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How large is the Edge?
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20,400,000,000
That’s a lot of devices.
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Updates Today

They don’t update; device is effectively single-use
OR

It’s time-consuming, complicated, or requires 
physical access
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Why change?
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It’s inconvenient

Edge computing is massive and growing
- Consumer
- Industrial
- Medical

Slow OTA updates are annoying
Wired updates are expensive and more annoying
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It’s dangerous

Unpatched bugs can be a huge vulnerability
- Expose private data
- Harnessed for a botnet
- Used for cryptocurrency mining
- Safety implications for medical
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What’s slowing us down?
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Not building for it.

 Many devices are not made to be updated.
- Designed to run one version until the end
- “Update strategy” here is flashing the device
- Bugs are inevitable
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Between 1 and 25
Number of bugs per 1000 lines of code
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Connectivity Concerns

We can’t rely on the device’s network
- Networks may be unstable
- Bandwidth may be low
- Network probably isn’t secure
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Hardware Variations

- It’s 20.4 billion devices
- Lots of specialized hardware
- Variations in memory, storage space, architecture

How do we design something that handles so much 
variety?
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Updates are your friend. Embrace updates, not security 
nightmares.

Think future-forward.



@jfrog     |     Copyright © 2019 JFrog. All Rights Reserved

Get better with age.
Your product should not be getting worse from the moment it 

ships. 
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Build robust.
Brittle software means a brittle device, and that doesn’t inspire 

trust.
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Modern DevOps tools.
Your developers will thank you and things will run more 

smoothly.
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The Proof of Concept
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Cars Now

- Majority not designed for OTA updates
- OTA updates are still slow and inconvenient
- Little standardization
- Significant portion of recalls are due to software
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Cars as Edge Devices

- Presented a range of solvable pain points in one 
device

- Tangible example for end users and manufacturers
- Device in question meant speed, reliability, and 

safety were equally important
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Workflows and Tools
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Two Distinct Workflows

Firmware Updates
- More difficult update
- Takes only minutes
- Rollback if there is a 

failure
- Relies on Mender and 

Yocto

Software Updates
- Without flashing 

firmware
- No interruption of user
- Takes only seconds
- Relies on K3S and 

Helm
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Software Workflow
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K3S + Helm
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Kubernetes, but 5 less
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K3S

- Lightweight Kubernetes, designed for 
Edge devices

- Uses only 512mb of RAM
- 40mb binary
- Very minimal OS requirements
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A package manager for Kubernetes
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Helm

“Charts” describe complex applications
- Easily repeatable installation
- Final authority on application
- Easy to version
- Supports rollbacks
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Helm Charts
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The Result - Software

Application updates are quick and efficient
- Average of 35 seconds from dev to car
- No interruption for the user
- Can happen while device is in use
- Could happen silently, depends on device purpose
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Firmware Workflow
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OTA updates for embedded Linux devices
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Mender Overview

Ticks several of the boxes we’re looking for:
- Updates are signed and verified
- Supports automatic rollbacks
- Several distinct installation strategies
- Dual A/B strategy
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Mender - A/B

Two partitions are on the device
- Bootloader aware of “active”
- Update streams to “inactive”
- Automatically revert to 

previous partition on failure

Now let’s handle the size of our 
builds.

User Space A User Space B

Kernel
Initramfs A

Kernel
Initramfs B

Bootloader

Update A

Update B
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Custom Linux distributions for any hardware architecture
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Yocto Overview

- Eliminates OS bloat
- Drastically reduces resources required
- BitBake recipes and layers define your build
- Layers for common configurations are provided
- Custom layers to isolate applications or behaviors
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Yocto Layers
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Yocto and Artifactory

- After first build, we can make things much faster
- Yocto cache allows for incremental updates
- Build cache can be stored in Artifactory
- Reduces time required to build by up to 50%
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The Result - Firmware

- Cuts the total time after first build to 5-10 minutes
- Build is as small as possible
- Updates are signed and secure
- Automatic rollbacks in case of failure

Success!
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Other Tools
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OSTree
Git for operating systems
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OSTree

- Versions updates of Linux operating systems
- Git-like system with branching
- Tracks file system trees
- Allows for updates and rollbacks
- Exists as a meta-layer for Yocto
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Testing framework for operating systems on embedded devices
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LAVA

- Linaro Automation and Validation Architecture
- CI system for deploying an OS to device for testing
- Can deploy to physical or virtual hardware
- Boot testing, bootloader testing, or system testing
- Results tracked over time
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LAVA

- Designed for validation during development
- For example, whether the kernel compiles and boots
- Templates for more than 100 boards built in
- Custom devices types can be added
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LAVA Tests



@jfrog     |     Copyright © 2019 JFrog. All Rights Reserved

Wrapping Up
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Edge and IoT updates are broken

This is a security problem that must be addressed

Modern DevOps tools are here to help
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The Fun Part
Overengineering a Toy
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So, what’s this demo?
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A basic, self-driving miniature car
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Donkey Cars

- About $250
- R/C Car
- Raspberry Pi 3B
- Pi Camera
- Race them!
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Now make it cooler

- Control it with a USB race wheel + pedals instead
- Automate training new models
- Move camera feed to Driver’s screen
- Add a green screen for some flair
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Swapping the Controls
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Magic 
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The Driver’s Seat

- Managed by Intel NUC
- Sanic Webserver
- VueJS front-end
- ZMQ proxy

- CI/CD
- Image feed
- Racewheel data
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Writing a Green Screen

- Read frame with 
OpenCV

- Convert to HSV
- Set HSV range
- Create mask from 

range
- Crop background
- Merge them
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Green Screen, but better

- Actually really disorienting with a static background
- Angle of steering used to calculate how far to move 

crop position vs previous frame
- Scale variable to change perceived speed of panning
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Automating the Training

- ZMQ proxy already has images + steering data
- TubWriter utility on NUC processes the data into 

usable format
- Data passed up to TensorFlow on GCP for training
- Around 10 minutes to train new model and make it 

available for the driver
- Still slow, but faster and way easier than manual
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Thank you!
@Dixie3Flatline jfrog.com/shownotes


