Channels in Kotlin
Coroutines™

Nikita Koval, Joker 2018

=~ Kotlin
Aﬂ I‘S‘T AUSTRIA

* A look into the future

Attention! This talk is about
concurrency and algorithms!

Micronaut vs Spring Boot, or
who's the smallest here?

Kirill Tolkachev
CIAN

Maxim Gorelikov
CIAN

#framework #micro #cloud

o= RU

Apache Maven supports ALL
Java

Robert Scholte
Sourcegrounds

#buildtools #mavenchairman
#javall #jigsaw

= EN

Channels in Kotlin
coroutines

Nikita Koval
JetBrains

#concurrency #algorithms

RU

How to tune Spark
performance for ML needs

Artem Shutak
Grid Dynamics

#bigdata #ml

= RU

Speaker: Nikita Koval

v @nkoval_

Graduated at ITMO University
Previously worked as developer and
researcher at Devexperts

Teaches concurrent programming at
ITMO University

PhD student at IST Austria
Researcher at JetBrains

What coroutines are

e Lightweight threads, can be suspended and resumed for free
o You can run millions of coroutines and not die!

What coroutines are

e Support writing an asynchronous code like a synchronous one

fun postItem(item: Item) { ———————_—____,_ suspend functions
val token = requestToken() ///////’
val post = createPost(token, item)
processPost(post)

KotlinConf

Shared + Mutable = A

Producer-consumer problem

Client 1

Client 2

Client N

Send a task

™~

.

—

\

/

Receive a task

* Both clients and consumers are coroutines

Worker 1

Worker M

Producer-consumer problem solution

1. Let’s create a channel

val tasks = Channel<Task>()

Producer-consumer problem solution

1.

2. Clients send tasks to workers through this channel

val task = Task(...)
tasks.send(task)

Producer-consumer problem solution

3. Workers receive tasks in infinite loop

while(true) {
val task = tasks.receive()
processTask(task)

10

Channel semantics

Client 1
val task = Task(...)
tasks.send(task) Worker
while(true) {
val task = tasks.receive()
processTask(task)
Client 2 }

val task = Task(...)
tasks.send(task)

val tasks = Channel<Task>()

11

Channel semantics

Worker

Have to wait for send

while(true) { \\

<:> val task = tasks.receive()

processTask(task)

}

val tasks = Channel<Task>()

12

Channel semantics

_Worker

fz?a‘ while(true) {

(:) val task =

tasks.receive()

processTask(task)

}

val tasks = Channel<Task>()

13

Channel semantics

Client 1
val task = Task(...)
tasks.send(task) ﬁm_VVOFKGF
?Z?i’ while(true) {
(:) val task =

tasks.receive()

processTask(task)

}

val tasks = Channel<Task>()

14

Channel semantics

Client 1

val task = Task(.

<:> tasks.send(task)

Rendezvous!

..)
/ Worker \

while(true) {
<:> val task = tasks.receive()
processTask(task)

}

val tasks = Channel<Task>()

15

Channel semantics

@ Worker
while(true) {
(:) val task = tasks.receive()
<:> processTask(task)
Client 2 }
val task = Task(...)
tasks.send(task)

val tasks = Channel<Task>()

16

Channel semantics

@ Worker
while(true) {
<:> val task = tasks.receive()
<:> processTask(task)
Client 2 }
val task = Task(...)
<:> tasks.send(task) ——

Have to wait for receive

val tasks = Channel<Task>()

17

Channel semantics

@ Worker
while(true) {
<:> val task = tasks.receive()
<:> processTask(task)
__Client 2 }
\%22) val task = Task(...)

{<:> tasks.send(task)

val tasks = Channel<Task>()

18

Channel semantics

©,

Client 2

val task = Task(.

<:> tasks.send(task)

Worker

while(true) {
<:><:> val task = tasks.receive()

<:> processTask(task)
}
) /

Rendezvous!

val tasks = Channel<Task>()

19

Rendezvous channel

20

Rendezvous channel

class Coroutine { Stores an element to be sent
var element: Any?
} Ret th t ti
eturns the current coroutine
fun curCoroutine(): Coroutine { ... } —
suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

S

Functions to manipulate
with coroutines

21

Rendezvous channel

val senders
val receivers

Queue<Coroutine>() ,—f””””

Queue<Coroutine>()

Queues of suspended send
and receive invocations

22

Rendezvous channel

Checks if there is no
receiver and suspends

Rendezvous: retrieves the first receiver

if (receivers.isEmpty()) {
val curCor = curCoroutine()

,f—””’— curCor.element = element

senders.enqueue(curCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
— resume(receiver)

}

23

Rendezvous channel: Golang

24

Rendezvous channel: Golang

Uses per-channel locks

suspend fun send(element: T) = channellLock.withLock {
if (receivers.isEmpty()) {
val curCor = curCoroutine()
curCor.element = element
senders.enqueue(curcCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
resume(receiver)

25

Rendezvous channel: Golang

Uses per-channel locks

suspend fun send(element: T) = channelLock.withLocRk {
if (receivers.isEmpty()) {
val curCor = curCoroutine()
curCor.element = element
senders.enqueue(curCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
resume(receiver)

}
}

Non-scalable, no progress guarantee...

26

I_etl,\/lodern queues use Fetch-And-Add
s try to use the same ideas for chanﬁ"els'

PPoPP'16

opP'13
PP . <86 chess A Wait-free Queue as Fast as Fetch-and-Add

ehudd Afek g Chaoran Yang John Mellor-Crummey
S versity .) .)
Ad: “\MO“ gc\m\cc‘TC‘ AOY ur Department of Computer Science, Rice University
-kgchon\ of Compt® {chaoran, johnmc}@rice.edu
Blavam®®
8wg
comper® .)) .
a;\d‘s“a? o Abstract cither blocking or non-blocking. Blocking data structures include
~ Pty . .
C — . ot 5 . at least one operation where a thread ma; need to wait for an 0p-
cuures ARM “U,Ssc \ Concurrent data structures that have fast and predictable perfor- eration by un([;lher thread to complete B\f;ckin" operations can i‘r‘n—
ent Q2 strud oy OWER LU dep mance are of critical importance for harnessing the power of multi- e ld D i epsubtl Blems : cludi :d P lock, livelock
(ract oning coneUITET G itive natme s v RC yes core processors, which are now ubiquitous. Although wait-free ob- roduce a variety argute problems, including leaclock, IVE\QC™s
o A 2 izl Spot- yes in 8 ¢ cteDs E 10 nversion;y at reason, g ing structures
Abs jsdo! de“* achront? tion v\g“ded ot S0 SPA B jects. whose operations complete in a bounded number of steps. and priority inversy on; for that reason. noR blocking data structures
Con\’e““ 0 most P yorful :?\ 0 avoid w“.o“\“e_ has led 17 x86 3 . were devised more than two decades ago, wait-free objects that can are preferred. . . .
%, use e), & o (s 1688 = jzation s et . R SRt There are three levels of progress uarantees for non-blocking
i 10 V¢ a-sweP { queves: S rent queves: g on ol V- SynehrO™ core ¢ deliver scalable high performance are still rare. data stactures. A cone p ot 8 &
compeTh oneurtent © L i"g.basfd conc howing now \© ‘.b‘iab\ " T gominant s In this paper, we present the first wait-free FIFO queue based on o2 5“‘“"‘"‘,“' concurrent ObJeC 5 . .
n puilding p(op\)*e combim & coachh: SNOL (e that js avane®, ions © fetch-and-add (FAA) While compare-and-swap (CAS) based - obstruction-free if thread can perform an arbitrary operation
L chers © " feren rim! 1eari’ . 3] A & . - o = s . 2
\Bd‘d“‘?;pwc(rakes :: ;\ s \'G““I‘ ‘:-km‘% ock ree) l: 2 con " non-blocking algorithms may perform poorly due to work wasted 0“ Ilhe object in a finite number of steps when It executes in
T h—and‘a‘m (FEA et & nonbloCy RN be\:g\onsb?’ g causes the PO by CAS failures, algorithms hat coordinate using FAA, which is '[’“’_‘f”"’"\f thread performing bit ;
ietC%() pmcessors. ‘00 quene ¥ ic Ae: d\mp\eme\‘ it four that \a\‘%\ SoLiust e »‘Y.““‘.‘ guaranteed t0 succeed, can in principle perform better under high - ((t:({:Nll 'f:'l'"e r‘ea et g a(\bar 'friry \operauon on.
" IX cmu'urruvxt FIF e(émms con bm“;= 3o 26 serC p‘ocegs‘()f hot “"‘;’-gwmg\““ d‘s““c\\'\c contention. Along with FAA, our queue uses a custom epoch-based .c_(\ _|cc _‘f‘“ co»mlp i‘:‘i'" aﬁ"”‘f) ““'? . ‘;’_\”'C"f' or i
2 ‘;&ed\\m spots “‘\ ~oncur™® cy 1eVe :oc d wultt o & oM 2 “C‘“PS scheme to reclaim memorys on x86 architectures, it requires no B ::“‘"'jb'_“ if every ey ;an p’cr 0".“ an arbitrary operation on
\e\\sx 0 25% 12 all ¢ 1n bo sin on ‘_“o;ml primitve® ;\'Y extra memory fences on our algorithm’s typical execution path. An Wai ‘; © E‘lcc‘ i af:me number of SIEps- i i
1 Aieore (J\")“-e>5m> o camming Tec h H'"‘;). Wwhile * ““’;‘,, empirical study of our new FAA-based wait-free FIFO queue under “_'?_b"c,c O"f‘ '_’\'[f:m";ss,‘l{"’:l:gl'(; :uwd}f\n:_ce. “li,nl' C_s 0\{ § c
L ecution iptors D13 \Pnsfrucxurﬂs\'. Lastss (_\“‘ wairee man 3‘“;:3 high contention on four different architectures with many hardware Pm"l. “.".y ‘f‘ ‘s_‘(‘;“i‘ ion for all threacs. = “""' rz;e g ata _’l:f (.tt\\l’rc.s
s bject DBSC';‘{?‘ % e\ Datd i ‘2‘ in pmc\\f-e vep ('m\e‘ threads shows that it outperforms prior queue designs that lack a \r: lPd_ﬂ' e arly ¢ o i o s dbpp “k“mon"”l‘ ‘“_ vt
Categorié ““Cu“e“\ program™TE o chean a&o\“ over. there 1% “'“‘c“\“ wait-free progress guarantee- Surprisingly. at the highest level of red ;;n‘:c uy’;:”"‘fm ‘uf d:l 086 u“T Yy <y I.CT'P t » ;}js\cm\
niquesy: C:; neues \ing algorith™ ferc! oW ich doﬂ\\“"‘e‘.‘cu contention, the throughput of our queue is often as high as that of a ied ; ons “8:_"6‘1'”“ Ldonf (‘]“L_l"l)?" o ““‘“‘ rsﬁol_-'ed"l ‘\v_fhex-»
stacks: and & eues nondlo” e o ;g various heo™ microbenchmark that only performs FAA. As aresult, our fast wait- isted for more than e es | »]-Pf chicd wail- ree algorithms
‘o“c\me“\ W por! jose ¥ are hard to design and considered inefficient with good reason. For
erty

free queue implememmion is useful in practice on most multi-core
Al systems today. We believe that our design can serve as an example
Y. ioufe)Y S\‘im’e“ ded ¢ of how to construct other fast wait-free objects.

example, the fastest wail-free concurrent queue {0 date, designed
by Fatourouto and Kallimanis (7], is orders of magnitude slower
than the best performing lock-free queue, LCRQ, by Morrison and
gramming Tech- Afek [19]. General methods to transform lock-free objects into
. wait-free objects, such as thcﬁl.\l-pulh».yhm-»pmh methodology by

> e AN L Hle for lock-free data struc-

e bioct Descriptors D 1.3 [Pro,

Concurrent primitives

e Fetch-And-Add(p, val): Long
Atomically increments the located by address p register by val

and returns the new value

e Compare-And-Swap(p, old, new): Boolean
Atomically checks if the located by address p value equals old

and replaces it with new

28

Rendezvous channel: Kotlin

e Assume we have an atomic 128-bit register
o That is not true; we will fix this later

Rendezvous channel: Kotlin

sendersAndReceivers

senders receivers —
64 bits 64 bits

The total number of send
and receive operations

30

Rendezvous channel: Kotlin

sendersAndReceivers

The total number of send
and receive operations

senders receivers —

e Every send and receive increments its counter using FAA

O

O

64 bits 64 bits

send increments the register by (1 << 64)

receive increments the register by 1

31

Rendezvous channel: Kotlin

e Each send-receive pair works with an unique cell
e This cellid is either senders or receivers counter after the
iIncrement

e How to understand if we can make a rendezvous?

32

Rendezvous channel: Kotlin

senders < receivers -> // make a rendezvous
senders >= receivers -> // suspend

\

The balance before the
send operation

33

Rendezvous channel: Kotlin

Cell life cycle

senders < receivers -> // make a rendezvous y

senders >= receivers -> // suspend
EMPTY

\ *suspend
coroutine
The balance before the
send operation *rendezvous

DONE

Rendezvous channel: Kotlin

senders < receivers -> // make a rendezvous
senders >= receivers -> // suspend

\

The balance before the
send operation

Cell life cycle

EMPTY rendezvous failed

*Suspend BROKEN

coroutine

* rendezvous

DONE

This helps not to block

35

Rendezvous channel: Kotlin

1. How to implement an atomic 128-bit counter using 64-bit ones?

2. How to organize the cell storage?

36

Rendezvous channel: Kotlin

1. How to implement an atomic 128-bit counter using 64-bit ones?

37

Rendezvous channel: Kotlin

0000...001111...11

higheét part lowest part

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders_H receivers H
32 bits 32 bits

We maintain highest and
lowest parts separately

38

Rendezvous channel: Kotlin

—

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders H receivers H
32 bits 32 bits

Indicates that the lowest
part is overflowed

™~

We maintain highest and
lowest parts separately

39

Rendezvous channel: Kotlin

1/6 | senders L |1/e| receivers L
senders_H receivers H
32 bits 32 bits
I

H rwlock

Read-write lock for
highest parts

40

Rendezvous channel: Kotlin

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders H receivers H
32 bits

32 bits

H rwlock

Increment algorithm:

1. Acquire H_rwlock for read
2. ReadH

3. Inc L byFAA

4. Release the lock

41

Rendezvous channel: Kotlin

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders H receivers H
32 bits 32 bits

H rwlock

1. Acquire H_rwlock for read

4. Release the lock

\

Just a FAA

42

Rendezvous channel: Kotlin

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders H receivers H
32 bits 32 bits
H rwlock

Increment algorithm:

5. If the lowest part is overflowed
5.1. Acquire H_rwlock for write
5.2. Reset the bit
5.3. IncH
95.4. Release the lock

43

Rendezvous channel: Kotlin

2. How to organize the cell storage?

44

Rendezvous channel: Kotlin

Michael-Scott queue of segments

N_> N—Ill—>

+ +
HEAD \ | / TAIL

Segments

Rendezvous channel: Kotlin

Michael-Scott queue of segments

HEAD

\

.../

Cells

TAIL

46

Rendezvous channel: Kotlin

Michael-Scott queue of segments

/

Segment id

0

HEAD

N

\

Pointer to the
next segment

TAIL

Rendezvous channel: Kotlin

HEAD

1.
2.

Read both HEAD and TAIL
Increment the counter

TAIL

48

Rendezvous channel: Kotlin

HEAD

3. Either make a rendezvous
3.1. Find the cell starting from the head
3.2. Move HEAD forward if needed

TAIL

49

Rendezvous channel: Kotlin

HEAD

4.

or suspend
4.1. Find the cell starting from the tail
4.2. Create new segments if needed

TAIL

50

Rendezvous channel: Kotlin vs Golang

-»— new -~ golang

Single Consumer, #coroutines = #threads Producer-Consumer, #coroutines = #threads Producer-Consumer, #coroutines = 10'000

1500 A 1500 - 2500 -
2000 A
o 1000 A o 1000 - o
2 = S 1500 1
Z Z Z
500 - 500 - 1000 A
500 -
O T T T T T T T T O T T T T T T T T o T T 1 T T T T T
1 2 4 8 16 32 64 14 1 2 4 8 16 32 64 144 1 2 4 8 16 32 64 14

Number of scheduler threads Number of scheduler threads Number of scheduler threads

4 x 2 x Intel Xeon Gold 6150 (Skylake) 2.7GHz = (144 virtual cores) 51

Producer-consumer problem: buffering

Client 1

Client 2

Client N

Send a task

= =

Receive a task

We don’t want to wait on
every send...

Worker 1

Worker M

52

Producer-consumer problem: buffering

Client 1 Send a task

\ Worker 1
P—

Worker M

Client 2 \,L }
o o o / \

Client N Receive a task

Let’s use a fixed-size buffer!

Buffered channel semantics

Client 1
val task = Task(...)
tasks.send(task) Worker
while(true) {
val task = tasks.receive()
processTask(task)
Client 2 }
val task = Task(...) One element can be sent
tasks.send(task) without suspension
/

val tasks = Channel<Task>(capacity = 1)

Buffered channel semantics

Client 1

val task = Task(...)
<:> tasks.send(task)

\

Does not suspend!

val tasks = Channel<Task>(capacity = 1)

55

Buffered channel semantics

©,

__Client 2

\%2z2) yal task = Task(...)

‘(:) tasks.send(task) —

The buffer is full, has to suspend

val tasks = Channel<Task>(capacity = 1)

56

Buffered channel semantics

@ Worker
while(true) {
<:> val task = tasks.receive()

processTask(task)
__Client 2 / }

\%2z2) yal task = Task(...)

‘(:) tasks.send(task)

Receives the buffered
element at first

val tasks = Channel<Task>(capacity = 1)

Buffered channel semantics

©,

Client 2

val task = Task(
<:> tasks.send(task)

.))

\

Worker
while(true) {

<:)<:> val task = tasks.receive()

/ processTask(task)
}

Makes a rendezvous with
the 2nd client

val tasks = Channel<Task>(capacity = 1)

58

Buffered channel: Golang

e Maintains an additional fixed-size buffer
o Tries to send to this buffer instead of suspending

e Performs all operations under the channel lock

59

Buffered channel: Kotlin

Rendezvous channel

when {
senders - receivers < 0

senders - receivers >= 0

-> // make a rendezvous
-> // suspend

} ~—_

The balance before the
send operation

60

Buffered channel: Kotlin

Buffered channel

@ <= senders - receivers < capacity -> // send the element without suspension
senders - receivers >= capacity -> // suspend

61

Buffered channel: Kotlin vs Golang

=P new (capacity=32) new (capacity=1024) -~ golang (capacity = 32) golang (capacity=1024)

Single Consumer, #coroutines = #threads Producer-Consumer, #coroutines = #threads Producer-Consumer, #coroutines = 10'000

\) ! 2500 1 gy
2000 A 2000 - J
2000 - //
1500 A 4
3 g o &P S1500{
%) i %) | - %)
£ 1000 £ 1000 / = 1000_%\\"’_’—’\»
/’_»—‘N’__NN’
500 1= 500 1= 2 500
O T T § 1 1 T 1 ¢ O T I |l T 1 T T |l O 1 T T T T 1 T 1
1 2 4 8 16 32 64 144 1 2 4 8 16 32 64 144 1 2 4 8 16 32 64 14
Number of scheduler threads Number of scheduler threads Number of scheduler threads

4 x 2 x Intel Xeon Gold 6150 (Skylake) 2.7GHz = (144 virtual cores) 62

The select expression

Client

val task = Task(...)

tasks.send(task)
N\

Suspends here

63

The select expression

Client

zZz,

64

The select expression

Glient

(zZzy

The client was interrupted while
waiting for a worker

65

The select expression

Chien

gZ Zz

The client was interrupted while
waiting for a worker

Do we need to process
the task anymore?

66

The select expression

,f“"’z&m‘%.,
\& z)

©

The client was interrupted while
waiting for a worker

Do we need to process

the task anymore?

It would be better to cancel
the request and detect this

67

The select expression
Client

val cancelled = Channel<Unit>() /////

Unit is sent to this channel
if the client is interrupted

68

The select expression
Client
select<Unit> {

tasks.onSend(task) { println("Task has been sent") }
cancelled.onReceive { println("Cancelled") }

Waits simultaneously, at most one
clause is selected atomically.

69

The select expression: Golang

e Fine-grained locking

e Acquires all involved channels locks to register into the queues
o Uses hierarchical order to avoid deadlocks

e Acquires all these locks again to resume the coroutine
o Otherwise, two select clauses could interfere

70

The select expression: Kotlin

SelectInstance

alternatives

PENDING

state or
SELECTED

The select expression: Kotlin

For each
channel Get the counters snapshot
SelectInstance senders < r'eceiver's/ \:enders >= receivers
1 . Try to make a Try to store the
alternatives rendezvous SelectInstance
PENDING
state or
SELECTED Waiting phase

!

Remove the stored
SelectInstance-s

The select expression: Kotlin

Cell life cycle

try to make
a rendezvous

rendezvous failed

EMPTY .

N

*suspend

Select <
Desc —

coroutine

rendezvous

rendezvous failed

BROKEN

rendezvous

DONE

73

The select expression: Kotlin

Does not update
counters here!

Increment the
counter on success

Cell life cycle

try to make EMPTY musfalled
a rendezvous
N\ *WSPend BROKEN
Select < _
coroutine
Desc _ >

rendezvous

rendezvous failed

rendezvous

e

DONE

74

The select expression: Kotlin

Does not update
counters here!

Increment the
counter on success

Cell life cycle

try to make EMPTY wfusfalled
a rendezvous
\ *suspend BROKEN
Select | _ \
coroutine
Desc _ >

rendezvous

e

rendezvous failed

rendezvous

Tries to increment
the counter from the
snapshot by CAS

DONE

75

The select expression: Kotlin

A rendezvous between two selects:

SelectInstance SelectInstance
alternatives alternatives
PENDING PENDING
state or state or
\ SELECTED / SELECTED

Let’s update them
similarly to the Harris
multiword CAS*

\

/

Need to update
them atomically

77

The select expression: Kotlin vs Golang

~»— new -~ golang

Single Consumer, #coroutines = #threads Producer-Consumer, #coroutines = #threads Producer-Consumer, #coroutines = 10'000
6000 -
3000 - 5000 1
o o 4000 - &, A0
=, 2000 2 3000 - 2
Z & 2
1000 20007 2000 1
1000 A
0 T T 1 1 1 T T T O T T |l T 1 1 1 1 0 1 T 1 1 1 T T 1
1 2 4 8 16 32 64 144 1 2 4 8 16 32 64 144 1 2 4 8 16 32 64 144
Number of scheduler threads Number of scheduler threads Number of scheduler threads

4 x 2 x Intel Xeon Gold 6150 (Skylake) 2.7GHz = (144 virtual cores) 78

Cancellation in Kotlin

e Cancellation is a built-in feature in Kotlin

o However, the previous pattern is widely used in Golang

val job = GlobalScope.launch { ... }

job.cancel() —_

Removes the coroutine from
all channels as well

79

Cancellation in Kotlin

e Cancellation is a built-in feature in Kotlin
o However, the previous pattern is widely used in Golang

Invokes job.cancel()
after the timeout

GlobalScope. Launch { /
withTimeout(time = 1, unit = TimeUnit.SECONDS) {

There are more message passing primitives

e BroadcastChannel
Sends to multiple receivers

e (ConflatedChannel
Receivers always get the most recently sent element

e ConflatedBroadcastChannel
Mix of the previous ones

e Mutex

81

A < J [
B T iy =

Industry Academia

