
Apache Maven supports ALL Java

ROBERT SCHOLTE @RFSCHOLTE

The good news
 Apache Maven runs fine on JDK 9 (and 10)

 Apache Maven works like heaven on JDK 11 (and 12-ea)

 Possible issues are often plugin related

 Upgrading to the latest version should solve the problem

Applying a module descriptor
1. Just add your module-info.java to src/main/java

2. Upgrade maven-compiler-plugin to at least 3.8.0

3. There’s no step three

 Maven will calculate which dependencies belong to the classpath and which to the module path.

 No new dependency-element/scope

When two worlds collide…

Maven
Java
<= 8

Maven
Java
<= 8

Java 9+

Goals Java Platform Modular System
 Reliable configuration

 Strong encapsulation

The module-info.java
module com.foo.module.name

{

 // reliable configuration

 requires some.other.module;

 // strong encapsulation

 exports com.foo.package.name;

}

If you’re not careful with your modularization
you can corrupt the whole Maven Ecosystem

Library builders should be aware of the impact of their module descriptors

Application builders should recognize these issues

Revised specifications
• Jars on modulepath

• Support ALL-MODULE-PATH

• Modulenames with numbers

• Automatic module names

Jars on modulepath
 Original spec only allowed directories

 Maven dependencies point to a file

 Directory may contain multiple jars (javadoc,sources)

ALL-MODULE-PATH
 --add-modules ALL-MODULE-PATH

 In short: Make all entries on the module path see each other

Module names

Déjà Vu
 What is the proper module name?

 What is the proper groupId and artifactId?

Modulenames with numbers

Project/product names

• AWS-EC2

• AWS-Route53

• AWS-S3

• C3P0

• DB2

• Fabric8

• H2

• JSRnnn

• OAuth2

Versioned libraries (includes
versioned packages)

• Commons-lang2

• Commons-lang3

Bridge libraries to different
versions

• Jspc-compiler-tomcatN

• Mockwire-springN

• Surefire-junitN

Close to 30.000 groupId/artifactId end with a number (Central, March 2017)

Original implementation did not allow module names ending with a number.

#VersionsInModuleNames
Some have argued that library maintainers will
be tempted to encode major version numbers,
or even full version numbers, in module names.
Is there some way we can guide people away
from doing that?

Resolution Abandon the previous proposal to
mandate that module names appearing in
source-form module declarations must both
start and end with “Java letters”. Revise the
automatic-module naming algorithm to allow
digits at the end of module names.

http://openjdk.java.net/projects/jigsaw/spec/issues/#VersionsInModuleNames
http://openjdk.java.net/projects/jigsaw/spec/issues/#VersionsInModuleNames

 Module names must be

as unique as the coordinates of dependencies

Automatic module names
“… . The module name is otherwise derived from the name of the JAR file.”

NPM Javascript package
registry

Over 13500 ‘rows’ of collisions

Evidence (OCT 2016)

JIGSAW

Automatic modules are required for top-
down adoption

MAVEN

References to automatic module names
will cause collisions sooner or later

Library builders should never refer to automatic modules* and deploy to a public repository.

Application builders can choose to refer to automatic modules.

* Filename based

Application versus library
 Application

 Module descriptor without exports

maven-compiler-plugin logs info message in
case of automatic module usage

 Library

 Module descriptor with exports

Tip: Use Maven 3.5.0+ for colour support

maven-compiler-plugin logs
WARNING message in case of
automatic module usage

Automatic modules
Ease of top-down migration for application builders

But what about “in the middle” library builders?

Java Platform. It will be approachable, i.e., easy to learn and
easy to use, so that developers can use it to construct and
maintain libraries and large applications for both the Java SE
and Java EE Platforms.

JSR 376: JavaTM Platform Module System

Original Java Specification Request (JSR)

Section 2.1

Application my-app

Libraries jackson-core jackson-databind jackson-annotations my-lib

java.base

Conference example

Application my-app

Libraries (direct deps) … … … my-lib

Libraries (transitive deps)

…
… … …

Libraries (independent deps) jackson-core jackson-databind jackson-annotations

java.base

More realworld example

1 currency-1.0.jar

2 buy-service-1.0.jar

module org.moneylibs.buy

{

 requires currency;

}

3 currence-2.0.jar

module org.moneylibs.currency

{

}

4 sell-service-1.0.jar

module org.moneylibs.sell

{

 requires org.moneylibs.currency;

}

5 animalmarket-1.0.jar

module com.animalmarket

{

 requires org.moneylibs.buy;

 requires org.moneylibs.sell;

}

<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.animalmarket</groupId>

 <artifactId>animalmarket</artifactId>

 <version>1.0.0-SNAPSHOT</version>

 <dependencies>

 <!-- the dependencies -->

 </dependencies>

</project>

 <dependency>

 <groupId>org.moneylibs</groupId>

 <artifactId>buy-service</artifactId>

 <version>1.0</version>

 </dependency>

 <dependency>

 <groupId>org.moneylibs</groupId>

 <artifactId>sell-service</artifactId>

 <version>1.0</version>

 </dependency>

animalmarket.jar
(com.animalmarket)

requires o.m.buy;

requires o.m.sell;

buy-service-1.0.jar (o.m.buy)

requires currency;

sell-service-1.0.jar (o.m.sell)

requires o.m.currency;

animalmarket.jar
(com.animalmarket)

requires org.moneylibs.buy;

requires org.moneylibs.sell;

buy-service-1.0.jar (o.m.buy)

requires currency;

currency-1.0.jar

(currency)

sell-service-1.0.jar (o.m.sell)

requires org.moneylibs.currency;

currency-2.0.jar

(o.m.currency)

animalmarket.jar
(com.animalmarket)

requires o.m.buy;

requires o.m.sell;

buy-service-1.0.jar (o.m.buy)

requires currency;

currency-1.0.jar

(currency)

sell-service-1.0.jar (o.m.sell)

requires o.ms.currency;

currency-2.0.jar

(o.m.currency)

 <dependency>

 <groupId>org.moneylibs</groupId>

 <artifactId>buy-service</artifactId>

 <version>1.0</version>

 </dependency>

 <dependency>

 <groupId>org.moneylibs</groupId>

 <artifactId>sell-service</artifactId>

 <version>1.0</version>

 </dependency>

animalmarket.jar
(com.animalmarket)

requires o.m.buy;

requires o.m.sell;

sell-service-1.0.jar (o.m.sell)

requires o.m.currency;

currency-2.0.jar

(o.m.currency)

buy-service-1.0.jar (o.m.buy)

requires currency;

currency-1.0.jar

(currency)

animalmarket.jar
(com.animalmarket)

requires o.m.buy;

requires o.m.sell;

sell-service-1.0.jar (o.m.sell)

requires o.m.currency;

currency-2.0.jar

(o.m.currency)

buy-service-1.0.jar (o.m.buy)

requires currency;

currency-1.0.jar

(currency)

Migrate

META-INF/MANIFEST.MF

•Automatic-Module-Name

2 buy-service-1.0.jar

META-INF/MANIFEST.MF

Automatic-Module-Name:

org.moneylibs.buy

Point of
no return

“If you refer to
dependency X:N as a
module and dependency
X:N-1 has no module
name, then you cannot
downgrade this
dependency anymore”

currency-1.0.jar
(currency)

sell-service-1.0.jar
(o.m.sell)

requires o.m.currency;

currency-2.0.jar
(o.m.currency)

Strong advices
-Project must be Java 9 ready!!

o No split packages

o No root classes

-For libraries that depends on at least one filename based automodule:
o Help depending projects by providing intended module name via MANIFEST

-Pick your modulename with care, e.g. the shared package

Mistakes will happen

In fact, first invalid modules are already available at Maven Central

 asm-6.0_BETA (org.ow2.asm)

 asm-all-6.0_BETA (org.ow2.asm.all) 1

 asm-debug-all-6.0_BETA (org.ow2.asm.debug.all) 1

Application developer cannot fix these mistakes (dependency-exclude doesn’t work)

 1 Fixed with asm-6.0 by dropping *-all artifacts (asm includes debug information by
default)

Same packages must

have the same

modulename

(otherwise potential

split package issue)

Tips for using JAVA 9 with MAVEN

 DON’T change your folder structure (no need for extra folder with module
name)

 Modulepath or classpath? No change to dependencies, just add module-
info.java (Plexus-java can help plugins to build up the path)

Understanding plexus-java
 Maven independent library for general Java features

◦ LocationManager

◦ Version

 Used by

◦ maven-compiler-plugin

◦ maven-failsafe-plugin

◦ maven-javadoc-plugin

◦ maven-jlink-plugin

◦ maven-jmod-plugin

◦ maven-surefire-plugin

◦ …

Plexus Java :: LocationManager
 If there’s a module descriptor, all its direct and indirect required modules will be put on the
module path, the rest on the classpath

 Most plugins show the paths as debug logging (-X / --debug)

 Learn the JPMS specifications

JLINK
 “You can use the jlink tool to assemble and optimize a set of modules and their dependencies
into a custom runtime image”

 Enhanced solution for fat executable jar

 However… it is overrated

 Only works with explicit modules!

Source / target 1.9

<release>9<release>

source/target <= 1.8 : animal-sniffer

Issues?
1) Stackoverflow

2) Apache Maven mailinglists

3) Apache Maven Jira in case of bugs / improvements

Frequently Asked Questions

Can every project become modular?

NO

-Java 9 is a gamechanger, it introduces new rules

-The older the project, the more likely it cannot follow these rules

-No worries, the classpath is still there and will stay!

The boomerang question
Or “the ever returning Maven/JavaNEXT/Conference question”

Will Maven generate the module descriptor?

No

 Different purpose

◦Pom is used to download jars and make them available

◦Module descriptor is used to specify required modules

 Not all modules are dependencies

◦ (e.g. java.logging, jdk.compiler)

 Module descriptor elements not covered:

◦Module name

◦Open module

◦Exported packages

◦Uses / provides services

 Pom 4.0.0 has no space for new elements

Pom hygiene
dependency:analyse

◦ Analyzes the dependencies of this project and determines which are:

◦ used and declared (good)

◦ used and undeclared (via transitive dependency)

◦ unused and declared (ballast!)

Dependencies can be excluded,

required modules cannot

…BUT JDEPS can do it, right?
 Can create a rough module descriptor

 Intended to help with an initial descriptor

 Uses binary classes, i.e. AFTER compile-phase

Some open source project will…
 https://github.com/moditect/moditect

[RESULT] Apache Maven supports ALL Java

Up-for-grabs
 ~60-80% of Java Project/Developers use Maven

 The Apache Maven Project holds ~95 (sub)projects

 Maintained by ~5-10 active volunteers (No Company!)

 Let’s restore the balance!

 https://s.apache.org/up-for-grabs_maven

 https://maven.apache.org/guides/development/guide-committer-school.html

https://s.apache.org/up-for-grabs_maven
https://s.apache.org/up-for-grabs_maven
https://s.apache.org/up-for-grabs_maven
https://s.apache.org/up-for-grabs_maven
https://s.apache.org/up-for-grabs_maven
https://s.apache.org/up-for-grabs_maven
https://maven.apache.org/guides/development/guide-committer-school.html
https://maven.apache.org/guides/development/guide-committer-school.html
https://maven.apache.org/guides/development/guide-committer-school.html
https://maven.apache.org/guides/development/guide-committer-school.html
https://maven.apache.org/guides/development/guide-committer-school.html
https://maven.apache.org/guides/development/guide-committer-school.html

Thank you
@ASFMAVENPROJECT

