
@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Update Strategies
for the Edge
There’s a better way.

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Kat Cosgrove

IoT Engineer
Developer Advocate
Twitter: @Dixie3Flatline
Email: katc@jfrog.com
jfrog.com/shownotes

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Agenda
Part Two
The Live Demo
What’s a Donkey Car?
More Natural Controls
The Driver’s Seat
Adding a Green Screen
Automating Training
Thank you!

Part One
Introduction

Problem Domain
What Needs to Change

Proof of Concept
Software Workflow
Firmware Workflow

Other Tools

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

How large is the Edge?

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

20,400,000,000
That’s a lot of devices.

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Updates Today

They don’t update; device is effectively single-use
OR

It’s time-consuming, complicated, or requires
physical access

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Why change?

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

It’s inconvenient

Edge computing is massive and growing
- Consumer
- Industrial
- Medical

Slow OTA updates are annoying
Wired updates are expensive and more annoying

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

It’s dangerous

Unpatched bugs can be a huge vulnerability
- Expose private data
- Harnessed for a botnet
- Used for cryptocurrency mining
- Safety implications for medical

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

What’s slowing us down?

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Not building for it.

 Many devices are not made to be updated.
- Designed to run one version until the end
- “Update strategy” here is flashing the device
- Bugs are inevitable

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Between 1 and 25
Number of bugs per 1000 lines of code

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Connectivity Concerns

We can’t rely on the device’s network
- Networks may be unstable
- Bandwidth may be low
- Network probably isn’t secure

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Hardware Variations

- It’s 20.4 billion devices
- Lots of specialized hardware
- Variations in memory, storage space, architecture

How do we design something that handles so much
variety?

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Updates are your friend. Embrace updates, not security
nightmares.

Think future-forward.

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Get better with age.
Your product should not be getting worse from the moment it

ships.

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Build robust.
Brittle software means a brittle device, and that doesn’t inspire

trust.

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Modern DevOps tools.
Your developers will thank you and things will run more

smoothly.

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

The Proof of Concept

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Cars Now

- Majority not designed for OTA updates
- OTA updates are still slow and inconvenient
- Little standardization
- Significant portion of recalls are due to software

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Cars as Edge Devices

- Presented a range of solvable pain points in one
device

- Tangible example for end users and manufacturers
- Device in question meant speed, reliability, and

safety were equally important

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Workflows and Tools

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Two Distinct Workflows

Firmware Updates
- More difficult update
- Takes only minutes
- Rollback if there is a

failure
- Relies on Mender and

Yocto

Software Updates
- Without flashing

firmware
- No interruption of user
- Takes only seconds
- Relies on K3S and

Helm

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Software Workflow

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

K3S + Helm

PIPELINES

Code & Build

D
ep

lo
y

to
 p

ro
du

ct
io

n
(c

ar
)

VCS & CI

ARTIFACTORY Schedule
Containers

CD

ACCESS

MISSION CONTROL

XRAY

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Kubernetes, but 5 less

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

K3S

- Lightweight Kubernetes, designed for
Edge devices

- Uses only 512mb of RAM
- 40mb binary
- Very minimal OS requirements

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

A package manager for Kubernetes

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Helm

“Charts” describe complex applications
- Easily repeatable installation
- Final authority on application
- Easy to version
- Supports rollbacks

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Helm Charts

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

The Result - Software

Application updates are quick and efficient
- Average of 35 seconds from dev to car
- No interruption for the user
- Can happen while device is in use
- Could happen silently, depends on device purpose

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Firmware Workflow

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

PIPELINES

CODE & BUILD

D
ep

lo
y

to
 p

ro
du

ct
io

n
(c

ar
)

VCS & CI

ARTIFACTORY EMBEDDED OS

ACCESS

MISSION CONTROL

XRAY

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

OTA updates for embedded Linux devices

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Mender Overview

Ticks several of the boxes we’re looking for:
- Updates are signed and verified
- Supports automatic rollbacks
- Several distinct installation strategies
- Dual A/B strategy

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Mender - A/B

Two partitions are on the device
- Bootloader aware of “active”
- Update streams to “inactive”
- Automatically revert to

previous partition on failure

Now let’s handle the size of our
builds.

User Space A User Space B

Kernel
Initramfs A

Kernel
Initramfs B

Bootloader

Update A

Update B

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Custom Linux distributions for any hardware architecture

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Yocto Overview

- Eliminates OS bloat
- Drastically reduces resources required
- BitBake recipes and layers define your build
- Layers for common configurations are provided
- Custom layers to isolate applications or behaviors

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Yocto Layers

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Yocto and Artifactory

- After first build, we can make things much faster
- Yocto cache allows for incremental updates
- Build cache can be stored in Artifactory
- Reduces time required to build by up to 50%

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

The Result - Firmware

- Cuts the total time after first build to 5-10 minutes
- Build is as small as possible
- Updates are signed and secure
- Automatic rollbacks in case of failure

Success!

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Other Tools

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

OSTree
Git for operating systems

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

OSTree

- Versions updates of Linux operating systems
- Git-like system with branching
- Tracks file system trees
- Allows for updates and rollbacks
- Exists as a meta-layer for Yocto

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Testing framework for operating systems on embedded devices

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

LAVA

- Linaro Automation and Validation Architecture
- CI system for deploying an OS to device for testing
- Can deploy to physical or virtual hardware
- Boot testing, bootloader testing, or system testing
- Results tracked over time

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

LAVA

- Designed for validation during development
- For example, whether the kernel compiles and boots
- Templates for more than 100 boards built in
- Custom devices types can be added

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

LAVA Tests

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Wrapping Up

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Edge and IoT updates are broken

This is a security problem that must be addressed

Modern DevOps tools are here to help

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

The Fun Part
Overengineering a Toy

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

So, what’s this demo?

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

A basic, self-driving miniature car

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Donkey Cars

- About $250
- R/C Car
- Raspberry Pi 3B
- Pi Camera
- Race them!

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Now make it cooler

- Control it with a USB race wheel + pedals instead
- Automate training new models
- Move camera feed to Driver’s screen
- Add a green screen for some flair

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Swapping the Controls

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Magic

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

The Driver’s Seat

- Managed by Intel NUC
- Sanic Webserver
- VueJS front-end
- ZMQ proxy

- CI/CD
- Image feed
- Racewheel data

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Writing a Green Screen

- Read frame with
OpenCV

- Convert to HSV
- Set HSV range
- Create mask from

range
- Crop background
- Merge them

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Green Screen, but better

- Actually really disorienting with a static background
- Angle of steering used to calculate how far to move

crop position vs previous frame
- Scale variable to change perceived speed of panning

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Automating the Training

- ZMQ proxy already has images + steering data
- TubWriter utility on NUC processes the data into

usable format
- Data passed up to TensorFlow on GCP for training
- Around 10 minutes to train new model and make it

available for the driver
- Still slow, but faster and way easier than manual

@jfrog | Copyright © 2019 JFrog. All Rights Reserved

Thank you!
@Dixie3Flatline jfrog.com/shownotes

