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What coroutines are

e Lightweight threads, can be suspended and resumed for free
o You can run millions of coroutines and not die!



What coroutines are

e Support writing an asynchronous code like a synchronous one

fun postItem(item: Item) { ———————_—____,_ suspend functions
val token = requestToken() ///////’
val post = createPost(token, item)
processPost(post)



KotlinConf

Shared + Mutable = A




Producer-consumer problem

Client 1

Client 2

Client N

Send a task

™~

.

—

\

/

Receive a task

* Both clients and consumers are coroutines

Worker 1

Worker M




Producer-consumer problem solution

1. Let’s create a channel

val tasks = Channel<Task>()



Producer-consumer problem solution

1.

2. Clients send tasks to workers through this channel

val task = Task(...)
tasks.send(task)



Producer-consumer problem solution

3. Workers receive tasks in infinite loop

while(true) {
val task = tasks.receive()
processTask(task)
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Channel semantics

Client 1
val task = Task(...)
tasks.send(task) Worker
while(true) {
val task = tasks.receive()
processTask(task)
Client 2 }

val task = Task(...)
tasks.send(task)

val tasks = Channel<Task>()
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Channel semantics

Worker

Have to wait for send

while(true) { \\

<:> val task = tasks.receive()

processTask(task)

}

val tasks = Channel<Task>()
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Channel semantics

_Worker

fz?a‘ while(true) {

(:) val task =

tasks.receive()

processTask(task)

}

val tasks = Channel<Task>()
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Channel semantics

Client 1
val task = Task(...)
tasks.send(task) ﬁm_VVOFKGF
?Z?i’ while(true) {
(:) val task =

tasks.receive()

processTask(task)

}

val tasks = Channel<Task>()
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Channel semantics

Client 1

val task = Task(.

<:> tasks.send(task)

Rendezvous!

..)
/ Worker \

while(true) {
<:> val task = tasks.receive()
processTask(task)

}

val tasks = Channel<Task>()
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Channel semantics

@ Worker
while(true) {
(:) val task = tasks.receive()
<:> processTask(task)
Client 2 }
val task = Task(...)
tasks.send(task)

val tasks = Channel<Task>()
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Channel semantics

@ Worker
while(true) {
<:> val task = tasks.receive()
<:> processTask(task)
Client 2 }
val task = Task(...)
<:> tasks.send(task) ——

Have to wait for receive

val tasks = Channel<Task>()
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Channel semantics

@ Worker
while(true) {
<:> val task = tasks.receive()
<:> processTask(task)
__Client 2 }
\%22)  val task = Task(...)

{<:> tasks.send(task)

val tasks = Channel<Task>()
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Channel semantics

©,

Client 2

val task = Task(.

<:> tasks.send(task)

Worker

while(true) {
<:><:> val task = tasks.receive()

<:> processTask(task)
}
) /

Rendezvous!

val tasks = Channel<Task>()
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Rendezvous channel
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Rendezvous channel

class Coroutine { Stores an element to be sent
var element: Any?
} Ret th t ti
eturns the current coroutine
fun curCoroutine(): Coroutine { ... } —
suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

S

Functions to manipulate
with coroutines
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Rendezvous channel

val senders
val receivers

Queue<Coroutine>() ,—f””””

Queue<Coroutine>()

Queues of suspended send
and receive invocations
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Rendezvous channel

Checks if there is no
receiver and suspends

Rendezvous: retrieves the first receiver

if (receivers.isEmpty()) {
val curCor = curCoroutine()

,f—””’— curCor.element = element

senders.enqueue(curCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
— resume(receiver)

}
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Rendezvous channel: Golang
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Rendezvous channel: Golang

Uses per-channel locks

suspend fun send(element: T) = channellLock.withLock {
if (receivers.isEmpty()) {
val curCor = curCoroutine()
curCor.element = element
senders.enqueue(curcCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
resume(receiver)

25



Rendezvous channel: Golang

Uses per-channel locks

suspend fun send(element: T) = channelLock.withLocRk {
if (receivers.isEmpty()) {
val curCor = curCoroutine()
curCor.element = element
senders.enqueue(curCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
resume(receiver)

}
}

Non-scalable, no progress guarantee...
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Concurrent primitives

e Fetch-And-Add(p, val): Long
Atomically increments the located by address p register by val

and returns the new value

e Compare-And-Swap(p, old, new): Boolean
Atomically checks if the located by address p value equals old

and replaces it with new

28



Rendezvous channel: Kotlin

e Assume we have an atomic 128-bit register
o That is not true; we will fix this later



Rendezvous channel: Kotlin

sendersAndReceivers

senders receivers —
64 bits 64 bits

The total number of send
and receive operations

30



Rendezvous channel: Kotlin

sendersAndReceivers

The total number of send
and receive operations

senders receivers —

e Every send and receive increments its counter using FAA

O

O

64 bits 64 bits

send increments the register by (1 << 64)

receive increments the register by 1

31



Rendezvous channel: Kotlin

e Each send-receive pair works with an unique cell
e This cellid is either senders or receivers counter after the
iIncrement

e How to understand if we can make a rendezvous?

32



Rendezvous channel: Kotlin

senders < receivers -> // make a rendezvous
senders >= receivers -> // suspend

\

The balance before the
send operation

33



Rendezvous channel: Kotlin

Cell life cycle

senders < receivers -> // make a rendezvous y

senders >= receivers -> // suspend
EMPTY

\ *suspend
coroutine
The balance before the
send operation *rendezvous

DONE




Rendezvous channel: Kotlin

senders < receivers -> // make a rendezvous
senders >= receivers -> // suspend

\

The balance before the
send operation

Cell life cycle

EMPTY rendezvous failed

*Suspend BROKEN

coroutine

* rendezvous

DONE

This helps not to block

35



Rendezvous channel: Kotlin

1. How to implement an atomic 128-bit counter using 64-bit ones?

2. How to organize the cell storage?

36



Rendezvous channel: Kotlin

1. How to implement an atomic 128-bit counter using 64-bit ones?
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Rendezvous channel: Kotlin

0000...001111...11

higheét part lowest part

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders_H receivers H
32 bits 32 bits

We maintain highest and
lowest parts separately
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Rendezvous channel: Kotlin

—

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders H receivers H
32 bits 32 bits

Indicates that the lowest
part is overflowed

™~

We maintain highest and
lowest parts separately
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Rendezvous channel: Kotlin

1/6 | senders L |1/e| receivers L
senders_H receivers H
32 bits 32 bits
I

H rwlock

Read-write lock for
highest parts

40



Rendezvous channel: Kotlin

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders H receivers H
32 bits

32 bits

H rwlock

Increment algorithm:

1. Acquire H_rwlock for read
2. ReadH

3. Inc L byFAA

4. Release the lock

41



Rendezvous channel: Kotlin

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders H receivers H
32 bits 32 bits

H rwlock

1. Acquire H_rwlock for read

4. Release the lock

\

Just a FAA

42



Rendezvous channel: Kotlin

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders H receivers H
32 bits 32 bits
H rwlock

Increment algorithm:

5. If the lowest part is overflowed
5.1. Acquire H_rwlock for write
5.2. Reset the bit
5.3. IncH
95.4. Release the lock

43



Rendezvous channel: Kotlin

2. How to organize the cell storage?

44



Rendezvous channel: Kotlin

Michael-Scott queue of segments

N_> N—Ill—>

+ +
HEAD \ | / TAIL

Segments




Rendezvous channel: Kotlin

Michael-Scott queue of segments

HEAD

\

.../

Cells

TAIL
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Rendezvous channel: Kotlin

Michael-Scott queue of segments

/

Segment id

0

HEAD

N

\

Pointer to the
next segment

TAIL




Rendezvous channel: Kotlin

HEAD

1.
2.

Read both HEAD and TAIL
Increment the counter

TAIL

48



Rendezvous channel: Kotlin

HEAD

3. Either make a rendezvous
3.1. Find the cell starting from the head
3.2. Move HEAD forward if needed

TAIL

49



Rendezvous channel: Kotlin

HEAD

4.

or suspend
4.1. Find the cell starting from the tail
4.2. Create new segments if needed

TAIL

50



Rendezvous channel: Kotlin vs Golang

-»— new -~ golang

Single Consumer, #coroutines = #threads Producer-Consumer, #coroutines = #threads Producer-Consumer, #coroutines = 10'000
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Producer-consumer problem: buffering

Client 1

Client 2

Client N

Send a task

= =

Receive a task

We don’t want to wait on
every send...

Worker 1

Worker M
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Producer-consumer problem: buffering

Client 1 Send a task

\ Worker 1
P—

Worker M

Client 2 \,L }
o o o / \

Client N Receive a task

Let’s use a fixed-size buffer!




Buffered channel semantics

Client 1
val task = Task(...)
tasks.send(task) Worker
while(true) {
val task = tasks.receive()
processTask(task)
Client 2 }
val task = Task(...) One element can be sent
tasks.send(task) without suspension
/

val tasks = Channel<Task>(capacity = 1)



Buffered channel semantics

Client 1

val task = Task(...)
<:> tasks.send(task)

\

Does not suspend!

val tasks = Channel<Task>(capacity = 1)
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Buffered channel semantics

©,

__Client 2

\%2z2)  yal task = Task(...)

‘(:) tasks.send(task) —

The buffer is full, has to suspend

val tasks = Channel<Task>(capacity = 1)

56



Buffered channel semantics

@ Worker
while(true) {
<:> val task = tasks.receive()

processTask(task)
__Client 2 / }

\%2z2)  yal task = Task(...)

‘(:) tasks.send(task)

Receives the buffered
element at first

val tasks = Channel<Task>(capacity = 1)



Buffered channel semantics

©,

Client 2

val task = Task(
<:> tasks.send(task)

.))

\

Worker
while(true) {

<:)<:> val task = tasks.receive()

/ processTask(task)
}

Makes a rendezvous with
the 2nd client

val tasks = Channel<Task>(capacity = 1)

58



Buffered channel: Golang

e Maintains an additional fixed-size buffer
o Tries to send to this buffer instead of suspending

e Performs all operations under the channel lock

59



Buffered channel: Kotlin

Rendezvous channel

when {
senders - receivers < 0

senders - receivers >= 0

-> // make a rendezvous
-> // suspend

} ~—_

The balance before the
send operation

60



Buffered channel: Kotlin

Buffered channel

@ <= senders - receivers < capacity -> // send the element without suspension
senders - receivers >= capacity -> // suspend
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Buffered channel: Kotlin vs Golang
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The select expression

Client

val task = Task(...)

tasks.send(task)
N\

Suspends here
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The select expression

Client

zZz,

64



The select expression

Glient

(zZzy

The client was interrupted while
waiting for a worker
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The select expression

Chien

gZ Zz

The client was interrupted while
waiting for a worker

Do we need to process
the task anymore?
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The select expression

,f“"’z&m‘%.,
\& z)

©

The client was interrupted while
waiting for a worker

Do we need to process

the task anymore?

It would be better to cancel
the request and detect this

67



The select expression
Client

val cancelled = Channel<Unit>() /////

Unit is sent to this channel
if the client is interrupted

68



The select expression
Client
select<Unit> {

tasks.onSend(task) { println("Task has been sent") }
cancelled.onReceive { println("Cancelled") }

Waits simultaneously, at most one
clause is selected atomically.

69



The select expression: Golang

e Fine-grained locking

e Acquires all involved channels locks to register into the queues
o Uses hierarchical order to avoid deadlocks

e Acquires all these locks again to resume the coroutine
o Otherwise, two select clauses could interfere

70



The select expression: Kotlin

SelectInstance

alternatives

PENDING

state or
SELECTED




The select expression: Kotlin

For each
channel Get the counters snapshot
SelectInstance senders < r'eceiver's/ \:enders >= receivers
1 . Try to make a Try to store the
alternatives rendezvous SelectInstance
PENDING
state or
SELECTED Waiting phase

!

Remove the stored
SelectInstance-s




The select expression: Kotlin

Cell life cycle

try to make
a rendezvous

rendezvous failed

EMPTY .

N

*suspend

Select <
Desc —

coroutine

rendezvous

rendezvous failed

BROKEN

rendezvous

DONE
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The select expression: Kotlin

Does not update
counters here!

Increment the
counter on success

Cell life cycle

try to make EMPTY musfalled
a rendezvous
N\ *WSPend BROKEN
Select < _
coroutine
Desc _ >

rendezvous

rendezvous failed

rendezvous

e

DONE
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The select expression: Kotlin

Does not update
counters here!

Increment the
counter on success

Cell life cycle

try to make EMPTY wfusfalled
a rendezvous
\ *suspend BROKEN
Select | _ \
coroutine
Desc _ >

rendezvous

e

rendezvous failed

rendezvous

Tries to increment
the counter from the
snapshot by CAS

DONE
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The select expression: Kotlin

A rendezvous between two selects:

SelectInstance SelectInstance
alternatives alternatives
PENDING PENDING
state or state or
\ SELECTED / SELECTED

Let’s update them
similarly to the Harris
multiword CAS*

\

/

Need to update
them atomically
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The select expression: Kotlin vs Golang

~»— new -~ golang

Single Consumer, #coroutines = #threads Producer-Consumer, #coroutines = #threads Producer-Consumer, #coroutines = 10'000
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Cancellation in Kotlin

e Cancellation is a built-in feature in Kotlin

o However, the previous pattern is widely used in Golang

val job = GlobalScope.launch { ... }

job.cancel() —_

Removes the coroutine from
all channels as well
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Cancellation in Kotlin

e Cancellation is a built-in feature in Kotlin
o However, the previous pattern is widely used in Golang

Invokes job.cancel()
after the timeout

GlobalScope. Launch { /
withTimeout(time = 1, unit = TimeUnit.SECONDS) {



There are more message passing primitives

e BroadcastChannel
Sends to multiple receivers

e (ConflatedChannel
Receivers always get the most recently sent element

e ConflatedBroadcastChannel
Mix of the previous ones

e Mutex
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