
(Continuous) Automated
C/C++ Fuzz Testing

Yevgeny Pats @fuzzitdev
April 2020, Moscow C++

A bit about me
● @yevgenypats
● Founder & CEO at @fuzzitdev
● Security Researcher
● Serial entrepreneur
● Cyber Security @ IDF

Agenda
● What is fuzzing?
● Types of Fuzzers
● libFuzzer
● Continuous Fuzzing
● Trophies (Case studies)
● What Fuzzing is not?
● The Future
● Q&A

What is Fuzzing / Fuzz Testing
● Fuzzing - providing semi-random input in automated way to a program in

order to uncover bugs and crashes.
● Is it only to find security/memory corruption vulnerabilities?
● In safe languages fuzzing helps find a LOT of bugs and improve stability and

code coverage. Logic bugs with security impact as well.
● Run millions of unit-tests without writing them.

Quick history & Types of fuzzers
● Traditional/Random
● Coverage-Guided

○ AFL
○ libFuzzer
○ go-fuzz (Initially developed by Dmitry Vyukov)
○ cargo-fuzz (rust - based on libFuzzer)
○ JQF (java)
○ jsfuzz
○ pythonfuzz
○ javafuzz

ParseComplex Example
bool parse_complex(const char *src, size_t len) {

 if (len == 5) {

 if (src[0] == 'F' &&

 src[1] == 'U' &&

 src[2] == 'Z' &&

 src[3] == 'Z' &&

 src[4] == 'I' &&

 src[5] == 'T') {

 return true;

 }

 }

 return false;

}

Random vs Coverage guided fuzzing Algorithm

// pseudo code
for {

Generate random input
Execute input

}

// pseudo code
Instrument program for code coverage
for {

Choose random input from corpus
Mutate input
Execute input and collect coverage
If new coverage/paths are hit add it to corpus

}

Coverage Guided Fuzzing - Demo
package parser

extern "C" int LLVMFuzzerTestOneInput(const uint8_t * data, size_t size) {

 parse_complex((const char *)data, size);

 return 0;

}

// gclang++-8 -fsanitize=fuzzer,address -Isrc src/parse_complex.cpp fuzz/fuzz_parse_complex.cpp
// ./a.out

Time till Crash: 3 sec

Data generation
“Sdlkfgnjk12 iv7$”

“Laksjdh2345 24ךשדלחגכי3לך4י ”

“as(*&^&^%*&^%”

(The testcases that are saved in the
corpus)

“”
“FAAAA”
“FUAAA”
“FUZAA”
“FUZZA”
“FUZZI” - Crash
??

Property based fuzz testing

extern "C" int LLVMFuzzerTestOneInput (const uint8_t * data, size_t size) {

 memcmp(decode(encode((const char *)data, size)), data, size);

 return 0;

}

Trophies

Mutations
● Bit-flipping, Byte-flipping, arithmetics,
● Sonar

Solutions and What Fuzzing is not
● Doesn’t replace unit-tests, integration tests.
● Secure design, threat modeling & attack surface reduction

○ Sandbox
○ Thread modeling
○ Up-to-date third-party-libraries

● As the developer you are responsible for writing the fuzz tests just as you
write the unit-tests for your code. You are the best person to understand
which parts of the code need to be fuzzed.

Continuous Fuzzing
● Running a fuzzer once is nice and it will probably find bugs.
● Just like unit-tests, you want to run the fuzzers every time you push new

code.
● Unlike unit-tests which are quick (usually), fuzzing can run indefinitely.
● How long should we fuzz? What version should we fuzz?

Continuous Fuzzing Workflow
// Pseudo code
// Fuzzing workflow
for {

Push new code to master/dev
Build the fuzzers in the CI and upload to a server where you will run them.
The fuzzer will run either until it finds a crash or until a new version of the fuzzer is uploaded
Corpus is saved between runs

}
// Regression workflow
for {

Open a Pull-Request
Download the corpus
Run the fuzzers through all the files available in the corpus (quick) - Free unit-tests!

}

Continuous Trophies

Future
● Structure Aware Fuzzing -

https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md

https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md

Q & A

