
Channels in Kotlin
Coroutines*

Nikita Koval, Joker 2018

* A look into the future

Attention! This talk is about
concurrency and algorithms!

2

Speaker: Nikita Koval

● Graduated at ITMO University
● Previously worked as developer and

researcher at Devexperts
● Teaches concurrent programming at

ITMO University
● PhD student at IST Austria
● Researcher at JetBrains

3
@nkoval_

What coroutines are

● Lightweight threads, can be suspended and resumed for free
○ You can run millions of coroutines and not die!

4

What coroutines are

● Lightweight threads, can be suspended and resumed for free
○ You can run millions of coroutines and not die!

● Support writing an asynchronous code like a synchronous one
fun postItem(item: Item) {

val token = requestToken()

val post = createPost(token, item)

processPost(post)

}

5

suspend functions

“Kotlin Coroutines in Practice” by Roman Elizarov @ KotlinConf 2018 6

Producer-consumer problem

* Both clients and consumers are coroutines 7

...

Worker 1

Worker M

...

Send a task

Receive a task

Client 1

Client 2

Client N

Producer-consumer problem solution

1. Let’s create a channel

val tasks = Channel<Task>()

8

Producer-consumer problem solution

1. Let’s create a channel

val tasks = Channel<Task>()

2. Clients send tasks to workers through this channel
val task = Task(...)
tasks.send(task)

9

Producer-consumer problem solution

1. Let’s create a channel

val tasks = Channel<Task>()

2. Clients send tasks to workers through this channel
val task = Task(...)
tasks.send(task)

3. Workers receive tasks in infinite loop
while(true) {
 val task = tasks.receive()
 processTask(task)
}

10

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

11

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

12

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

Have to wait for send

1

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

13

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

1

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

14

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

1

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

15

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

Rendezvous!

1

2

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

16

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

1

val tasks = Channel<Task>()

3

2

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

17

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

1

val tasks = Channel<Task>()

3

2

4
Have to wait for receive

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

18

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

1

val tasks = Channel<Task>()

3

2

4

Channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

19

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

1

val tasks = Channel<Task>()

3

2

4

5

Rendezvous!

Rendezvous channel

20

Rendezvous channel
class Coroutine {
 var element: Any?
 ...
}

fun curCoroutine(): Coroutine { ... }

suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

21

Stores an element to be sent

Returns the current coroutine

Functions to manipulate
with coroutines

Rendezvous channel
class Coroutine {
 var element: Any?
 ...
}

fun curCoroutine(): Coroutine { ... }

suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

val senders = Queue<Coroutine>()
val receivers = Queue<Coroutine>()

22

Queues of suspended send
and receive invocations

Rendezvous channel
class Coroutine {
 var element: Any?
 ...
}

fun curCoroutine(): Coroutine { ... }

suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

val senders = Queue<Coroutine>()
val receivers = Queue<Coroutine>()

23

suspend fun send(element: T) {
 if (receivers.isEmpty()) {
 val curCor = curCoroutine()
 curCor.element = element
 senders.enqueue(curCor)
 suspend(curCor)
 } else {
 val r = receivers.dequeue()
 r.element = element
 resume(receiver)
 }
}

Checks if there is no
receiver and suspends

Rendezvous: retrieves the first receiver

Rendezvous channel: Golang

24

Rendezvous channel: Golang

Uses per-channel locks

25

suspend fun send(element: T) = channelLock.withLock {
 if (receivers.isEmpty()) {
 val curCor = curCoroutine()
 curCor.element = element
 senders.enqueue(curCor)
 suspend(curCor)
 } else {
 val r = receivers.dequeue()
 r.element = element
 resume(receiver)
 }
}

Rendezvous channel: Golang

Uses per-channel locks

26

Non-scalable, no progress guarantee...

suspend fun send(element: T) = channelLock.withLock {
 if (receivers.isEmpty()) {
 val curCor = curCoroutine()
 curCor.element = element
 senders.enqueue(curCor)
 suspend(curCor)
 } else {
 val r = receivers.dequeue()
 r.element = element
 resume(receiver)
 }
}

Modern queues use Fetch-And-Add...
Let’s try to use the same ideas for channels!

PPoPP’13

PPoPP’16

Concurrent primitives

● Fetch-And-Add(p, val): Long

Atomically increments the located by address p register by val
and returns the new value

● Compare-And-Swap(p, old, new): Boolean

Atomically checks if the located by address p value equals old
and replaces it with new

28

Rendezvous channel: Kotlin

● Assume we have an atomic 128-bit register
○ That is not true; we will fix this later

Rendezvous channel: Kotlin

● Assume we have an atomic 128-bit register
○ That is not true; we will fix this later

senders receivers
64 bits 64 bits

The total number of send
and receive operations

30

sendersAndReceivers

Rendezvous channel: Kotlin

● Assume we have an atomic 128-bit register
○ That is not true; we will fix this later

senders receivers
64 bits 64 bits

The total number of send
and receive operations

● Every send and receive increments its counter using FAA
○ send increments the register by (1 << 64)
○ receive increments the register by 1

31

sendersAndReceivers

Rendezvous channel: Kotlin

● Each send-receive pair works with an unique cell
● This cell id is either senders or receivers counter after the

increment (for send and receive respectively)

● How to understand if we can make a rendezvous?

32

Rendezvous channel: Kotlin

33

when {

 senders < receivers -> // make a rendezvous

 senders >= receivers -> // suspend

}

The balance before the
send operation

Rendezvous channel: Kotlin

34

EMPTY

coroutine

DONE

suspend

rendezvous

when {

 senders < receivers -> // make a rendezvous

 senders >= receivers -> // suspend

}

Cell life cycle

The balance before the
send operation

Rendezvous channel: Kotlin

35

EMPTY

coroutine

DONE

BROKENsuspend

rendezvous failed

rendezvous

when {

 senders < receivers -> // make a rendezvous

 senders >= receivers -> // suspend

}

The balance before the
send operation

Cell life cycle

This helps not to block

Rendezvous channel: Kotlin

1. How to implement an atomic 128-bit counter using 64-bit ones?

2. How to organize the cell storage?

36

Rendezvous channel: Kotlin

1. How to implement an atomic 128-bit counter using 64-bit ones?

2. How to organize the cell storage?

37

Rendezvous channel: Kotlin

38

senders_L receivers_L1/01/0

senders_H receivers_H

1 bit 31 bits 1 bit 31 bits

32 bits32 bits
We maintain highest and
lowest parts separately

0000...001111...11
highest part lowest part

L

H

Rendezvous channel: Kotlin

39

senders_L receivers_L1/01/0

senders_H receivers_H

1 bit 31 bits 1 bit 31 bits

32 bits32 bits
We maintain highest and
lowest parts separately

Indicates that the lowest
part is overflowed

L

H

Rendezvous channel: Kotlin

40

senders_L receivers_L1/01/0

senders_H receivers_H

1 bit 31 bits 1 bit 31 bits

32 bits32 bits

Read-write lock for
highest parts

H_rwlock

L

H

Rendezvous channel: Kotlin

41

senders_H receivers_H
32 bits32 bits

H_rwlock

senders_L receivers_L1/01/0

1 bit 31 bits 1 bit 31 bits

Increment algorithm:
1. Acquire H_rwlock for read
2. Read H
3. Inc L by FAA
4. Release the lock

L

H

Rendezvous channel: Kotlin

42

senders_H receivers_H
32 bits32 bits

H_rwlock

senders_L receivers_L1/01/0

1 bit 31 bits 1 bit 31 bits

Increment algorithm:
1. Acquire H_rwlock for read
2. Read H
3. Inc L by FAA
4. Release the lock

L

H

Just a FAA

Rendezvous channel: Kotlin

43

senders_H receivers_H
32 bits32 bits

H_rwlock

senders_L receivers_L1/01/0

1 bit 31 bits 1 bit 31 bits

Increment algorithm:
1. Acquire H_rwlock for read
2. Read H
3. Inc L by FAA
4. Release the lock
5. If the lowest part is overflowed

5.1. Acquire H_rwlock for write
5.2. Reset the bit
5.3. Inc H
5.4. Release the lock

L

H

Rendezvous channel: Kotlin

1. How to implement an atomic 128-bit counter using 64-bit ones?

2. How to organize the cell storage?

44

Rendezvous channel: Kotlin

45

0
N...

1
N...

K
N......

Michael-Scott queue of segments with the fixed number of cells in each

Segments

HEAD TAIL

Rendezvous channel: Kotlin

46

0
N...

1
N...

K
N......

Michael-Scott queue of segments with the fixed number of cells in each

CellsHEAD TAIL

Rendezvous channel: Kotlin

47

0
N...

1
N...

K
N......

Michael-Scott queue of segments with the fixed number of cells in each

Pointer to the
next segment

HEAD TAIL

Segment id

Rendezvous channel: Kotlin

48

0
N...

1
N...

K
N......

HEAD TAIL1. Read both HEAD and TAIL
2. Increment the counter

Rendezvous channel: Kotlin

49

0
N...

1
N...

K
N......

HEAD TAIL1. Read both HEAD and TAIL
2. Increment the counter
3. Either make a rendezvous

3.1. Find the cell starting from the head
3.2. Move HEAD forward if needed

Rendezvous channel: Kotlin

50

0
N...

1
N...

K
N......

HEAD TAIL1. Read both HEAD and TAIL
2. Increment the counter
3. Either make a rendezvous

3.1. Find the cell starting from the head
3.2. Move HEAD forward if needed

4. or suspend
4.1. Find the cell starting from the tail
4.2. Create new segments if needed

Rendezvous channel: Kotlin vs Golang

514 x 2 x Intel Xeon Gold 6150 (Skylake) 2.7GHz = (144 virtual cores)

Producer-consumer problem: buffering

52

Client 1

Client 2

Client N

...

Worker 1

Worker M

...

Send a task

Receive a task

We don’t want to wait on
every send...

Producer-consumer problem: buffering

53

Client 1

Client 2

Client N

...

Worker 1

Worker M

...

Send a task

Receive a task

Let’s use a fixed-size buffer!

Buffered channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

54

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

One element can be sent
without suspension

Buffered channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

55

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

1

Does not suspend!

Buffered channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

56

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

1

The buffer is full, has to suspend
2

Buffered channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

57

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

1

Receives the buffered
element at first

2

3

Buffered channel semantics

Client 1
 val task = Task(...)

 tasks.send(task)

58

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

1

Makes a rendezvous with
the 2nd client

2

34

Buffered channel: Golang

● Maintains an additional fixed-size buffer
○ Tries to send to this buffer instead of suspending

● Performs all operations under the channel lock

59

Buffered channel: Kotlin

Rendezvous channel
when {

 senders - receivers < 0 -> // make a rendezvous

 senders - receivers >= 0 -> // suspend

}

60

The balance before the
send operation

Buffered channel: Kotlin

Rendezvous channel
when {

 senders - receivers < 0 -> // make a rendezvous

 senders - receivers >= 0 -> // suspend

}

Buffered channel
when {

 senders - receivers < 0 -> // make a rendezvous

 0 <= senders - receivers < capacity -> // send the element without suspension

 senders - receivers >= capacity -> // suspend

}

61

Buffered channel: Kotlin vs Golang

624 x 2 x Intel Xeon Gold 6150 (Skylake) 2.7GHz = (144 virtual cores)

The select expression

63

Client
 val task = Task(...)

 tasks.send(task)

Suspends here

The select expression

64

Client
 val task = Task(...)

 tasks.send(task)

The select expression

65

Client
 val task = Task(...)

 tasks.send(task)

The client was interrupted while
waiting for a worker

The select expression

66

Client
 val task = Task(...)

 tasks.send(task)

The client was interrupted while
waiting for a worker

Do we need to process
the task anymore?

The select expression

67

Client
 val task = Task(...)

 tasks.send(task)

The client was interrupted while
waiting for a worker

Do we need to process
the task anymore?

It would be better to cancel
the request and detect this

The select expression

Client
 val task = Task(...)

 val cancelled = Channel<Unit>()

68

Unit is sent to this channel
if the client is interrupted

The select expression

Client
 val task = Task(...)

 val cancelled = Channel<Unit>()

 select<Unit> {

 tasks.onSend(task) { println("Task has been sent") }

 cancelled.onReceive { println("Cancelled") }

 }

69

Waits simultaneously, at most one
clause is selected atomically.

The select expression: Golang

● Fine-grained locking

● Acquires all involved channels locks to register into the queues
○ Uses hierarchical order to avoid deadlocks

● Acquires all these locks again to resume the coroutine
○ Otherwise, two select clauses could interfere

70

The select expression: Kotlin

71

SelectInstance

state
PENDING

or
SELECTED

alternatives

For each
channel

The select expression: Kotlin

72

SelectInstance

alternatives

state
PENDING

or
SELECTED

Get the counters snapshot

Try to make a
rendezvous

Try to store the
SelectInstance

Waiting phase

Remove the stored
SelectInstance-s

senders < receivers senders >= receivers

The select expression: Kotlin

EMPTY

coroutine

DONE

BROKENsuspend

rendezvous failed

rendezvous

Cell life cycle

Select
Desc

rendezvous

try to make
a rendezvous

rendezvous failed

73

The select expression: Kotlin

EMPTY

coroutine

DONE

BROKENsuspend

rendezvous failed

rendezvous

Cell life cycle

Select
Desc

rendezvous

try to make
a rendezvous

rendezvous failed

Does not update
counters here!

Increment the
counter on success

74

The select expression: Kotlin

EMPTY

coroutine

DONE

BROKENsuspend

rendezvous failed

rendezvous

Cell life cycle

Select
Desc

rendezvous

try to make
a rendezvous

rendezvous failed

Does not update
counters here!

Increment the
counter on success

Tries to increment
the counter from the

snapshot by CAS

75

The select expression: Kotlin

A rendezvous between two selects:

77

SelectInstance

alternatives

state
PENDING

or
SELECTED

SelectInstance

alternatives

state
PENDING

or
SELECTED

Need to update
them atomically

Let’s update them
similarly to the Harris

multiword CAS*

* ”A practical multi-word compare-and-swap operation” by Harris et al. @ DISC’02

The select expression: Kotlin vs Golang

784 x 2 x Intel Xeon Gold 6150 (Skylake) 2.7GHz = (144 virtual cores)

Cancellation in Kotlin

● Cancellation is a built-in feature in Kotlin
○ However, the previous pattern is widely used in Golang

val job = GlobalScope.launch { ... }

job.cancel()

79

Removes the coroutine from
all channels as well

Cancellation in Kotlin

● Cancellation is a built-in feature in Kotlin
○ However, the previous pattern is widely used in Golang

val job = GlobalScope.launch { ... }

job.cancel()

GlobalScope.launch {

 withTimeout(time = 1, unit = TimeUnit.SECONDS) {

 ...

 }

}

80

Invokes job.cancel()
after the timeout

There are more message passing primitives

● BroadcastChannel
Sends to multiple receivers

● ConflatedChannel
Receivers always get the most recently sent element

● ConflatedBroadcastChannel
Mix of the previous ones

● Mutex

81

Industry Academia

