The Paxos Consensus Algorithm



The Paxos algorithm implements the voting algorithm.



Remember that the voting algorithm is based on two rules:



1. Don’t allow different acceptors to vote for different values
in the same ballot.



2. Allow an acceptor to vote for value v in ballot 4 only if
vissafeat b.
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1. Don’t allow different acceptors to vote for different values
in the same ballot.

Each ballot has a unique leader process.



1. Don’t allow different acceptors to vote for different values
in the same ballot.

Each ballot has a unique leader process.
We don’t care who the leaders are.



1. Don’t allow different acceptors to vote for different values
in the same ballot.

Each ballot has a unique leader process.

The same process may be the leader for many different ballots.



1. Don’t allow different acceptors to vote for different values
in the same ballot.

The leader of a ballot tells acceptors what value to vote for
in that ballot.



2. Allow an acceptor to vote for value v in ballot b only if
vissafeat b.



2. Allow an acceptor to vote for value v in ballot b only if
vissafeat b.

The leader begins the ballot by asking acceptors
about votes they have already cast.
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2. Allow an acceptor to vote for value v in ballot b only if
vissafeat b.

If it receives responses from a quorum of acceptors, it will
be able to choose a safe value and tell them to vote for it.



1. Don’t allow different acceptors to vote for different values
in the same ballot.

2. Allow an acceptor to vote for value v in ballot o only if
v issafeat b.

The leader begins the ballot by asking acceptors
about votes they have already cast.

If it receives responses from a quorum of acceptors, it will
be able to choose a safe value and tell them to vote for it.

Let’s look at the spec.



MODULE Pazos




| MODULE Paxos
EXTENDS Integers

The module begins just like module Voting .



| MODULE Paxos
EXTENDS Integers

CONSTANTS Value, Acceptor, Quorum
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MODULE Pazos

EXTENDS Integers
CONSTANTS Value, Acceptor, Quorum

ASSUME AV Q € Quorum : Q C Acceptor

AY Q1, Q2 € Quorum : Q1N Q2 # {}
Ballot = Nat



None = CHOOSE v : v ¢ Ballot



None = CHOOSE v : v ¢ Ballot

This defines None to be some value that is
not an element of the set Ballot .



None = CHOOSE v : v ¢ Ballot
some value

We don’t know (or care) what value.



None = [CHOOSE v: v ¢ Ballot|

This is a mathematical expression,



None = [CHOOSE v: v ¢ Ballot|

This is a mathematical expression, so evaluating it for the
same value of Ballot always yields the same result.



None = [CHOOSE v: v ¢ Ballot|

And Ballot is a constant, so its value doesn’t change,



None = [CHOOSE v: v ¢ Ballot|

And Ballot is a constant, so its value doesn’t change,
and therefore, neither does the value of None.



A
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A
Message =

The leaders and acceptors will communicate with messages.



A
Message =

Message is defined to be the set of all messages that can
ever be sent.



A
Message =

A message is represented by a record.



Records



Records

A record is similar to a struct in C,



Records

or an object in an OO language,



Records

or an object in an OO language,
with fields but no concept of methods.



Records

It is defined mathematically to be a function
whose domain is a finite set of strings.



Records

For example this record



Records

[ type — “2a”,

with type field equal to “2a”



Records

[ bal — 42, ]
, bal field equal to 42



Records

It is defined mathematically to be a function
whose domain is a finite set of strings.
For example this record

[ type — “2a”, bal — 42, val — /7]

with type field equal to “2a”, bal field equal to 42,
and val field equal to v/7



Records

[ type — “2a”, bal — 42, val — /7]

is the function



Records

[ type — “2a”, bal — 42, val — /7]

[z € {“type”, “bal”, “val”} —



Records

It is defined mathematically to be a function
whose domain is a finite set of strings.
For example this record
[ type — “2a”, bal — 42, val — /7|
is the function

[m c {“type”, “bal”, “Ual”} N



Records

[ type — “2a”, bal — 42, val — /7]

[z € {“type”, “bal”, “val”} —



Records

type — “2a”,

[:Ll e {“type”, “bal”, “val"} H
IF z = “type” THEN “2a”



Records

bal — 42,

[:Ll e {lltype”, “bal”, “val"} H
IF z = “type” THEN “2a”
ELSE IF z = “bal” THEN 42



Records

val — 7

[:Ll e {lltype”, “bal”, “val"} H
IF z = “type” THEN “2a”
ELSE IF z = “bal” THEN 42

ELSE V7 ]



Records

[ type — “2a”, bal — 42, val — /7]

[:Ll e {lltype”, “bal”, “val"} H
IF z = “type” THEN “2a”
ELSE IF z = “bal” THEN 42

ELSE V7 ]



[ type — “2a”, bal — 42, val — /7]



[ type — “2a”, bal — 42, val — /7] [*bal”] = 42



[ type — “2a”, bal — 42, val — /7] [“bal’]



[“bal”]

We abbreviation [*bal”]



[ type — “2a”, bal — 42, val — /7] . bal

We abbreviation [*bal”] as .bal



[ type — “2a”, bal — 42, val — \/7].bal = 42



A
Message =

Defined to be a set of records.



Message =
[type : {"1a"}, bal : Ballot]
U [type : {"1b"}, acc : Acceptor, bal : Ballot,
mbal : Ballot U { — 1}, mval : Value U {None}]
U [type : {"2a"}, bal : Ballot, val : Value]
U [type : {“2b"}, acc : Acceptor, bal : Ballot, val : Value]

Defined to be a set of records.



Message =

type : {"1a" }, bal : Ballot]

U |ltype : {"“1b" }, acc : Acceptor, bal : Ballot,
mbal : Ballot U{ — 1}, mwal : Value U {None}]
U |[type :{"2a"}, bal : Ballot, val : Value
U |[type : {"2b"}, acc : Acceptor, bal : Ballot, val : Valuell

The union of four sets.



A
Message =

[
U
U
U

[



A
Message =

[ }

U

U [type :{"2a"}, bal : Ballot, val : Value]
U



A
Message =

[type : , bal : , val :

The set of all records R having three fields type, bal, and wval



A
Message =

[ }

u
U [type : {"2a"}, ,
U

with:
R.type in the set {“2a"}



A
Message =

[ }

U

U , bal : Ballot,
U

[

R.bal inthe set Ballot



A
Message =

[ }

U

U , , val : Value]
U

[

R.val inthe set Value



A
Message =

[
U
U [type : {"2a"},
U

R.type in the set {“2a"}



A
Message =

[
U
U [type : {"2a"},
U

R.type = “2a”



A
Message =

[ }

U

U [type :{"2a"}, bal : Ballot, val : Value]
U



Message =
[type : {"1a"}, bal : Ballot]
U [type : {"1b"}, acc : Acceptor, bal : Ballot,
mbal : Ballot U { — 1}, mval : Value U {None}]
U [type : {"2a"}, bal : Ballot, val : Value]
U [type : {“2b"}, acc : Acceptor, bal : Ballot, val : Value]



VARIABLES



VARIABLES maxBal

Implements variable mazBal of the Voting spec.



VARIABLES maxBal

mazBal[a] is the number of the highest-numbered ballot
in which acceptor ¢ has participated.



VARIABLES maxBal

Or —1 if ¢ hasn’t participated in any ballots.



VARIABLES maxBal, mazxVBal



VARIABLES maxBal, mazxVBal

mazVBal[a] is the number of the highest-numbered ballot
in which acceptor a has voted.



VARIABLES maxBal, mazxVBal

Or —1 if ¢ hasn’t voted in any ballots.



VARIABLES maxBal, maxVBal, maxVal



VARIABLES maxBal, maxVBal, maxVal

mazVal[a] is the value a voted for in ballot mazVBal[a].



VARIABLES maxBal, maxVBal, maxVal

Or None if a has never voted.



VARIABLES maxzBal, maxVBal, maxVal, msgs
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The set of all messages that have been sent.



VARIABLES maxzBal, maxVBal, maxVal, msgs

The set of all messages that have been sent.



msgs

The set of all messages that have been sent.



msgs

The set of all messages that have been sent.



msgs

A message is sent by adding it to msgs .



msgs

Messages are never removed from msgs .



msgs

This is the simplest, most abstract way | know to describe
message passing.



msgs

It can be used to model the Paxos algorithm because:



msgs

— Paxos allows messages to be received in any order.



msgs

— Since we’re not specifying liveness, there’s no need
to explicitly describe message loss.



msgs

— Since we’re not specifying liveness, there’s no need
to explicitly describe message loss.

A spec of safety doesn’t require any message
to be received,



msgs

— Since we’re not specifying liveness, there’s no need
to explicitly describe message loss.

and there’s no difference between
a lost message and one that’s never received.



msgs

The set of all messages that have been sent.



msgs

This is a natural, obvious way to describe message passing



msgs

This is a natural, obvious way to describe message passing
if you think mathematically.



msgs

It doesn’t occur to most people because they think in terms of
programming languages, not math.



vars = (mazBal, mazVBal, mazVal, msgs)



vars = (mazBal, mazVBal, mazVal, msgs)

It's easier to write [Next]yars



vars = (mazBal, mazVBal, mazVal, msgs)

than []Ve:mf](maacBal7 mazVBal, mazVal, msgs) -



TypeOK =



TypeOK = A mazBal € [Acceptor — Ballot U { — 1}]

mazBal is a function from acceptors to ballot numbers or —1.



TypeOK = A mazBal € [Acceptor — Ballot U { — 1}]
A maxVBal € [Acceptor — Ballot U{ — 1}]

mazVBal is a function from acceptors to ballot numbers or —1.



TypeOK = A mazBal € [Acceptor — Ballot U { — 1}]
A maxVBal € [Acceptor — Ballot U{ — 1}]
A mazVal € [Acceptor — Value U {None}]

mazVal is a function from acceptors to values or None.



TypeOK = A mazBal € [Acceptor — Ballot U { — 1}]
A mazVBal € [Acceptor — Ballot U { — 1}]
A mazVal € [Acceptor — Value U {None}]
A msgs C Message

msgs is a subset of the set of all possible messages.



Init =



Init = AmazBal = [a € Acceptor — — 1]

For all a: mazBalla] = —1



Init = AmazBal = [a € Acceptor s — 1]
A mazVBal = [a € Acceptor — — 1]

mazVBal[a] = —1



Init = AmazBal = [a € Acceptor — — 1]
A mazVBal = [a € Acceptor — — 1]
A mazVal = |a € Acceptor — None]

mazValla] = None



Init = AmazBal = [a € Acceptor — — 1]
A mazVBal = [a € Acceptor — — 1]
A mazVal = |a € Acceptor — None]
A msgs = {}

msgs ={}
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The Actions

Phase1a(b)



The Actions

Phasela(b)

The ballot b leader sends a message asking acceptors
to participate in that ballot.



The Actions
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The Actions

Phase1b(a)
If acceptor a has not agreed to participate in a ballot
numbered > b, then it agrees and sends the leader
mazBal[a], mazVBal[a], and mazVal[a].



The Actions

Phase2a(b, v)



The Actions

Phase2a(b, v)
If the ballot & leader receives those messages from a
quorum, it chooses a value v safe at b and sends a
message asking acceptors to vote for » in ballot 5.



The Actions

Phase2b(a)



The Actions

Phase2b(a)

If acceptor a has not agreed to participate in a ballot
numbered > b, then it votes for v in ballot & .



The Actions

Phase2b(a)

It does this by sending a message.



The Actions

Phase2b(a)

We don’t care who receives that message.



Send(m) =



Send(m) =

Describes the sending of a message m .



Send(m) = msgs’ = msgs U {m}



Phasela(b) =



Phasela(b) =

The ballot b leader sends a message asking acceptors
to participate in that ballot.



Phasela(b) =



Phasela(b) = A Send([type — “1a”", bal — b])



Phasela(b) = A Send([type — “1a”", bal — b])

Sends a type 14 message containing the ballot number.



Phasela(b) = A Send([type — “1a”", bal — b])
A UNCHANGED (mazBal, mazVBal, mazVal)



Phasela(b) = A Send([type — “1a”", bal — b])
A UNCHANGED (mazBal, mazVBal, mazVal)

Leaves all variables except msgs unchanged.
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Phaselb(a) =

If acceptor a has not agreed to participate in a ballot
numbered > b,



Phaselb(a) =

If acceptor a has not agreed to participate in a ballot
numbered > &, then it agrees and sends the leader
mazBal[a], mazVBal[a], and mazVal[a].
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Phaselb(a) =

Upon receipt of a 1¢ message m for ballot m.bal ,
if acceptor a has not agreed to participate in a ballot
numbered > m.bal,



Phaselb(a) =

Upon receipt of a 1¢ message m for ballot m.bal ,

if acceptor a has not agreed to participate in a ballot
numbered > m.bal, then it agrees and sends the leader
mazBal[a], mazVBal[a], and mazVal[a].



Phaselb(a) =
Adm € msgs :
A m.type = “1a"

Upon receipt of a 1¢ message m for ballot m.bal ,



Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal > mazBalla]



Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal > mazBalla]

if acceptor a has not agreed to participate in a ballot
numbered > m.bal,



Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal >W
The largest ballot number for which
a has agreed to participate.

if acceptor a has not agreed to participate in a ballot
numbered > m.bal,



Phaselb(a) =
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then it agrees



Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal > mazBalla]
A mazBal" = [mazBal EXCEPT ![a] = m.bal]

Setting mazBal[a] to m.bal .

then it agrees
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Adm € msgs :
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A mazBal" = [mazBal EXCEPT ![a] = m.bal]
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A Send([type — “1b", acc — a, bal — m.bal,
mbal — mazVBal[a], mval — mazVal[a]])



Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal > mazBalla]
A mazBal' = [mazBal EXCEPT ![a] = m.bal
A Send([type — “1b", acc — a, bal — [m.bal]

mbal — |mazVBal[a]| mval — manal[a] )

and sends the leader
mazBal[a], mazVBal[a], and mazVal[a].



Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal > mazBalla]
A mazBal' = [mazBal EXCEPT ![a] = m.bal
A Send([type — “1b", acc +— a, bal — [m.bal]
mbal — mazVBal[a], mval — mazVal[a]])

and sends the leader

mazBal[a], mazVBal[a], and mazVal[a].
the new value



Phaselb(a) =
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A Send([type — “1b", acc — a, bal — m.bal,
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Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal > mazBalla]
A mazBal" = [mazBal EXCEPT ![a] = m.bal]
A Send([type — “1b", acc — a, bal — m.bal,
mbal — mazVBal[a], mval — mazVal[a]])
A UNCHANGED (maxVBal, mazVal)



Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal > mazBalla]
A mazBal" = [mazBal EXCEPT ![a] = m.bal]
A Send([type — “1b", acc — a, bal — m.bal,
mbal — mazVBal[a], mval — mazVal[a]])
A UNCHANGED (maxVBal, mazVal)

And it leaves the other variables unchanged.



Phaselb(a) =
Adm € msgs :
A m.type = “1a"
A m.bal > mazBalla]
A mazBal" = [mazBal EXCEPT ![a] = m.bal]
A Send([type — “1b", acc — a, bal — m.bal,
mbal — mazVBal[a], mval — mazVal[a]])
A UNCHANGED (maxVBal, mazVal)



Phase2a(b, v) =



Phase2a(b, v) =

If the ballot b leader receives those (1b) messages from a
quorum, it chooses a value v safe at b and sends a
message asking acceptors to vote for v in ballot b.



Phase2a(b, v) =



Phase2a(b, v) =



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
No 2a message for ballot b has already been sent.



Phase2a(b, v) =
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AT Q € Quorum :



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b =

IN



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b =

Locally defines Q1b.

IN



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}

IN



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}

The set of ballot b type 16 messages
IN sent by acceptorsin @ .



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN The set of messages in Q1b sent
by acceptors who reported already
voting in some ballot.



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVaée Q:dm e Q1b: m.acc = a



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :

LET Q1b = {m € msgs : A m.type = “1b

A m.acc € Q)

A m.bal = b}

Qlbv = {m € Q1b: m.mbal > 0}
IN AVaée Q:dm e Q1b: m.acc = a

There is a message in Q15 from every
acceptorin Q.
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Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVaée Q:dm e Q1b: m.acc = a
AV QLlby = {}
Either no acceptor in @ reported
that it had voted,



Phase2a(b, v) =
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AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
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Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa € Q:dm e Q1b: m.acc = a
AV QLlby = {}
Vdm e Qlbv:
A m.mual = v

AV mm € Qlbv : m.mbal > mm.mbal
or the message in @ 1bv reporting a
vote in the highest-numbered ballot
reports a vote for v .



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVaée Q:dm e Q1b: m.acc = a
AV QLlby = {}
Vdm e Qlbv:
A m.mual = v
AV mm € Qlbv : m.mbal > mm.mbal



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b

AT Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa € Q:dm e Q1b: m.acc = a
AV QLlby = {}
Vdm e Qlbv:
A m.mual = v
AV mm € Qlbv : m.mbal > mm.mbal

This condition implies that v is safe at b



Phase2a(b, v) =
A—-dm € msgs : m.type = “2a” A m.bal = b
A3 Q € Quorum :

LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa € Q:dm e Q1b: m.acc = a
AV QLlby = {}
Vdm e Qlbv:
A m.mual = v
AV mm € Qlbv : m.mbal > mm.mbal

This condition implies that v is safe at b
because this condition implies ShowsSafeAt(Q, b, v).



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

This implies ShowsSafeAt(Q, b, v)



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

This implies ShowsSafeAt(Q, b, v)

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}

Vadme Qlbv:

A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

This implies ShowsSafeAt(Q, b, v) where these are
defined in terms of messages that have been sent.

ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce —1..(b—-1):

A(c# —1)=3a € Q : [VotedFor(a, c, v)]|
AVd € (c+1)..(b—1),a € Q :[DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

ShowsSafeAt(Q, b, v) =
NV a € Q : mazBalla] > b|
Adce —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN

/\|Va€ Q:dme le:m.acc:al
AV Qlbv = {}

Vadme Qlbv:

A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

Forevery a in ), mazBal[a] = b was true
right after it sent its message.

ShowsSafeAt(Q, b, v) =

NV a € Q : mazBalla] > b|
Adce —1..(b—-1):

A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
/\|Va€ Q:dme le:m.acc:al
AV Qlbv = {}
Vadme Qlbv:

A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

And mazBal[a] never decreases.

ShowsSafeAt(Q, b, v) =

NV a € Q : mazBalla] > b|
Adce —1..(b—-1)

A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
vVIm e Qlbv :
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

ShowsSafeAt(Q, b, v) =
AYa € Q: mazBalla] > b
NIece —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

When an acceptor ¢ € @) sentits 10 message mm for ballot b,



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

it hadn’t voted in any ballot d with mm.mbal < d < b.



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

And because it set mBal[a] to b, it still hasn’t voted in those ballots.



When an acceptor ¢ € @ sentits 16 message mm for ballot b,
it hadn’t voted in any ballot d with mm.mbal < d < b.

And because it set mBal[a] to b, it still hasn’t voted in those ballots.

IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
vVIm e Qlbv :
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
vVIm e Qlbv :
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

ShowsSafeAt(Q, b, v) =
AYa € Q: mazBalla] > b
NIece —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm € Q1b: m.acc = a
A V@I =]
Vdm e Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

Case 1: No acceptor in ) has voted.

ShowsSafeAt(Q, b, v) =
AYa € Q: mazBalla] > b
NIece —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm € Q1b: m.acc = a
A V@I =]
Vdm e Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

Let ¢ equal —1.

ShowsSafeAt(Q, b, v) =
AYa € Q: mazBalla] > b
NIece —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm € Q1b: m.acc = a
A VI[Q1bv = {

Vdm e Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

Let c equal —1. This is vacuously true.

ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce =1..(b—=1):

AN(c# —1)=3a € Q: VotedFor(a, c, v)|
AYd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm € Q1b: m.acc = a
A V@I =]
Vdm e Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3a € Q: VotedFor(a, c, v)
ANVd e (c+1)..(b—1), a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm € Q1b: m.acc = a
A VI[Q1bv = {

Vdm e Qlbv:

A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

No acceptor @ in @ had voted when it sent its message

ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce —1..(b—-1):

A(c# —1)=3a € Q: VotedFor(a, c, v)
ANVd e (c+1)..(b—1), a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm € Q1b: m.acc = a
Vg =]
Vdm e Qlbv:
A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

And mBal[a] then equaled b, so it couldn't later have
voted in any ballot < b.

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3a € Q: VotedFor(a, c, v)
ANVd e (c+1)..(b—1), a € Q: DidNotVoteAt(a, d)




When an acceptor ¢ € @ sentits 16 message mm for ballot b,
it hadn’t voted in any ballot d with mm.mbal < d < b.

And because it set mBal[a] to b, it still hasn’t voted in those ballots.

IN AVa e Q:dm € Q1b: m.acc = a
AVRT=1]
vdm € Qlbv :
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

And mBal[a] then equaled b, so it couldn't later have
voted in any ballot < b.

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3a € Q: VotedFor(a, c, v)
ANVd e (c+1)..(b—1), a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
AVa e Q:dm e Q1b: m.acc = a

AV Qlby = {}
V[dm e Qlbv:
A m.mval = v
AV mm € Qlbv : m.mbal > mm.mbal
Case 2:

ShowsSafeAt(Q, b, v) =
AYa € Q: mazBalla] > b

N

dee —1..(b—1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm e Q1b: m.acc = a
AV Qlby = {}

V[dm e Qlbv:

A m.mval = v

AV mm € Qlbv : m.mbal > mm.mbal

Case 2: Choose such a message m .

ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce —1..(b—-1):

A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

Let ¢ = m.mbal.

ShowsSafeAt(Q, b, v) =
AYa € Q: mazBalla] > b
NIece —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

Let ¢ = m.mbal.

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
Ac# —1)=[3a € Q: VotedFor(a, c, v)|
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vdm e Qlbv:
Alm.mval = v
AV mm € Qlbv : m.mbal > mm.mbal

Let ¢ = m.mbal.

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
Ac# —1)=[3a € Q: VotedFor(a, c, v)|
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vdm e Qlbv:
Alm.mval = v
AV mm € Qlbv : m.mbal > mm.mbal

Let ¢ = m.mbal. VotedFor(m.acc,c,v)

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
Ac# —1)=[3a € Q: VotedFor(a, c, v)|
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
vVIm e Qlbv :
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

Let ¢ = m.mbal.

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

Let ¢ = m.mbal.

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3a € Q: VotedFor(a, c, v)
ANVd e (c+1)..(b—1), a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:
A m.mval = v
/\|V mm € QLlbv : m.mbal > mm.mbal|

Let ¢ = m.mbal.

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}

Vadme Qlbv:

A m.mval = v

/\|V mm € QLlbv : m.mbal > mm.mbal|

Let ¢ = m.mbal.
¢ is the highest numbered ballot in which any « € @ voted

ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce —1..(b—-1):

A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



When an acceptor ¢ € @ sentits 16 message mm for ballot b,
it hadn’t voted in any ballot d with mm.mbal < d < b.

And because it set mBal[a] to b, it still hasn’t voted in those ballots.
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
vVIm e Qlbv :

A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

No a € @ voted in any ballot d with ¢ < d < b.

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
Vadme Qlbv:

A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

No a € @ voted in any ballot d with ¢ < d < b.
ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce —1..(b—-1):

A(c# —1)=3a € Q: VotedFor(a, c, v)
ANVd e (c+1)..(b—1), a € Q: DidNotVoteAt(a, d)




LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}

Vadme Qlbv:

A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

This is an explanation, not a proof.

ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce —1..(b—-1):

A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}

Vadme Qlbv:

A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

There are more rigorous proofs

ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce —1..(b—-1):

A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”

A m.acc € Q

A m.bal = b}
Qlbv = {m € Q1b : m.mbal > 0}
IN

AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}

Vadme Qlbv:

A m.mval = v

AV mm € Q1lbv : m.mbal > mm.mbal

There are more rigorous proofs of incorrect algorithms
ShowsSafeAt(Q, b, v) =

AYa € @ : mazBalla] > b
Adce —1..(b—-1):

A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



LET Q1b = {m € msgs : A m.type = “1b”
A m.acc € Q
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa e Q:dm e Q1b: m.acc = a
AV Qlbv = {}
vVIm e Qlbv :
A m.mval = v
AV mm € Q1lbv : m.mbal > mm.mbal

ShowsSafeAt(Q, b, v) =
AYa € @ : mazBalla] > b
Adce —1..(b—-1):
A(c# —1)=3Fa € Q: VotedFor(a, c, v)
AVd € (c+1)..(b—1),a € Q: DidNotVoteAt(a, d)



Phase2a(b, v) =
A—dm € msgs : m.type = “2a” A m.bal = b
A3 Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
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AV mm € Qlbv : m.mbal > mm.mbal
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A m.acc € Q)
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Vdme Qlbv:
A m.mual = v
AV mm € Qlbv : m.mbal > mm.mbal

A Send([type — “2a", bal — b, val — v])
Sends the 2¢ message to (all) the acceptors.
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Phase2a(b, v) =
A—dm € msgs : m.type = “2a” A m.bal = b
A3 Q € Quorum :
LET Q1b = {m € msgs : A m.type = “1b"
A m.acc € Q)
A m.bal = b}
Qlbv = {m € Q1b: m.mbal > 0}
IN AVa € Q:dm e Q1b: m.acc = a
AV QLlby = {}
Vdme Qlbv:
A m.mual = v
AV mm € Qlbv : m.mbal > mm.mbal

A Send([type — “2a", bal — b, val — v])
A UNCHANGED (maxBal, mazVBal, mazVal)

Leaves all variables except msgs unchanged.
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Phase2b(a) =
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numbered > b, then it votes for v in ballot .
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if acceptor a has not agreed to participate in a ballot
numbered > m.bal , then it votes for m.val in ballot m.bal .

It does this by sending a message.
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Upon receipt of a 2a message m for ballot m.bal ,
if acceptor a has not agreed to participate in a ballot
numbered > m.bal, then it votes for m.val in ballot m.bal .

It does this by sending a message.
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dm € msgs :
A m.type = “2a"
A m.bal > mazBal[a]

then it votes for m.val in ballot m.bal.



Phase2b(a) =
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A mazBal' = [maxBal EXCEPT ![a] = m.bal]

then it votes for m.val in ballot m.bal.
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Set mazBal[a] to m.bal .

then it votes for m.val in ballot m.bal.
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then it votes for m.val in ballot m.bal.
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then it votes for m.val in ballot m.bal.
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A m.type = “2a"
A m.bal > mazBal[a]

A mazBal' = [maxBal EXCEPT ![a] = m.bal]
A mazVBal' = [maxVBal EXCEPT ![a] = m.bal]
A mazVal' = [mazVal EXCEPT ![a] = m.val]

Set mazVal[a] to m.val .

then it votes for m.val in ballot m.bal.
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A m.bal > mazBal[a]
A mazBal' = [maxBal EXCEPT ![a] = m.bal]
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Phase2b(a) =
dm € msgs :
A m.type = “2a"
A m.bal > mazBal[a]

A mazBal' = [maxBal EXCEPT ![a] = m.bal]
A mazVBal' = [maxVBal EXCEPT ![a] = m.bal]
A mazVal' = [mazVal EXCEPT ![a] = m.val]

A Send([type — “2b", acc — a,
bal — m.bal, val — m.val))

It does this by sending a message.



Phase2b(a) =
dm € msgs :
A m.type = “2a"
A m.bal > mazBal[a]

A mazBal' = [maxBal EXCEPT ![a] = m.bal]
A mazVBal' = [maxVBal EXCEPT ![a] = m.bal]
A mazVal' = [mazVal EXCEPT ![a] = m.val]

A Send([type — “2b", acc — a,
bal — m.bal, val — m.val))



Next = VvV 3b € Ballot : V Phasela(b)
V 3v € Value : Phase2a(b, v)
V 3a € Acceptor : Phaselb(a) V Phase2b(a)



Next = VvV 3b € Ballot : V Phasela(b)
V 3v € Value : Phase2a(b, v)
V 3a € Acceptor : Phaselb(a) V Phase2b(a)

Spec 2 Init A O[Next]yars



The Paxos Consensus Algorithm
Implements
The Voting Algorithm



The parameters of the Voting spec are:

CONSTANTS Value Acceptor Quorum
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VARIABLES mazBal wotes
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They are implemented in the Pazos spec by:

a defined expression wvotes



The parameters of the Voting spec are:
CONSTANTS Value Acceptor Quorum

VARIABLES mazBal wotes

They are implemented in the Pazos spec by:
CONSTANTS Value Accepltor Quorum

VARIABLE mazBal a defined expression wvotes



a defined expression wvotes



votes



votes =
la € Acceptor —



votes =
a € Acceptor —
74

A function with domain the set of acceptors.



votes =
[a € Acceptor —  The set of votes cast by acceptor a .



votes =
la € Acceptor —
{{m.bal, m.val) : m €



votes =
[a € Acceptor —
{(m.bal, m.val) : m € The set of 20 messages
sentby a.



votes =
la € Acceptor —
{(m.bal, m.val) : m € {mm € msgs : N\ mm.type = "2b"
A mm.acc = a}}]



votes =
la € Acceptor —
{(m.bal, m.val) : m € {mm € msgs : N\ mm.type = "2b"
A mm.acc = a}}]



V £ INSTANCE Voting



V £ INSTANCE Voting

WITH Value < Value, Acceptor < Acceptor, Quorum < Quorum,
mazBal < mazBal, votes < votes

Remember that these substitutions are implied.



V £ INSTANCE Voting



A

V' = INSTANCE Voting

THEOREM Spec = V'!Spec



V £ INSTANCE Voting

THEOREM Spec = V'!Spec
The model checker can check this theorem.



| won'’t discuss how the Paxos consensus algorithm
is used to build fault-tolerant systems.



| won'’t discuss how the Paxos consensus algorithm
is used to build fault-tolerant systems.

See Paxos Made Simple.



What if you don’t win a Turing award?
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Will learning to think mathematically be a waste of time?

No.



Will it improve your coding?



Will learning to think mathematically be a waste of time?
Will it improve your coding?

Probably not.



Will learning to think mathematically be a waste of time?
Will it improve your coding?

So why bother?



Coding should be the easiest, least important part of
programming.



If you're having trouble writing a piece of code, you’re doing
something wrong.



Rosetta




Rosetta

ESA Spacecraft that explored a comet.



Rosetta

Several of its instruments were controlled by
the Virtuoso real-time operating system.
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done by vears of C programming). One of the results was that
the code size is about 10x less than in [Virtuoso].



the code size is about 10x less than in [Virtuoso].



the code size is about 10x less than in [Virtuoso].
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The [TLA™] abstraction helped a lot in coming to a much
cleaner architecture (we witnessed first-hand the brainwashing
done by years of C programming). One of the results was that

the code size is about 10x less than in [Virtuoso].
You don’t produce 10x less code by better coding.

You do it with a cleaner architecture



cleaner architecture

better algorithm
You do it with a elearerarehiteeture



The [TLA™] abstraction helped a lot

, Which comes from
mathematical thinking.



(we witnessed first-hand the brainwashing
done by years of C programming).

It doesn’t come from thinking in a programming language.
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Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

‘ BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
MARC BROOKER, AND MICHAEL DEARDEUFF

How Amazon
Web Services
Uses Formal
Methods

ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model
checking to help solve difficult design problems in

SINCE 2011,

critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials.

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched $3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than ayear later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*
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$3 is just one of many AWS ser-
vices that store and process data our
customers have entrusted to us. To
safeguard that data, the core of each
rvice relies on fault-tolerant di
tributed algorithms for replication,
consistency,concurreney control, 1
to-scaling, load balancing, and other
coordination tasks. There are many
such algorithms in the literature, but
combining them into a cohesive sys-
a challenge, as the algorithms
must usually be modified to interact
properly in a real-world system. In
addition, we have found it necessary
to invent algorithms of our own. We
work hard to avoid unnecessary
Plxity, but the essential complerity of
the task remains high.

Complexity increases the probabil-
ity of human error in design, code,
and operations. Errors in the core of
the system could cause loss or corrup-
tion of data, or violate other interface
contracts on which our customers de-
pend. So, before launching a service,
15 aiedto seach Euitiasl highiéon,
fidence that the core of the system is
correct. We have found the standard
verification techniques in industry are
necessary but not sufficient. We rou-
tinely use deep design reviews, code
reviews, static (nd:' analysis, stress
testing and fautinection teting but

L Rt subte boge can e in
faitolerant
systems. One reason they do is that
human intuition is poor at estimating
the true probability of supposedly “ex-
tremely rare” combinations of events
in systems opet atascale of mil-
lions of requests per second.

n key insights

& Formal methods find bugs In system
designs that cannot be found through
‘any other technique we know o.

= Formal methods are surprisingly feasible
for mainstream software development
give good return on investment.

® Axmazoe, fomal mthods ae outivaly
‘applied to the design
ek word software. Incloing publlc
cloud services.
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domain, and what has not. When discussing personal
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substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
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with relentless business growth. As an example of this
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allenge, as the algorithms
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to invent algorithms of our own. We
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SINCE ENGINEERS at Amazon Web Services
(AWS) have used formal specification and model

checking to help solve difficult design problems in
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critical systems. Here, we describe our motivation
and experience, what has worked well in our problem
domain, and what has not. When discussing personal
experience we refer to the authors by their initials

At AWS we strive to build services that are simple for
customers to use. External simplicity is built on a hidden
substrate of complex distributed systems. Such complex
internals are required to achieve high availability while
running on cost-efficient infrastructure and cope
with relentless business growth. As an example of this
growth, in 2006, AWS launched S3, its Simple Storage
Service. In the following six years, S3 grew to store one
trillion objects.? Less than a year later it had grown
to two trillion objects and was regularly handling 1.1
million requests per second.*
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What Chris Newcombe, senior engineer at Oracle, wrote.
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to find subtle flaws in system designs.



TLA+ is the most valuable thing that I've learned in my
professional career.

It has changed how | work

It has changed how | think



TLA+ is the most valuable thing that I've learned in my
professional career.

It has changed how | work

It has changed how | think

by giving me a framework for constructing
new kinds of mental-models



TLA+ is the most valuable thing that I've learned in my
professional career.

It has changed how | work

It has changed how | think

by revealing the precise relationship between
correctness properties and system designs



TLA+ is the most valuable thing that I've learned in my
professional career.

It has changed how | work

It has changed how | think

and by allowing me to move from ‘plausible prose’
to precise statements much earlier in the software
development process.
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Mathematical thinking
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