is wrong

Joker 2019 47

interpreter

c1

c2

bail

2019

2019

• Unstable if

• Null check

• Class check

• Bimorphic

Top Reasons for Deoptimization

Deoptimization is very expensive if speculation is wrong:

fall back to interpreter and wait for re-compilation

Joker 2019 48

JIT Challenge: Why Deoptimization Happened Frequently?

Joker 2019 49

Bursty traffic comes in

Questions in JIT Performance

• How we can avoid JIT deoptimization?

(-XX:+PrintCompilation example)

Joker 2019 50

Agenda

• Introduction: Java at Alibaba

• Alibaba Dragonwell: Optimizing OpenJDK for Our Needs

• ElasticHeap

• JWarmUp

• JFR Extensions

 Motivations

 Excessive GC pauses

 Excessive de-optimizations

 Implementation

Joker 2019 51

The JFR State of Art

• Support TLAB allocation statistics by

• EventObjectAllocationOutsideTLAB

• EventObjectAllocationInNewTLAB

• Very useful to check if the occurrence of allocations

outside of the TLAB is significant
eden

TLAB1 TLAB2 TLAB3

T1 T2 T3

Notes: all events only occurred in slow path(not in compiled code)!

Joker 2019 52

JFR Options

• -XX:+EnableJFR // Enable JFR feature.

• -XX:FlightRecorderOptions // Options for flight recorder

• sampleobjectallocations // true or false

• objectallocationssamplinginterval=2048

// sampling interval, measured by allocation count

Joker 2019 53

Sample Object Allocation

TLAB in T1 TLAB in T2 Free Eden

current = tlab_top;
end = current + klass_size;
if (end > tlab_end) {

goto slow_path;
}
tlab_end = end;
init_obj(obj, end);
jfr_sample_fast_alloc
slow_path:
// synchronize with other threads to get new
tlab
jfr_sample_slow_alloc

Do the object allocation

sampling both in fast and

slow path!

Eden End
tlab_top tlab_endpseudo code

Joker 2019 54

Sampling Implementation in Assembly

#1: Check if sampling flag

is enabled

#2: Check if the current

allocation is sampling target

#3: Do the sampling and fire JFR event

sampleobjectallocations

objectallocationssamplinginterval

Joker 2019 55

Object Allocation Events Extension

<!-- Allocation events -->

<event id=“ “ path="java/opto_instance_object_alloc" label="Opto instance object allocation"

description="Allocation by Opto jitted method" has_thread="true" has_stacktrace="true" is_instant="true">

<value type="CLASS" field="objectClass" label="Object Class" description="Class of allocated instance objec t"/>

<value type="ADDRESS" field="address" label="Opto Instance Object Allocation Address" description="Address

of allocated instance object"/>

</event>

<event id=“ " path="java/opto_array_object_alloc" label="Opto array object allocation " description="Array

Allocation by Opto jitted method" has_thread="true" has_stacktrace="true" is_instant="true ">

<value type="CLASS" field="objectClass" label="Object Class" description="Class of allocated array object"/ >

<value type="ADDRESS" field="address" label="Opto Array Object Allocation Address" description="Address of

allocated instance object"/>

<value type="BYTES64" field="allocationSize" label="Object Size" description="The Array Object Size" />

</event>

src/share/vm/trace/traceevents.xml

OptoInstanceObjectAllocation

OptoArrayObjectAllocation

Opto(prefix): only generated in c2 compiled code

Joker 2019 56

Event Footprint Optimization

• For array objects，size cannot be determined statically

• array_length is a variant

• record array size for every sample

• For instance object, object size can be determined from class

• instanceSize = ((InstanceKlass*) klass)->size_helper() * HeapWordSize

• Record object size in class_constants of JFR binary.

Joker 2019 57

No need to record object size for every instance object event

Sample Biased

for (int i = 0; i < 1000; i ++) {

instance = new Object();

array = new int[1_000_000];

}

The above array allocation event will be missed if

we take ‘2’ as the sampling interval

• Periodicity bias issue

• Consider introducing statistical distributions, e.g., Poisson,

in future work

1 allocation count3 5

Joker 2019 58

JMC Extension(JMCX)

• JMCX: command line tool to parse JFR event results

• Use the API provided by jmc-core library.

• Usage: jmcx flamegraph

*.jfr
*.jfr

jmcx

Use memory flame graph to identify the most frequent

code-paths accurately

Joker 2019 59

Sampling Overhead

• When ‘sampleobjectallocations’ is false.

 Sampling code will not even be generated (at compile time)

 Nothing impact on real workload.

• Otherwise

 The overhead is dictated by how often it samples object allocation event

 ‘objectallocationssamplinginterval’

Joker 2019 60

Sampling Overhead

• When ‘sampleobjectallocations’ is false.

 Sampling code will not even be generated (at compile time)

 Nothing impact on real workload.

• Otherwise

 The overhead is dictated by how often it samples object allocation event

 ‘objectallocationssamplinginterval’

Joker 2019 61

Sampling Overhead

• When ‘sampleobjectallocations’ is false.

 Sampling code will not even be generated (at compile time)

 Nothing impact on real workload.

• Otherwise

 The overhead is dictated by how often it samples object allocation event

 ‘objectallocationssamplinginterval’

Joker 2019 62

Case Study: e-commerce Application

Optimization opportunity:

Most business objects are allocated

here

Joker 2019 63

Reduce Object Allocation by Profiling Feedback

Have been almost optimized

out!

The YGC frequency has been

reduced by

~30%

Joker 2019 64

Traditional ‘Feedback Direct Optimization’ (FDO)

profile

GCC exe
cpp

cpp
GCC exe

feedback

instrumented

Joker 2019 65

FDO in AlibabaJDK

Joker 2019 66

JVM

compilation.jfr

JVM

user requests

compilation policy file

user requests

feedback to JITrecord1

jmcx createcompilationpolicy : create compilation policy file from JFR events2

3

(original run) (subsequent run)

Deoptimization Event Extension

<event id="Deoptimization" path="vm/compiler/deoptimization"

label="Deoptimization“ has_thread="false" is_instant="true">

<value type="STRING" field="className" label="Class Name"/>

<value type="STRING" field="classloaderName" label="Classloader Name"/>

<value type="STRING" field="filePath" label="File Path"/>

<value type="STRING" field="reason" label="Reason"/>

<value type="STRING" field="methodName" label="Method Name"/>

<value type="STRING" field="signature" label="Signature"/>

</event>

src/share/vm/trace/traceevents.xml

Joker 2019 67

Compilation Policy File

• Generate code for all pathes. No uncommon trap

deoptimization reason

method name &signature

class entry

Usage: -XX:+UseFeedbakDirectedOpt -XX:FDOPolicyFile=‘policy file name’

class entry

classloader

entry

method item

Joker 2019 68

FDO Performance in Production

 Baseline: normal JIT compilation

 FDO: disable speculative optimization based on feedback in previous

run

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101103105107109111113115117119

Baseline

FDO

cpu%

time

~10% cpu

saving at peak

time

Joker 2019 69

Round-up

• Features of AlibabaJDK covered in this talk

• ElasticHeap

• JWarmUp

• JFR extensions

• JFR extension will come to the next release of Dragonwell (stay tuned!)

Joker 2019 70

