
Wait-free
data structures
and
wait-free transactions

Pedro Ramalhete

http://www.concurrencyfreaks.com

pramalhe@gmail.com

1

http://www.concurrencyfreaks.com/

Who am I

• My name is Pedro Ramalhete

• I’ve been working on concurrent synchronization algorithms and data structures
for the past 10 years

• I write scalable software for a large tech company

• Occasionally, I write some blog posts at http://www.concurrencyfreaks.com

• A lot of what I’m going to talk about today has been made in collaboration with
Andreia Correia and Pascal Felber

Disclaimer: The opinions expressed in during this talk are my own and unrelated to the company I
work or the people I collaborate with. Any errors or omissions are my own. 2

http://www.concurrencyfreaks.com/

Table of Contents

• Definitions (progress, consistency, ACID, DAP)

• Concurrent data structures, how hard can it be?

• Lock-Free Software Transactional Memory

• Wait-Free Software Transactional Memory

• Persistent Memory

• Now and the Future

3

Definitions
Progress Condition

Blocking: an unexpected delay by one thread can prevent others from making
progress

Non-Blocking:

Obstruction-Free: A method is Obstruction-Free if, from any point after

which it executes in isolation, it finishes in a finite number of steps.

Lock-Free: A method is Lock-Free if it guarantees that infinitely often some

thread calling this method finishes in a finite number of steps.

Wait-Free: A method is Wait-Free if it guarantees that every call finishes its
execution in a finite number of steps.

Wait-Free Bounded: A method is Wait-Free Bounded if it guarantees that
every call finishes its execution in a finite and bounded number of steps. This bound may
depend on the number of threads.

Wait-Free Population Oblivious: A Wait-Free method whose
performance does not depend on the number of active threads is called Wait-Free
Population Oblivious.

4http://concurrencyfreaks.com/2013/05/lock-free-and-wait-free-definition-and.html

Lock-Free

Wait-Free

Wait-Free
Bounded

Wait-Free
Population
Oblivious

http://concurrencyfreaks.com/2013/05/lock-free-and-wait-free-definition-and.html

A data structure is lock-free if…

A data structure is said to be lock-free if all its
methods are lock-free (or wait-free)

A data structure is said to be wait-free if all its
methods are wait-free

… and lock-free memory reclamation?
5

Lock-Free

Wait-Free

Wait-Free
Bounded

Wait-Free
Population
Oblivious

Different properties for different progress

Resilient to Failures Deterministic Tail Latency
(cut-off)

Blocking
Locks, reader-writer locks,
java.util.concurrent.ConcurrentHashMap

Lock-Free
Michael-Scott queue,
Maged-Harris Linked list set
Java.util.concurrent.ConcurrentLinkedQueue

Wait-Free
Kogan-Petrank queue, Sim queue,
Turn queue

Throughput and scalability are not a factor here…

no no (starvation-free is an exception)

yes no

yes yes

6

Progress and failures
Blocking

If a thread dies (while holding the lock) the other threads can no longer execute work

7

T1

T0

T2

Progress and failures
Lock-Free

If a thread dies, the other threads can still execute work

8

T0

T2

T1

Strict: Absolute time ordering for all shared access

Linearizability: There is a point in time where the operation appears
to the rest of the system to occur instantaneously

Sequential Consistency: Result of an execution appears as if:

▪ All operations executed in some sequential order

▪ Memory operations of each process in program order

Relaxed: anything goes? You know what most developers call data
structures that have this consistency?

Buggy!

Strongest
Consistency

Weakest
Consistency

Strict

Linearizability

Sequential
Consistency

Weak/Relaxed

Th
e

h
u

m
an

 b
ra

in
 c

an

re
as

o
n

 a
b

o
u

t
th

es
e

M
o

st
 o

f
u

s
m

er
e

m
o

rt
al

s
ge

t
p

u
zz

le
d

 b
y

th
e

o
u

tp
u

ts
 o

f
th

es
e

Consistency Models
(in the context of concurrent data structures)

Definitions
What is DAP?
Roughly speaking, DAP (Disjoint Access Parallel) is a technical term used to describe
operations which modify different pieces of data.

Read-only operations are, by definition, DAP.

To be DAP or not to be DAP is a property of the entire workload and not of
individual operations.

In the context of data structures, some data structures are intrinsically non-DAP.

Examples of non-DAP data structures are stacks and queues.

Example of a DAP data structure is a fixed-size hashtable.

10

Non-DAP example
Stack

11

head Node X Node Y

In a concurrent stack, all threads executing an
operation will modify the same variable, head.
A stack is not DAP.

T0
Node A

T1
Node B

T2
Node C

buckets array

Disjoint Access Parallel (DAP) example
Fixed-size hashmap

12

In a concurrent hashmap, statistically, threads
will modify different nodes and variables of the
data structure.

Node C

Node B

Node A
T0

T1

T2

Other terminology

Sequential data structure: A data structure written for single-threaded
applications. Its methods have no concurrency mechanism.

CAS: Compare-And-Swap. Modifies a single word atomically if and only if the
contents match the expected value. Named
atomic_compare_exchange_strong() in C/C++ and compareAndSet() in
Java

DCAS: Double-word Compare-And-Swap. Modifies two adjacent words atomically,
if and only if contents match the expected values. CMPXCHG16B in x86.

13

Lock-Free data
structures

How hard can they be?

14

Concurrent data structures
How hard can it be?

Easy Hard

Protecting a sequential data
structure with a global lock
(blocking)

Protecting a data
structure with
many locks
(blocking)

Design a lock-free
data structure

Design a wait-free
data structure

Simple enough for a
novice developer to
do correctly

Expert-only domain. It takes
someone like: Maurice Herlihy,
Michael Scott, Panagiota
Fatourou, Erez Petrank, etc

Requires a senior
software with a good
deal of expertise in
concurrency

years of hard work
to gain the
expertise needed
to cross this gap

15

How about something simple… like a queue?
Sequential implementation + global lock

Blocking

Easy to modify (correctly)

Only ~12 lines of code

16

bool enqueue(T* item) {

std::lock_guard<std::mutex> lock(g_mutex);

if (item == nullptr) return false;

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

std::lock_guard<std::mutex> lock(g_mutex);

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

How about something simple… like a queue?
Lock-free implementation
Lock-Free

Can not be easily modified

Still small: ~23 lines of code

17

bool enqueue(T* item) {

if (item == nullptr) return false;

Node* newNode = new Node(item);

while (true) {

Node* ltail = hp.protectPtr(kHpTail, tail);

if (ltail == tail.load()) {

Node* lnext = ltail->next.load();

if (lnext == nullptr) {

if (ltail->casNext(nullptr, newNode)) {

casTail(ltail, newNode);

hp.clear();

return;

}

} else {

casTail(ltail, lnext);

}

}

}

}

T* dequeue() {

Node* node = hp.protect(kHpHead, head);

while (node != tail.load()) {

Node* lnext = hp.protect(kHpNext, node->next);

if (casHead(node, lnext)) {

T* item = lnext->item;

hp.clear();

hp.retire(node);

return item;

}

node = hp.protect(kHpHead, head);

}

hp.clear();

return nullptr;

}

How about something simple… like a queue?
Wait-free implementation

Wait-free

Can not be easily modified

Large: ~80 lines of code

18 18

Even experts have difficulties dealing with
lock-free data structures

Designing and implementing takes time: Creating a new lock-free data
structure takes months of work by experts.

Customizing takes time: Modifying functionality takes weeks to months.

Correctness: Proofs can have errors.

Memory Reclamation: Adding lock-free memory reclamation adds time and
work.

19

What if…

What if there was a device that could turn sequential data structures
into correct concurrent data structures with wait-free progress?

There is and it is called wait-free software transactional memory (STM) or UC

sequential
data
structure

wait-free
data
structure

20

Back to 1991…

21

In 1991 Maurice Herlihy introduced the concept of a Universal
Construction with wait-free progress and then showed an algorithm for a
UC that actually worked.

“Wait-Free Synchronization”, M. Herlihy, 1991

Using this UC, for the first time ever it was possible to make wait-free
data structures without expert knowledge.

A UC provides wait-free progress for a single data structure instance.
What if we want to have operations over multiple instances?

Back to 1993…

22

In 1993 Maurice Herlihy and J. Elliot B. Moss introduced the concept of a
Transactional Memory.

“Transactional Memory: Architectural Support for Lock-Free Data
Structures”, M. Herlihy and J. Moss, 1991

Later in 1997, Nir Shavit and Dan Touitou presented the first software
only implementation of a TM, a Software Transactional Memory (STM).

The decade of 2000-2010 saw an explosion in the field of STMs.

Back to three weeks ago…

23

Three weeks ago we (Pedro Ramalhete, Andreia Correia, Pascal Felber and
Nachshon Cohen) presented OneFile the first wait-free STM.

“OneFile: A Wait-Free Persistent Transactional Memory”, P. Ramalhete, A. Correia,
P. Felber and N. Cohen, 2019

OneFile is user-level library where you just include one header file with 1 kLOC and
you’re ready to make wait-free data structures.

It serializes mutative transactions and needs DCAS.

It has wait-free memory reclamation and works on Persistent Memory.

With Onefile, making a new wait-free data structure is just a matter of annotating a
sequential data structure implementation.

What do you mean by annotate?

24

Transforming sequential code to a wait-free code requires executing the following steps:

1. Add the include for OneFile header

2. Annotate the basic types with tmtype<T>

3. Complex types (nodes) should extend tmbase

4. Place the code of the functions inside a lambda an pass it to OneFile

5. Replace calls to new<T> with tmNew<T>

6. Replace calls to delete x with tmDelete(x)

25

template<typename T> struct OFWFQueue {

struct Node {

T* item;

Node* next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

Node* head {nullptr};

Node* tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue {

struct Node {

T* item;

Node* next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

Node* head {nullptr};

Node* tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

26

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue {

struct Node {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue {

struct Node {

T* item;

Node* next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

Node* head {nullptr};

Node* tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

27

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue {

struct Node {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase{

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

28

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase {

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

return ofwf::updateTx<bool>([=] () -> bool {

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

});

return true;

}

T* dequeue() {

return (T*)ofwf::updateTx<T*>([=] () -> T* {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

});

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase {

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

return true;

}

T* dequeue() {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

return head->item;

}

};

29

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase {

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = new Node(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

return ofwf::updateTx<bool>([=] () -> bool {

Node* newNode = new Node(item);

tail->next = newNode;

tail = newNode;

});

return true;

}

T* dequeue() {

return (T*)ofwf::updateTx<T*>([=] () -> T* {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

delete lhead;

});

return head->item;

}

};

#include "OneFileWF.hpp"

template<typename T> struct OFWFQueue : public ofwf::tmbase {

struct Node : public ofwf::tmbase {

T* item;

ofwf::tmtype<Node*> next;

Node(T* userItem) : item{userItem}, next{nullptr} { }

};

ofwf::tmtype<Node*> head {nullptr};

ofwf::tmtype<Node*> tail {nullptr};

OFWFLinkedListQueue() {

Node* sentinelNode = ofwf::tmNew<Node>(nullptr);

head = sentinelNode;

tail = sentinelNode;

}

bool enqueue(T* item) {

if (item == nullptr) throw std::invalid_argument("null item");

return ofwf::updateTx<bool>([=] () -> bool {

Node* newNode = ofwf::tmNew<Node>(item);

tail->next = newNode;

tail = newNode;

return true;

});

}

T* dequeue() {

return (T*)ofwf::updateTx<T*>([=] () -> T* {

Node* lhead = head;

if (lhead == tail) return nullptr;

head = lhead->next;

ofwf::tmDelete(lhead);

return head->item;

});

}

};

OneFile STM

Anatomy of a wait-free STM

MCAS
(uses double-word CAS and

has no bit stealing)

Consensus
(wait-free consensus similar to

the one by Maurice Herlihy)

Hazard Eras
(wait-free memory

reclamation)

Redo-log
(for concurrency and

durability)

30

OneFile
Lock-Free
Algorithm

31

Lock-free mutative transactions

Mutative (write) transactions in OneFile have
three distinct phases:

1. Transform: The thread takes a lambda or
std::function, simulates execution and
saves every modification on a write-set
(redo-log)
If a newer (inconsistent) modification is
observed, it aborts simulation and restarts

2. Commit: The thread attempts to commit its
write-set using a CAS on a global variable
(curTx) as being the next modification to
be applied

3. Apply: The modifications in the committed
write-set are applied in memory using one
DCAS instruction per modified word

Start mutative
transaction

Yes

Apply TX

CAS
commit
success?

Unfinished
TX to be
applied?

Help apply
unfinished TX

Yes

No

No

32

[=] () { // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () { // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () { // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack

T0

T1

T2

curTx4 0
seq tid

request4 0
seq tid

addr value

write-set for
thread id 0

addr value

write-set for
thread id 1

addr value

write-set for
thread id 2

33 ⊥44
key next

4

head

33

[=] () { // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () { // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () { // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack

T0

T1

T2

curTx4 0
seq tid

request4 0
seq tid

addr value

write-set for
thread id 0

addr value

write-set for
thread id 1

addr value

write-set for
thread id 2

33 ⊥44
key next

4

head

T0 T1 T2

34

[=] () { // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () { // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () { // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack curTx4 0
seq tid

request4 0
seq tid

write-set for
thread id 0

write-set for
thread id 1

write-set for
thread id 2

33 ⊥44
key next

4

head

T0 T1 T2

T0 T2

5 2

&key

&next

&head

addr value

42

head

node

&head

addr value

next &key

&next

&head

addr value

21

head

node

35

[=] () { // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () { // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () { // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack
request4 0

seq tid

write-set for
thread id 0

write-set for
thread id 1

write-set for
thread id 2

33 ⊥44
key next

4

head

T0 T1

T0 T2

curTx
seq tid

5 2

&key

&next

&head

addr value

42

head

node

&head

addr value

next &key

&next

&head

addr value

21

head

node

T0T1

&key

&next

&head

21

head

node

&key

&next

&head

21

head

node

&key

&next

&head

21

head

node

36

[=] () { // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () { // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () { // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack curTx5 2
seq tid

request4 0
seq tid

write-set for
thread id 0

write-set for
thread id 1

write-set for
thread id 2

head

33 ⊥44
key next

T0 T1

T2

&key

&next

&head

addr value

21

head

node

&key

&next

&head

addr value

21

head

node

&key

&next

&head

addr value

21

head

node

T2
key next

T0

215 5

T1

54

37

[=] () { // push 21 on stack
Node* node = tmNew<Node>();
node->key = 21;
node->next = head;
head = node;

}

[=] () { // pop from stack
Node* node = head;
int key = head->key;
head = head->next;
tmDelete(node);
return key;

}

[=] () { // push 42 on stack
Node* node = tmNew<Node>();
node->key = 42;
node->next = head;
head = node;

}

Using OneFile lock-free on a stack curTx5 2
seq tid

33 ⊥44
key next

&key

&next

&head

21

head

node

write-set for
thread id 0

addr value

&key

&next

&head

21

head

node

write-set for
thread id 1

addr value

&key

&next

&head

21

head

node

write-set for
thread id 2

addr value

T2

T0

key next

215 5

T1

head

5

T0 T2 T1

request4 0
seq tid

5 2

T0

T1

38

Lock-free read-only transactions

Read-only transactions in OneFile use an
optimistic technique, similar to TinySTM/TL2

• Before starting execution of the lambda or
std::function, the thread checks if there
is an unfinished mutative transaction and
helps apply it if there is

• Then, it reads the global clock (curTx) and
saves the timestamp

• The load interposing does not keep a read-
set: for every word read, it checks if the
associated timestamp precedes the
timestamp read from the global clock at the
beginning of the transaction

Start read-only
transaction

Unfinished
TX to be
applied?

Help apply
unfinished TX

Yes

No

Execute TX

39

y = 0

x = 0

What about Hardware Transactional Memory (HTM)?

In all current hardware implementations of HTM there is no guarantee of progress

Even simple operations can execute an unbounded number of abort/retry attempts

40

{
x++;
y++;

}

{
y++;
x++;

}

CONFLICT

CONFLICT

x = 1

y = 1

T1T0

OneFile
Wait-Free
Algorithm

41

Reaching consensus

As Maurice Herlihy pointed out, to make a wait-free algorithm we need a wait-free consensus.

In shared memory concurrency, there are three algorithms to achieve wait-free consensus:

1. Lamport’s Bakery Algorithm

“A New solution of Dijkstra’s Concurrent Programming Problem”, L. Lamport, 1974

Used in the Kogan-Petrank wait-free queue, A. Kogan and E. Petrank, 2011

2. Herlihy’s Combining Consensus

“A Methodology for Implementing Highly Concurrent Data Objects”, M. Herlihy, 1993

Used by PSim and the SimQueue wait-free queue, P. Fatourou and N. Kallimanis, 2014

3. Turn consensus

“Mutual Exclusion — Two linear wait solutions”, A. Correia and P. Ramalhete, 2015

Used by TurnQueue wait-free queue, P. Ramalhete and A. Correia, 2017

In OneFile we use a modified variant of Herlihy’s Combining Consensus 42

Sure, it’s wait-
free, but does
it scale?

43

Scaling is easy… for read-mostly workloads

If most of the operations are read-only, then there are multiple generic techniques
that provide good scalability:

Reader-Writer locks: C-RW-WP/RP are two RW-Lock algorithms that provide high read scalability.

UCs: Left-Right and CX scale well for read-only workloads and accept anything you can put on a
lambda and doesn’t have side-effects.

STMs: Some STMs like TL2, TinySTM and OneFile have highly scalable read-only operations.

Not-so-generic-techniques that scale well for reads: RLU, RCU, and others

44

As long as it’s just read-only operations, all these techniques
scale with the number of cores.

Operations are lookups on a red-black tree with 1M keys

45

Generic techniques
that scale well for
readers

Writers progress Readers progress

C-RW-WP Blocking
starvation-free

Blocking

C-RW-RP Blocking Blocking
starvation-free

Left-Right UC Blocking
starvation-free

Wait-free
population oblivious

CX UC Wait-free
bounded

Wait-free
bounded

TL2, TinySTM * Blocking Blocking

OneFile * Wait-free
bounded

Wait-free
bounded

* STMs need load and store annotation

Number of threads
(AWS c5.9xlarge with 36 VCPUs)

Scaling is hard… for mutative operations

Sequential code has cache locality but it is limited
by how fast one core can execute the code.

Sequential code protected with a mutual exclusion
lock has flat or negative scalability.

STMs have the overhead of logging, synchronization
and others.

OneFile and CX scale for read-only transactions but
are flat for mutative transactions

Originally, blocking STMs were able to scale up to
~16 threads, but recently they can scale almost
linearly for high cores counts, even for short
mutative transactions (assuming DAP workloads)

46

The D in A.C.I.D.
A is for Atomicity

C is for Consistency

I is for Isolation

D is for Durability

47

Consistency in databases

Source: Peter Bailis http://www.bailis.org/blog/when-is-acid-acid-rarely/
48

DBMS Default Isolation Maximum Isolation

Aerospike Read Committed Read Committed

MySQL 5.6 Repeatable Read Serializability

MS SQL Server 2012 Read Committed Serializability

NuoDB Consistent Read Consistent Read

Oracle 11g Read Committed Snapshot Isolation

Oracle Berkley DB Serializability Serializability

Postgres 9.2.2 Read Committed Serializability

SAP HANA Read Committed Snapshot Isolation

VoltDB Serializability Serializability

http://www.bailis.org/blog/when-is-acid-acid-rarely/

Consistency in ACID transactions

When transactions are both concurrent and durable (ACID) then what kind of
consistency should we aim for?

If we want to keep strong consistency then the obvious choice is durable
linearizability, (introduced by Izraelevitz, Mendes and Scott, DISC 2016)

Roughly speaking, a durable linearizable transaction can not become visible to
transactions on other threads unless its effects are also durable.

49

Durable
Media

Shared
Memory

Consistency in ACID transactions
Example of not Durable Linearizable

50

T0 T1

x = 0
y = 0

{
x = 1;

}

{
if (x==1) y = 1;

}

x = 0
y = 0
x = 1
y = 0
x = 1
y = 1

x = 0
y = 1

A.C.I.D.
Transactions

(Mnemosyne, OneFile)

51

Durable
Transactions

Concurrent
Transactions

STM Library
(TL2, TinySTM …)

Persistence
Library

(vista, libpmemobj)

Durable Linearizability

Persistent Memory
~170 – 320 ns

SSD/Disk storage
~1 ms – 100 ms

Network replication
~100 ms – 10000 ms+

Durable
Media

Is my data
durable?

write Zwrite Y

Ensuring Durability

Ensuring durable consistency (persistence) has a cost which depends on the media’s latency.

At least one round trip message or synchronization fence is needed to guarantee durability.

52

User

write X
Durable
Media

It is durable
now

A.C.I.D.
Transactions

(Mnemosyne, OneFile)

53

Durable
Transactions

Concurrent
Transactions

STM Library
(TL2, TinySTM …)

Persistence
Library

(vista, libpmemobj)

Durable Linearizability

Persistent Memory
~170 – 320 ns
3 million tx/s

SSD/Disk storage
~1 ms – 100 ms

1000 tx/s

Network replication
~10 ms – 10000 ms

100 tx/s

Durable
Media

Transactions in
Persistent
Memory (PTM)

54

What is Persistent Memory?

Persistent Memory is a durable media that can be accessed through load and store
instructions.

Physically, it fits into a DIMM slot

Solutions exist for several years by HPE, Micron and Viking, but all these are battery
backed:

https://www.vikingtechnology.com/products/nvdimm/

https://www.hpe.com/nl/en/servers/persistent-memory.html

https://www.micron.com/campaigns/persistent-memory

Just last month, Intel has released the Optane DC Persistent Memory which does
not require battery and has latencies close to DRAM. Capacities go up to 512 GiB

https://arxiv.org/pdf/1903.05714.pdf

55

https://www.vikingtechnology.com/products/nvdimm/
https://www.hpe.com/nl/en/servers/persistent-memory.html
https://www.micron.com/campaigns/persistent-memory
https://arxiv.org/pdf/1903.05714.pdf

Just like there is a Memory Model to program with atomics (concurrency),
there is an equivalent Persistent Model to program with persistent memory.

▪ pwb: flushes a cache line. Ordering with respect to previous stores on the same cache line.

▪ pfence: asynchronous ordering fence. No pwb or stores will be re-ordered.

▪ psync: synchronous ordering fence. No pwb or stores will be re-ordered. After this, data is
guaranteed to be persisted, i.e. durable.

Introduced by Izraelevitz, Mendes and Scott, DISC 2016

How to use Persistent Memory

How to execute failure-resilient operations?

On block devices (disks) the typical way that
databases and filesystems ensure that data is stored
consistently is to use:

• Undo-log, redo-log or Copy-On-Write (shadow
copy)

• fsync() or fdatasync() to order writes to the
device

• fsync() or fdatasync() to guarantee data is
durable

On persistent memory the typical way that
databases and filesystems ensure data is stored
consistently is to use:

• Undo-log, redo-log or Copy-On-Write (shadow
copy)

• pwb (CLWB) + pfence (SFENCE) to order writes
to the device

• psync (SFENCE) to guarantee data is durable

57

Recovering from failures

One of the hardest tasks when implementing a DBMS or filesystem is
the design and implementation of the recovery mechanism.

A failure can occur anywhere in the code… how to handle the different
scenarios?

Recovery has to be correct and it should be efficient.

What if there was a way to not have a recovery at all?

58

Null Recovery

Null Recovery is a concept introduced by Izraelevitz, Mendes and Scott, DISC 2016

Roughly speaking, a Lock-Free algorithm with null recovery does not need a recovery
procedure when deployed in Persistent Memory

Not all lock-free algorithms have this property of null recovery.

The OneFile PTM is itself a lock-free (or wait-free) algorithm and it has this property.

In the event of a failure, committed transactions in OneFile PTM are applied where they
left off.

With null recovery and Persistent Memory, recovery in OneFile PTM is at most the time it
takes to apply the last transaction, typically less than a microsecond (depends on the
transaction size).

59

The Future

60

▪ STMs are here to stay: Transactions are a simple way of letting users have concurrent
atomicity without having to worry about locks

▪ Persistent Memory is here to stay: Due to the overhead of drivers and filesystems, for
the foreseeable future, making data durable on a block device will be orders of
magnitude slower than achieving consistent durable data in PM

▪ PTMs are the next step: They combine durable and concurrent transactions (ACID)
under a single programming interface.

▪ Lock-Free PTMs: This is the natural evolution for a PTM. Besides, STMs were originally
developed with the intuit of making lock-free data structures.

▪ Wait-Free Databases: A PTM is in effect a database engine. By using a wait-free PTM
we can make a wait-free database. Look ma, no locks!

What we can do now

The (near) Future

Generic Wait-Free

Disjoint Writes

Is it possible to construct a technique that does all three?

The Holy Grail of
Concurrent Data Structures

… and it has to scale for reads
… and it has to have wait-free memory reclamation
… and it has to have wait-free memory allocation/de-allocation
... and it has to work in persistent memory
(because OneFile already does all these)

OneFile
and UCs

TinySTM,
TL2, etc

Hand-made
lock-free data
structures 62

The (not so distant) Future of K/V stores

63

What can we do with wait-free persistent (durable linearizable) transactions ?

What will a K/V store in PM look like in the future?

• We can make wait-free databases whose code is effectively sequential: concurrency and
durability are taken care of by the PTM

• There is no need to write a recovery operation for the database: it’s taken care by the null
recovery in the PTM

• Any indexing data structure can be used for the tables in the DB and any kind of metadata in the
DBMS will be under the transaction, including the indexing data structure and modifications to
the records

• Operations on a wait-free DB have low tail latency: there are no locks

… but if we have generic dynamic transactions, do we even need a DBMS anymore?

What did we learn today?

• Lock-free is (mostly) about progress in the presence of failures, wait-free is
(mostly) about low latency at the tail and progress. Neither are about throughput.

• All wait-free algorithms use a wait-free consensus. Only three consensus
algorithms are known.

• Scaling for reads is easy. Scaling for DAP writes is hard. Scaling for non-DAP writes
is impossible (conjecture).

• A wait-free STM or UC can transform a sequential data structure into a wait-free
data structure with minimum modifications.

64

Bibliography

65

Creative Common Images

https://commons.wikimedia.org/wiki/File:Heraldic_hourglass.svg

https://commons.wikimedia.org/wiki/File:Simple_gold_cup.svg

66

https://commons.wikimedia.org/wiki/File:Heraldic_hourglass.svg
https://commons.wikimedia.org/wiki/File:Simple_gold_cup.svg

The End
Pedro Ramalhete

http://www.concurrencyfreaks.com

pramalhe@gmail.com

67

http://www.concurrencyfreaks.com/

Backup slides

68

CX UC

Anatomy of a wait-free UC

Multiple replicas of
the data

Strong Try RW-Lock

Hazard Pointers +
Ref counting

(wait-free memory
reclamation)

MPMC Wait-Free
queue

69

Kogan-Petrank queue
(uses Lamport’s bakery

consensus)

SimQueue
(uses Herlihy’s combining

consensus)

Turn queue
(uses the Turn consensus)

Reaching consensus
Herlihy’s consensus

In Herlihy’s original combining algorithm, each
thread announces its operation. This is done by
publishing a function pointer in invocation
and then changing the toggle bit.

The thread that wins the LL/SC or CAS, proposes
the new object with a new object where a
particular set of operations have been applied
and their respective responses.

To know which operations have already been
applied, there is one reserved bit in each entry
of both the announce and the responses. When
the bit is different for a given position, the
operation is yet to be applied.

announcepush(a) push(b)

object

ds

t1 t2

1 1

applied 0

ds

applied

ds

applied0

a

1 0

b a

t1 1st copy t2 1st copy

1 1

invocationtoggle
(bit)

70

Reaching consensus
OneFile’s consensus (variant of Herlihy)

Herlihy’s consensus assumes that each thread works on
its own private copy and applies all operations to it. It
also assumes that each private copy has an associated
applied array. OneFile has a single copy and a single
array shared among all threads.

Instead of a bit, we use the sequence of the announce
and applied entries. If the sequences match, then the
operation is yet to be applied.

As part of the simulation, each operation will have
trigger a store on respective entries of the applied
array. The log will contain the modifications of all
operations, including setting the respective applied
entries to the new values, along with the new sequence
which, by definition, will be different from the previous.

announcepush(a) push(b)

t1 t2

3 4

ds b a

invocation seq

71

appliedtrue false3 4

ds

What about proof checkers?

Lock-free algorithms (and implementations) can have errors. Is there
any hope for tools that verify the correctness of such algorithms?

• SPIN

• JSF

• TLA+

However, the number of threads these can run is limited to 5 or 6 (state explosion for high thread count).

Invariant checking is possible, but it’s up to the designer of the lock-free algorithm to come up with these
invariants. Invariants may not hold when you modify the data structure… back to square 1.

72

Cognitive Load

The typical software developer has to:
• be proficient in one or more languages (development, UI, test)

• know multiple frameworks

• have basic knowledge of how the compiler/JIT/JVM works

• understand the HW (or at least the abstraction of the language)

• many others…

… and on top of this, understand concurrency?!?

73

