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Who am I

• My name is Pedro Ramalhete

• I’ve been working on concurrent synchronization algorithms and data structures 
for the past 10 years

• I write scalable software for a large tech company

• Occasionally, I write some blog posts at http://www.concurrencyfreaks.com

• A lot of what I’m going to talk about today has been made in collaboration with 
Andreia Correia and Pascal Felber

Disclaimer: The opinions expressed in during this talk are my own and unrelated to the company I 
work or the people I collaborate with. Any errors or omissions are my own. 2
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Definitions
Progress Condition

Blocking: an unexpected delay by one thread can prevent others from making 
progress

Non-Blocking:

Obstruction-Free: A method is Obstruction-Free if, from any point after 

which it executes in isolation, it finishes in a finite number of steps.

Lock-Free: A method is Lock-Free if it guarantees that infinitely often some 

thread calling this method finishes in a finite number of steps.

Wait-Free: A method is Wait-Free if it guarantees that every call finishes its 
execution in a finite number of steps.

Wait-Free Bounded: A method is Wait-Free Bounded if it guarantees that 
every call finishes its execution in a finite and bounded number of steps. This bound may 
depend on the number of threads.

Wait-Free Population Oblivious: A Wait-Free method whose 
performance does not depend on the number of active threads is called Wait-Free 
Population Oblivious.

4http://concurrencyfreaks.com/2013/05/lock-free-and-wait-free-definition-and.html
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A data structure is lock-free if…

A data structure is said to be lock-free if all its 
methods are lock-free (or wait-free)

A data structure is said to be wait-free if all its 
methods are wait-free

… and lock-free memory reclamation?
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Different properties for different progress

Resilient to Failures Deterministic Tail Latency 
(cut-off)

Blocking
Locks, reader-writer locks, 
java.util.concurrent.ConcurrentHashMap

Lock-Free
Michael-Scott queue, 
Maged-Harris Linked list set
Java.util.concurrent.ConcurrentLinkedQueue

Wait-Free
Kogan-Petrank queue, Sim queue,
Turn queue

Throughput and scalability are not a factor here…

no                        no (starvation-free is an exception)

yes no

yes yes
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Progress and failures
Blocking 

If a thread dies (while holding the lock) the other threads can no longer execute work
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Progress and failures
Lock-Free

If a thread dies, the other threads can still execute work
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Strict: Absolute time ordering for all shared access

Linearizability: There is a point in time where the operation appears 
to the rest of the system to occur instantaneously

Sequential Consistency: Result of an execution appears as if:

▪ All operations executed in some sequential order

▪ Memory operations of each process in program order

Relaxed: anything goes? You know what most developers call data 
structures that have this consistency?

Buggy!

Strongest
Consistency

Weakest
Consistency

Strict

Linearizability

Sequential 
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Weak/Relaxed
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(in the context of concurrent data structures)



Definitions
What is DAP?
Roughly speaking, DAP (Disjoint Access Parallel) is a technical term used to describe 
operations which modify different pieces of data.

Read-only operations are, by definition, DAP.

To be DAP or not to be DAP is a property of the entire workload and not of 
individual operations.

In the context of data structures, some data structures are intrinsically non-DAP. 

Examples of non-DAP data structures are stacks and queues.

Example of a DAP data structure is a fixed-size hashtable.
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Non-DAP example
Stack
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head Node X Node Y

In a concurrent stack, all threads executing an 
operation will modify the same variable, head. 
A stack is not DAP.

T0
Node A

T1
Node B

T2
Node C



buckets array

Disjoint Access Parallel (DAP) example
Fixed-size hashmap
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In a concurrent hashmap, statistically, threads 
will modify different nodes and variables of the 
data structure.

Node C

Node B

Node A
T0

T1

T2



Other terminology

Sequential data structure: A data structure written for single-threaded 
applications. Its methods have no concurrency mechanism.

CAS: Compare-And-Swap. Modifies a single word atomically if and only if the 
contents match the expected value. Named 
atomic_compare_exchange_strong() in C/C++ and compareAndSet() in 
Java

DCAS: Double-word Compare-And-Swap. Modifies two adjacent words atomically, 
if and only if contents match the expected values. CMPXCHG16B in x86.
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Lock-Free data 
structures

How hard can they be?
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Concurrent data structures
How hard can it be?

Easy Hard

Protecting a sequential data 
structure with a global lock
(blocking)

Protecting a data 
structure with 
many locks
(blocking)

Design a lock-free 
data structure

Design a wait-free 
data structure

Simple enough for a 
novice developer to 
do correctly

Expert-only domain. It takes 
someone like: Maurice Herlihy, 
Michael Scott, Panagiota
Fatourou, Erez Petrank, etc

Requires a senior 
software with a good 
deal of expertise in 
concurrency

years of hard work 
to gain the 
expertise needed 
to cross this gap
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How about something simple… like a queue?
Sequential implementation + global lock

Blocking

Easy to modify (correctly)

Only ~12 lines of code
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bool enqueue(T* item) {

std::lock_guard<std::mutex> lock(g_mutex);

if (item == nullptr) return false;

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

std::lock_guard<std::mutex> lock(g_mutex);

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}



How about something simple… like a queue?
Lock-free implementation
Lock-Free

Can not be easily modified

Still small: ~23 lines of code
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bool enqueue(T* item) {

if (item == nullptr) return false;

Node* newNode = new Node(item);

while (true) {

Node* ltail = hp.protectPtr(kHpTail, tail);

if (ltail == tail.load()) {

Node* lnext = ltail->next.load();

if (lnext == nullptr) {

if (ltail->casNext(nullptr, newNode)) {

casTail(ltail, newNode);

hp.clear();

return;

}

} else {

casTail(ltail, lnext);

}

}

}

}

T* dequeue() {

Node* node = hp.protect(kHpHead, head);

while (node != tail.load()) {

Node* lnext = hp.protect(kHpNext, node->next);

if (casHead(node, lnext)) {

T* item = lnext->item;

hp.clear();

hp.retire(node);

return item;

}

node = hp.protect(kHpHead, head);

}

hp.clear();

return nullptr;

}



How about something simple… like a queue?
Wait-free implementation

Wait-free

Can not be easily modified

Large: ~80 lines of code
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Even experts have difficulties dealing with 
lock-free data structures

Designing and implementing takes time: Creating a new lock-free data 
structure takes months of work by experts.

Customizing takes time: Modifying functionality takes weeks to months.

Correctness: Proofs can have errors.

Memory Reclamation: Adding lock-free memory reclamation adds time and 
work.
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What if…

What if there was a device that could turn sequential data structures 
into correct concurrent data structures with wait-free progress? 

There is and it is called wait-free software transactional memory (STM) or UC

sequential
data 
structure

wait-free
data 
structure
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Back to 1991…
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In 1991 Maurice Herlihy introduced the concept of a Universal 
Construction with wait-free progress and then showed an algorithm for a 
UC that actually worked.

“Wait-Free Synchronization”, M. Herlihy, 1991

Using this UC, for the first time ever it was possible to make wait-free 
data structures without expert knowledge.

A UC provides wait-free progress for a single data structure instance. 
What if we want to have operations over multiple instances?



Back to 1993…
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In 1993 Maurice Herlihy and J. Elliot B. Moss introduced the concept of a 
Transactional Memory. 

“Transactional Memory: Architectural Support for Lock-Free Data 
Structures”, M. Herlihy and J. Moss, 1991

Later in 1997, Nir Shavit and Dan Touitou presented the first software 
only implementation of a TM, a Software Transactional Memory (STM).

The decade of 2000-2010 saw an explosion in the field of STMs.



Back to three weeks ago…
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Three weeks ago we (Pedro Ramalhete, Andreia Correia, Pascal Felber and 
Nachshon Cohen) presented OneFile the first wait-free STM. 

“OneFile: A Wait-Free Persistent Transactional Memory”, P. Ramalhete, A. Correia, 
P. Felber and N. Cohen, 2019

OneFile is user-level library where you just include one header file with 1 kLOC and 
you’re ready to make wait-free data structures.

It serializes mutative transactions and needs DCAS.

It has wait-free memory reclamation and works on Persistent Memory.

With Onefile, making a new wait-free data structure is just a matter of annotating a 
sequential data structure implementation.



What do you mean by annotate?
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Transforming sequential code to a wait-free code requires executing the following steps:

1. Add the include for OneFile header

2. Annotate the basic types with tmtype<T>

3. Complex types (nodes) should extend tmbase

4. Place the code of the functions inside a lambda an pass it to OneFile

5. Replace calls to new<T> with tmNew<T>

6. Replace calls to delete x with tmDelete(x)
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template<typename T> struct OFWFQueue {

struct Node {

T* item;

Node* next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

Node* head {nullptr};

Node* tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue {

struct Node {

T* item;

Node* next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

Node* head {nullptr};

Node* tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};
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#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue {

struct Node {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue {

struct Node {

T* item;

Node* next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

Node* head {nullptr};

Node* tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};



27

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue {

struct Node {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase{

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};
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#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase {

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

return ofwf::updateTx<bool>([=] () -> bool {

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

});

return true;

}

T* dequeue() {

return (T*)ofwf::updateTx<T*>([=] () -> T* {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

});

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase {

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};
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#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase {

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

return ofwf::updateTx<bool>([=] () -> bool {

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

});

return true;

}

T* dequeue() {

return (T*)ofwf::updateTx<T*>([=] () -> T* {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

});

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase {

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = ofwf::tmNew<Node>(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

return ofwf::updateTx<bool>([=] () -> bool {

Node* newNode = ofwf::tmNew<Node>(item);

tail->next = newNode;

tail = newNode;

return true;

});

}

T* dequeue() {

return (T*)ofwf::updateTx<T*>([=] () -> T* {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

ofwf::tmDelete(lhead);

return head->item;

});

}

};



OneFile STM

Anatomy of a wait-free STM

MCAS 
(uses double-word CAS and 

has no bit stealing)

Consensus 
(wait-free consensus similar to 

the one by Maurice Herlihy)

Hazard Eras 
(wait-free memory 

reclamation)

Redo-log
(for concurrency and 

durability)
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OneFile
Lock-Free 
Algorithm
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Lock-free mutative transactions

Mutative (write) transactions in OneFile have 
three distinct phases:

1. Transform: The thread takes a lambda or 
std::function, simulates execution and 
saves every modification on a write-set 
(redo-log)
If a newer (inconsistent) modification is 
observed, it aborts simulation and restarts

2. Commit: The thread attempts to commit its 
write-set using a CAS on a global variable 
(curTx) as being the next modification to 
be applied

3. Apply: The modifications in the committed 
write-set are applied in memory using one 
DCAS instruction per modified word

Start mutative
transaction

Yes

Apply TX

CAS 
commit 
success?

Unfinished
TX to be 
applied?

Help apply
unfinished TX

Yes

No

No
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[=] () {  // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () {  // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () {  // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack

T0

T1

T2

curTx4 0
seq tid

request4 0
seq tid

addr value

write-set for 
thread id 0

addr value

write-set for 
thread id 1

addr value

write-set for 
thread id 2

33 ⊥44
key next

4

head
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[=] () {  // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () {  // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () {  // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack

T0

T1

T2

curTx4 0
seq tid

request4 0
seq tid

addr value

write-set for 
thread id 0

addr value

write-set for 
thread id 1

addr value

write-set for 
thread id 2

33 ⊥44
key next

4

head

T0 T1 T2
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[=] () {  // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () {  // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () {  // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack curTx4 0
seq tid

request4 0
seq tid

write-set for 
thread id 0

write-set for 
thread id 1

write-set for 
thread id 2

33 ⊥44
key next

4

head

T0 T1 T2

T0 T2

5 2

&key

&next

&head

addr value

42

head

node

&head

addr value

next &key

&next

&head

addr value

21

head

node
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[=] () {  // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () {  // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () {  // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack
request4 0

seq tid

write-set for 
thread id 0

write-set for 
thread id 1

write-set for 
thread id 2

33 ⊥44
key next

4

head

T0 T1

T0 T2

curTx
seq tid

5 2

&key

&next

&head

addr value

42

head

node

&head

addr value

next &key

&next

&head

addr value

21

head

node

T0T1

&key

&next

&head

21

head

node

&key

&next

&head

21

head

node

&key

&next

&head

21

head

node
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[=] () {  // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () {  // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () {  // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack curTx5 2
seq tid

request4 0
seq tid

write-set for 
thread id 0

write-set for 
thread id 1

write-set for 
thread id 2

head

33 ⊥44
key next

T0 T1

T2

&key

&next

&head

addr value

21

head

node

&key

&next

&head

addr value

21

head

node

&key

&next

&head

addr value

21

head

node

T2
key next

T0

215 5

T1

54
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[=] () {  // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () {  // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () {  // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack curTx5 2
seq tid

33 ⊥44
key next

&key

&next

&head

21

head

node

write-set for 
thread id 0

addr value

&key

&next

&head

21

head

node

write-set for 
thread id 1

addr value

&key

&next

&head

21

head

node

write-set for 
thread id 2

addr value

T2

T0

key next

215 5

T1

head

5

T0 T2 T1

request4 0
seq tid

5 2

T0

T1
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Lock-free read-only transactions

Read-only transactions in OneFile use an 
optimistic technique, similar to TinySTM/TL2

• Before starting execution of the lambda or 
std::function, the thread checks if there 
is an unfinished mutative transaction and 
helps apply it if there is

• Then, it reads the global clock (curTx) and 
saves the timestamp

• The load interposing does not keep a read-
set: for every word read, it checks if the 
associated timestamp precedes the 
timestamp read from the global clock at the 
beginning of the transaction

Start read-only
transaction

Unfinished
TX to be 
applied?

Help apply
unfinished TX

Yes

No

Execute TX

39



y = 0

x = 0

What about Hardware Transactional Memory (HTM)?

In all current hardware implementations of HTM there is no guarantee of progress

Even simple operations can execute an unbounded number of abort/retry attempts

40

{
x++;
y++;

}

{
y++;
x++;

}

CONFLICT

CONFLICT

x = 1

y = 1

T1T0



OneFile
Wait-Free 
Algorithm
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Reaching consensus

As Maurice Herlihy pointed out, to make a wait-free algorithm we need a wait-free consensus.

In shared memory concurrency, there are three algorithms to achieve wait-free consensus:

1. Lamport’s Bakery Algorithm

“A New solution of Dijkstra’s Concurrent Programming Problem”, L. Lamport, 1974

Used in the Kogan-Petrank wait-free queue, A. Kogan and E. Petrank, 2011

2. Herlihy’s Combining Consensus

“A Methodology for Implementing Highly Concurrent Data Objects”, M. Herlihy, 1993

Used by PSim and the SimQueue wait-free queue, P. Fatourou and N. Kallimanis, 2014

3. Turn consensus

“Mutual Exclusion — Two linear wait solutions”, A. Correia and P. Ramalhete, 2015

Used by TurnQueue wait-free queue, P. Ramalhete and A. Correia, 2017

In OneFile we use a modified variant of Herlihy’s Combining Consensus 42



Sure, it’s wait-
free, but does 
it scale?
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Scaling is easy… for read-mostly workloads

If most of the operations are read-only, then there are multiple generic techniques 
that provide good scalability:

Reader-Writer locks: C-RW-WP/RP are two RW-Lock algorithms that provide high read scalability. 

UCs: Left-Right and CX scale well for read-only workloads and accept anything you can put on a 
lambda and doesn’t have side-effects. 

STMs: Some STMs like TL2, TinySTM and OneFile have highly scalable read-only operations. 

Not-so-generic-techniques that scale well for reads: RLU, RCU, and others

44



As long as it’s just read-only operations, all these techniques 
scale with the number of cores. 

Operations are lookups on a red-black tree with 1M keys

45

Generic techniques 
that scale well for 
readers

Writers progress Readers progress

C-RW-WP Blocking 
starvation-free

Blocking

C-RW-RP Blocking Blocking 
starvation-free

Left-Right UC Blocking 
starvation-free

Wait-free 
population oblivious

CX UC Wait-free 
bounded

Wait-free 
bounded

TL2, TinySTM * Blocking Blocking

OneFile             * Wait-free 
bounded

Wait-free 
bounded

* STMs need load and store annotation

Number of threads 
(AWS c5.9xlarge with 36 VCPUs)



Scaling is hard… for mutative operations

Sequential code has cache locality but it is limited 
by how fast one core can execute the code.

Sequential code protected with a mutual exclusion 
lock has flat or negative scalability.

STMs have the overhead of logging, synchronization 
and others.

OneFile and CX scale for read-only transactions but 
are flat for mutative transactions

Originally, blocking STMs were able to scale up to 
~16 threads, but recently they can scale almost 
linearly for high cores counts, even for short 
mutative transactions (assuming DAP workloads)
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The D in A.C.I.D.
A is for Atomicity

C is for Consistency

I is for Isolation

D is for Durability
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Consistency in databases

Source: Peter Bailis http://www.bailis.org/blog/when-is-acid-acid-rarely/
48

DBMS Default Isolation Maximum Isolation 

Aerospike Read Committed Read Committed

MySQL 5.6 Repeatable Read Serializability

MS SQL Server 2012 Read Committed Serializability

NuoDB Consistent Read Consistent Read

Oracle 11g Read Committed Snapshot Isolation

Oracle Berkley DB Serializability Serializability

Postgres 9.2.2 Read Committed Serializability

SAP HANA Read Committed Snapshot Isolation

VoltDB Serializability Serializability

http://www.bailis.org/blog/when-is-acid-acid-rarely/


Consistency in ACID transactions

When transactions are both concurrent and durable (ACID) then what kind of 
consistency should we aim for?

If we want to keep strong consistency then the obvious choice is durable 
linearizability, (introduced by Izraelevitz, Mendes and Scott, DISC 2016)

Roughly speaking, a durable linearizable transaction can not become visible to 
transactions on other threads unless its effects are also durable.
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Durable 
Media

Shared 
Memory

Consistency in ACID transactions
Example of not Durable Linearizable

50

T0 T1

x = 0
y = 0

{
x = 1;

}

{
if (x==1) y = 1;

}

x = 0
y = 0
x = 1
y = 0
x = 1
y = 1

x = 0
y = 1



A.C.I.D. 
Transactions

(Mnemosyne, OneFile)
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Durable 
Transactions

Concurrent 
Transactions

STM Library
(TL2, TinySTM …) 

Persistence 
Library

(vista, libpmemobj) 

Durable Linearizability

Persistent Memory 
~170 – 320 ns

SSD/Disk storage
~1 ms – 100 ms

Network replication
~100 ms – 10000 ms+

Durable 
Media



Is my data 
durable?

write Zwrite Y

Ensuring Durability

Ensuring durable consistency (persistence) has a cost which depends on the media’s latency.

At least one round trip message or synchronization fence is needed to guarantee durability.

52

User

write X
Durable 
Media

It is durable 
now



A.C.I.D. 
Transactions

(Mnemosyne, OneFile)
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Durable 
Transactions

Concurrent 
Transactions

STM Library
(TL2, TinySTM …) 

Persistence 
Library

(vista, libpmemobj) 

Durable Linearizability

Persistent Memory 
~170 – 320 ns
3 million tx/s

SSD/Disk storage
~1 ms – 100 ms

1000 tx/s

Network replication
~10 ms – 10000 ms

100 tx/s

Durable 
Media



Transactions in 
Persistent 
Memory (PTM)
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What is Persistent Memory?

Persistent Memory is a durable media that can be accessed through load and store 
instructions.

Physically, it fits into a DIMM slot

Solutions exist for several years by HPE, Micron and Viking, but all these are battery 
backed:

https://www.vikingtechnology.com/products/nvdimm/

https://www.hpe.com/nl/en/servers/persistent-memory.html

https://www.micron.com/campaigns/persistent-memory

Just last month, Intel has released the Optane DC Persistent Memory which does 
not require battery and has latencies close to DRAM. Capacities go up to 512 GiB

https://arxiv.org/pdf/1903.05714.pdf
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Just like there is a Memory Model to program with atomics (concurrency), 
there is an equivalent Persistent Model to program with persistent memory.

▪ pwb: flushes a cache line. Ordering with respect to previous stores on the same cache line.

▪ pfence: asynchronous ordering fence. No pwb or stores will be re-ordered.

▪ psync: synchronous ordering fence. No pwb or stores will be re-ordered. After this, data is 
guaranteed to be persisted, i.e. durable.

Introduced by Izraelevitz, Mendes and Scott, DISC 2016

How to use Persistent Memory



How to execute failure-resilient operations?

On block devices (disks) the typical way that 
databases and filesystems ensure that data is stored 
consistently is to use:

• Undo-log, redo-log or Copy-On-Write (shadow 
copy)

• fsync() or fdatasync() to order writes to the 
device

• fsync() or fdatasync() to guarantee data is 
durable

On persistent memory the typical way that 
databases and filesystems ensure data is stored 
consistently is to use:

• Undo-log, redo-log or Copy-On-Write (shadow 
copy)

• pwb (CLWB) + pfence (SFENCE) to order writes 
to the device

• psync (SFENCE) to guarantee data is durable
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Recovering from failures

One of the hardest tasks when implementing a DBMS or filesystem is 
the design and implementation of the recovery mechanism.

A failure can occur anywhere in the code… how to handle the different 
scenarios?

Recovery has to be correct and it should be efficient.

What if there was a way to not have a recovery at all?

58



Null Recovery

Null Recovery is a concept introduced by Izraelevitz, Mendes and Scott, DISC 2016

Roughly speaking, a Lock-Free algorithm with null recovery does not need a recovery 
procedure when deployed in Persistent Memory

Not all lock-free algorithms have this property of null recovery.

The OneFile PTM is itself a lock-free (or wait-free) algorithm and it has this property. 

In the event of a failure, committed transactions in OneFile PTM are applied where they 
left off.

With null recovery and Persistent Memory, recovery in OneFile PTM is at most the time it 
takes to apply the last transaction, typically less than a microsecond (depends on the 
transaction size).
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The Future
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▪ STMs are here to stay: Transactions are a simple way of letting users have concurrent 
atomicity without having to worry about locks

▪ Persistent Memory is here to stay: Due to the overhead of drivers and filesystems, for 
the foreseeable future, making data durable on a block device will be orders of 
magnitude slower than achieving consistent durable data in PM

▪ PTMs are the next step: They combine durable and concurrent transactions (ACID) 
under a single programming interface.

▪ Lock-Free PTMs: This is the natural evolution for a PTM. Besides, STMs were originally 
developed with the intuit of making lock-free data structures.

▪ Wait-Free Databases: A PTM is in effect a database engine. By using a wait-free PTM 
we can make a wait-free database.    Look ma, no locks!

What we can do now



The (near) Future

Generic Wait-Free

Disjoint Writes

Is it possible to construct a technique that does all three?

The Holy Grail of 
Concurrent Data Structures

… and it has to scale for reads
… and it has to have wait-free memory reclamation
… and it has to have wait-free memory allocation/de-allocation
... and it has to work in persistent memory
(because OneFile already does all these)

OneFile 
and UCs

TinySTM, 
TL2, etc

Hand-made
lock-free data 
structures 62



The (not so distant) Future of K/V stores

63

What can we do with wait-free persistent (durable linearizable) transactions ?

What will a K/V store in PM look like in the future?

• We can make wait-free databases whose code is effectively sequential: concurrency and 
durability are taken care of by the PTM

• There is no need to write a recovery operation for the database: it’s taken care by the null 
recovery in the PTM

• Any indexing data structure can be used for the tables in the DB and any kind of metadata in the 
DBMS will be under the transaction, including the indexing data structure and modifications to 
the records

• Operations on a wait-free DB have low tail latency: there are no locks

… but if we have generic dynamic transactions, do we even need a DBMS anymore?



What did we learn today?

• Lock-free is (mostly) about progress in the presence of failures, wait-free is 
(mostly) about low latency at the tail and progress. Neither are about throughput.

• All wait-free algorithms use a wait-free consensus. Only three consensus 
algorithms are known.

• Scaling for reads is easy. Scaling for DAP writes is hard. Scaling for non-DAP writes 
is impossible (conjecture).

• A wait-free STM or UC can transform a sequential data structure into a wait-free 
data structure with minimum modifications.
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Creative Common Images

https://commons.wikimedia.org/wiki/File:Heraldic_hourglass.svg

https://commons.wikimedia.org/wiki/File:Simple_gold_cup.svg
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The End
Pedro Ramalhete

http://www.concurrencyfreaks.com

pramalhe@gmail.com
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Backup slides
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CX UC

Anatomy of a wait-free UC

Multiple replicas of 
the data

Strong Try RW-Lock

Hazard Pointers + 
Ref counting 

(wait-free memory 
reclamation)

MPMC Wait-Free 
queue
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Kogan-Petrank queue
(uses Lamport’s bakery 

consensus)

SimQueue
(uses Herlihy’s combining 

consensus)

Turn queue
(uses the Turn consensus)



Reaching consensus
Herlihy’s consensus

In Herlihy’s original combining algorithm, each 
thread announces its operation. This is done by 
publishing a function pointer in invocation
and then changing the toggle bit.

The thread that wins the LL/SC or CAS, proposes 
the new object with a new object where a 
particular set of operations have been applied 
and their respective responses.

To know which operations have already been 
applied, there is one reserved bit in each entry 
of both the announce and the responses. When 
the bit is different for a given position, the 
operation is yet to be applied.

announcepush(a) push(b)

object

ds

t1 t2

1 1

applied 0

ds

applied

ds

applied0

a

1 0

b a

t1 1st copy t2 1st copy 

1 1

invocationtoggle
(bit)
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Reaching consensus
OneFile’s consensus (variant of Herlihy)

Herlihy’s consensus assumes that each thread works on 
its own private copy and applies all operations to it. It 
also assumes that each private copy has an associated 
applied array. OneFile has a single copy and a single 
array shared among all threads.

Instead of a bit, we use the sequence of the announce
and applied entries. If the sequences match, then the 
operation is yet to be applied.

As part of the simulation, each operation will have 
trigger a store on respective entries of the applied
array. The log will contain the modifications of all 
operations, including setting the respective applied
entries to the new values, along with the new sequence 
which, by definition, will be different from the previous.

announcepush(a) push(b)

t1 t2

3 4

ds b a

invocation seq
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What about proof checkers?

Lock-free algorithms (and implementations) can have errors. Is there 
any hope for tools that verify the correctness of such algorithms?

• SPIN

• JSF

• TLA+

However, the number of threads these can run is limited to 5 or 6 (state explosion for high thread count). 

Invariant checking is possible, but it’s up to the designer of the lock-free algorithm to come up with these 
invariants. Invariants may not hold when you modify the data structure… back to square 1.

72



Cognitive Load

The typical software developer has to:
• be proficient in one or more languages (development, UI, test)

• know multiple frameworks

• have basic knowledge of how the compiler/JIT/JVM works

• understand the HW (or at least the abstraction of the language)

• many others…

… and on top of this, understand concurrency?!?
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