Concurrency in C++20 and beyond

Anthony Williams

Woven Planet
https://www.woven-planet.global

November 2021

oven


https://www.woven-planet.global

Concurrency in C++20 and beyond

e New Concurrency Features in C++20
e New Concurrency Features for Future Standards

woven

0 planet



New Concurrency Features in
C++20

oven



New Concurrency Features in C++20

C++20 is a huge release, with lots of new features, including
Concurrency facilities:

e Support for cooperative cancellation of threads
e A new thread class that automatically joins

e New synchronization facilities

e Updates to atomics

e Coroutines

woven
0 planet



Cooperative Cancellation

oven



Cooperative Cancellation

e GUIs often have “Cancel” buttons for long-running operations.
e You don't need a GUI to want to cancel an operation.
e Forcibly stopping a thread is undesirable

woven
0 planet



Cooperative Cancellation li

C++20 provides std :: stop_sourceand std:: stop_tokento
handle cooperative cancellation.

Purely cooperative: if the target task doesn’t check, nothing
happens.

woven
0 planet



Cooperative Cancellation lli

@ Createastd::stop_source

oven



Cooperative Cancellation lli

@ Createastd::stop_source
© Obtainastd::stop_tokenfromthe std::stop_source

woven
0 planet



Cooperative Cancellation lli

@ Createastd::stop_source
© Obtainastd::stop_tokenfromthe std::stop_source
© Passthe std::stop_tokentoanew thread or task

woven
D planet



Cooperative Cancellation lli

@ Createastd::stop_source

© Obtainastd::stop_tokenfromthe std::stop_source

© Passthestd::stop_tokentoanew thread or task

© When you want the operation to stop call source.request_stop()

woven
D planet



Cooperative Cancellation lli

@ Createastd::stop_source

© Obtainastd::stop_tokenfromthe std::stop_source

© Passthestd::stop_tokentoanew thread or task

© When you want the operation to stop call source.request_stop()

@ Periodically call token.stop_requested() to check
= Stop the task if stopping requested

woven
O planet



Cooperative Cancellation lli

@ Createastd::stop_source

© Obtainastd::stop_tokenfromthe std::stop_source

© Passthestd::stop_tokentoanew thread or task

© When you want the operation to stop call source.request_stop()

@ Periodically call token.stop_requested() to check
= Stop the task if stopping requested

O Ifyou do not check token.stop_requested(), nothing happens

woven
O planet



Cooperative Cancellation IV

std:: stop_tokenintegrates with
std::condition_variable_any, so if your code is waiting for
something to happen, the wait can be interrupted by a stop
request.

woven
0 planet



Cooperative Cancellation V

std::mutex m;
std::queue<Data> q;
std: :condition_variable_any cv;

Data wait_for_data(std::stop_token st){
std::unique_lock lock(m);
if(lcv.wait_until(lock, [1{return !q.empty();},st))
throw op_was_cancelled();
Data res=q.front();
q.pop_front();
return res;

woven
O planet



Cooperative Cancellation VI

You canalsouse std:: stop_callback to provide your own
cancellation mechanism. e.g. to cancel some async IO.

Data read_file(
std: :stop_token st,
std::filesystem::path filename ){
auto handle=open_file(filename);
std: :stop_callback cb(st, [&]{ cancel_io(handle);});
return read_data(handle); // blocking
}

woven
D planet



New thread class

oven



New thread class: std :: jthread

std:: jthreadintegrates with std :: stop_token to support
cooperative cancellation.

Destroyinga std :: jthread calls source.request_stop()
and thread.join().

The thread still needs to check the stop token passed in to the
thread function.

woven
O planet



New thread class Il

void thread_func(
std::stop_token st,
std::string argl,int arg2){
while(!st.stop_requested()){
do_stuff(argl,arg2);
+
}

void foo(std::string s){
std::jthread t(thread_func,s, 42);
do_stuff();

+ // destructor requests stop and joins

0

woven

planet



New synchronization facilities

oven



New synchronization facilities

e Latches
e Barriers
e Semaphores

oven



Latches

oven



Latches

std:: Llatchis asingle-use counter that allows threads to wait for
the count to reach zero.

@ Create the latch with a non-zero count
@ One or more threads decrease the count
© Other threads may wait for the latch to be signalled.

© When the count reaches zero it is permanently signalled and all
waiting threads are woken.

woven
0 planet



Waiting for tasks with a latch

void foo()d{
unsigned const thread_count=...;
std::latch done(thread_count);
my_data datal[thread_count];
std: :vector<std::jthread> threads;
for(unsigned i=0;i<thread_count;++i)
threads.push_back(std::jthread([&,1]4
datal[i]l=make_data(i);
done.count_down();
do_more_stuff();
}));
done.wait();
process_data();

woven
O planet



Synchronizing Tests with Latches

Using a lafch is great for multithreaded tests:

o
2]
o

Set up the test data
Create alatch

Create the test threads
= The first thing each thread does is
test_latch.arrive_and_wait()

When all threads have reached the latch they are unblocked to
run their code

woven
0 planet



Barriers

oven



Barriers

std::barrier<>isareusable barrier.

Synchronization is done in phases:

@ Construct a barrier, with a non-zero count and a completion
function

@ One or more threads arrive at the barrier
© These or other threads wait for the barrier to be signalled

© When the count reaches zero, the barrier is signalled, the
completion function is called and the count is reset

woven
0 planet



Barriers Il

Barriers are great for loop synchronization between parallel tasks.

The completion function allows you fo do something between
loops: pass the result on to another step, write to afile, etc.

woven
0 planet



Barriers lli

unsigned const num_threads=...;
void finish_task();

std: :barrier<std: :function<void()>> b(
num_threads, finish_task);

void worker_thread(std::stop_token st,unsigned i)A{
while(!st.stop_requested()){
do_stuff(i);
b.arrive_and_wait();
+
+
) pianet



Semaphores

oven



Semaphores

A semaphore represents a number of available “slots”. If you
acquire a slot on the semaphore then the count is decreased until
you release the slof.

Attempting to acquire a slot when the count is zero will either block
or fail.

A thread may release a slot without acquiring one and vice versa.

woven
0 planet



Semaphores |

Semaphores can be used to build just about any synchronization
mechanism, including latches, barriers and mutexes.

A binary semaphore has 2 states: 1 slot free or no slots free. It can
be used as a mutex.

woven
0 planet



Semaphores in C++20

C++20 has std:: counting_semaphore<max_count>
std::binary_semaphoreisanaliasfor std:: counting_semaphore<l1>.

As well as blocking sem.acquire(), there are also sem.try_acquire(),
sem.try_acquire_for() andsem.try_acquire_until() functions that
fail instead of blocking.

woven
O planet



Semaphores in C++20 li

std: :counting_semaphore<5> slots(5);

void func(){
slots.acquire();
do_stuff(); // at most 5 threads can be here
slots.release();

}

woven
0 planet



Updates to Afomics

woven
0 planet



Updates to Afomics

e Low-level waiting for atomics
e Atomic Smart Pointers
e Std::atomic_ref

woven
0 planet



Low-level waiting for atomics

std::atomic<T> now provides a var.wait () member function
to wait for it to change.

var.notify_one() andvar.notify_all() wake one or all
threads blocked inwait ().

Like alowlevel std :: condition_variable.

woven
O planet



Atomic smart pointers

C++20 provides std :: atomic<std:: shared_ptr<T>>and
std::atomic<std::weak_ptr<T>> specializations.

e May or may not be lock-free
e If lock-free, can simplify lock-free algorithms.

e If not lock-free, a better replacement for
std::shared_ptr<T>and a mutex.

e Can be slow under high contention.

woven
D planet



atomic<shared_ptr<T>> Stack

template<typename T> class stackd{
struct node{

T value;

shared_ptr<node> next;

node(){} node(T&& nv):value(std: :move(nv)){}

};

std: :atomic<shared_ptr<node>> head;

public:

stack() :head(nullptr){}

~stack(){ while(head.load()) pop(); }

void push(T);

T pop();

b
) pianet



atomic<shared_ptr<T>> Stackli

template<typename T>
void stack<T>::push(T val){
auto new_node=std: :make_shared<node>(
std::move(val));
new_node->next=head.load();
while(!head.compare_exchange_weak(
new_node->next, new_node)){}

woven
O planet



atomic<shared_ptr<T>> Stacklli

template<typename T>
T stack<T>::pop(){
auto old_head=head.load();
while(old_head){
if(head.compare_exchange_strong(
old_head, old_head->next))
return std::move(old_head->value);

}

throw std::runtime_error("Stack empty");

woven
O planet



std::atomic_ref

std::atomic_ref allows you to perform atomic operations on
non-atomic objects.

This can be important when sharing headers with C code, or where
a struct needs to match a specific binary layout so you can’t use
std::atomic.

If youuse std :: atomic_ref to access an object, all accesses to
that object must use std :: atomic_ref.

woven
O planet



std::atomic_ref

struct my_c_struct
int count;
datax ptr;
b

void do_stuff(my_c_structx p){

std::atomic_ref<int> count_ref(p->count);
++count_ref;

/...
+ O et



Coroutines

oven



What is a Coroutine?

A coroutine is a function that can be suspended mid execution and
resumed at a later time.

Resuming a coroutine continues from the suspension point; local
variables have their values from the original call.

woven
0 planet



Stackless Coroutines

C++20 provides stackless coroutines

e Only the locals for the current function are saved
e Everything is localized

e Minimal memory allocation — can have millions of in-flight
coroutines

e Whole coroutine overhead can be eliminated by the compiler

4 u

— Gor's “disappearing coroutines”

woven
0 planet



Waiting for others

future<remote_data>
async_get_data(key_type key);

future<data> retrieve_datal(
key_type key){
auto rem_data=
co_await async_get_data(key);
co_return process(rem_data);

by

woven
D planet



What C++20 coroutines are missing

C++20 has no library support for coroutines:

—> you heed to write your own support code (hard) or use a third
party library.

e.g.
https://github.com/lewissbaker/cppcoro
https://github.com/David-Haim/concurrencpp

woven
0 planet


https://github.com/lewissbaker/cppcoro
https://github.com/David-Haim/concurrencpp

New Concurrency Features for
Future Standards

oven



New Features for Future Standards

Additional concurrency facilities are under development for future
standards. These include:

e A synchronization wrapper for ordinary objects
e Executors — thread pools and more

e Coroutine library support for concurrency

e Concurrent Data Structures

e Safe Memory Reclamation Facilities

woven
0 planet



A synchronization wrapper for
ordinary objects

oven



A synchronization wrapper

synchronized_value encapsulates a mutex and a value.

e Cannot forget to lock the mutex
e It's easy to lock across a whole operation
e Multi-value operations are just as easy

woven
0 planet



A synchronization wrapper I

synchronized_value<std::string> sv;

std::string get_value(){
return apply([](std::string& s){
return s;

F,osv);
I

void append_string(std::string extra){
apply([&](std::string& s){
s+=extra;

Fosv);
} woven
0 pianet



A synchronization wrapper lli

synchronized_value<std::string> sv;
synchronized_value<std::string> sv2;

std:string combine_strings(){
return apply(
[&](std::string& s,std::string & s2){
return s+s2;
},sv,sv2);

woven
O planet



Executors

oven



Executors

Executor
An object that controls how, where and when a task is
executed

Thread pools are a special case of Executors.

woven
0 planet



Executors = Senders and Receivers

Executor as a concept combines too many responsibilities. The
std:: execution proposal splits them into 3:

Scheduler

Controls where a task is to be run
Sender

Controls what the task is
Receiver

Controls what to do with the result

woven
0 planet



Senders and Receivers

Asynchronous operation are pipelines: each sender is chained to a
receiver, which can then initiate another sender, or just store the
result somewhere.

Initial sender = receiver = sender = receiver = sender = ... = ...
= final receiver

The scheduler runs the pipeline.

woven
0 planet



Senders and Receivers

Schedulers are things like thread pools and GPU schedulers.

Receivers are usually internal to algorithms like
std::execution:: thenand
std:: this_thread::sync_wait.

Application-level code usually focuses on constructing Senders
from the tasks that need to be done.

woven
0 planet



Scheduling work

If you have a task that needs to be run, the simplest mechanism is
justtocall std::execution::execute.

// Assumed for all subsequent examples
namespace execution=std::execution;

execution: :execute(some_scheduler, [1{
do_something();

1)

This detaches the work, so you can’t wait for it.
£ pianet



Scheduling work

executilon:: execute can be splitinto multiple steps:

auto initial_sender=execution::schedule(my_scheduler);

auto work_sender=execution::then(initial_sender, []{
do_something();

),

execution: :start_detached(work_sender);

woven
O planet



Waiting
You can start execution on a scheduler, and then wait for the result.

auto done=execution::ensure_started(work_sender);

do_other_stuff();

auto result = std::this_thread::sync_wait(done);

woven
O planet



Scheduling work

You can chain operations together with execution :: then:

auto initial_sender=execution::schedule(my_scheduler);
auto middle_sender=execution::then(initial_sender, []{
return find_the_answer();
});
auto work_sender=execution: :then(
middle_sender, [](int answer){
return find_the_question(answer);
});

auto result = std::this_thread::sync_wait(work_sender);

woven
O planet



Pipelines
Code can be simplified using pipes (| ) rather than named variables.

auto work_sender=execution::schedule(my_scheduler) |
execution: :then(find_the_answer) |
execution::then(find_the_question);

auto result = std::this_thread::sync_wait(work_sender);

woven
O planet



Handling errors

By default, exceptions are propagated down the pipeline, and
rethrown from sync_wait.

execution::upon_error canbe used to handle errors within
the pipeline.

auto work_sender=execution::schedule(my_scheduler) |
execution::then(do_something) |
execution: :upon_error(handle_error) |
execution::then(do_something_else);

auto result = std::this_thread::sync_wait(work_sender);
) planet



Libunifex

https://github.com/facebookexperimental/libunifex

Provides a sample implementation of the executor model and
extensive documentation.

woven
0 planet


https://github.com/facebookexperimental/libunifex

Coroutine support for concurrency

oven



Coroutine support for concurrency

| hope to see things like task<T> that allows you to write a
coroutine infended to run as an async task:

task<int> taskl1():
task<int> task2();

task<int> sum(){
int rl=co_await taskl();
int r2=co_await task2();
co_return rl+r2;

}

woven
0 planet



Coroutines support for concurrency

All awaitables are senders:

task<int> coroutine_task();

auto foo() {
return execution::sync_wait(coroutine_task());

by

woven
0 planet



Coroutine support for concurrency

Some senders are awaitable:

task<int> other_coro(){
auto sender = execution::schedule(my_scheduler) |
execution::then(find_the_answer);
co_return co_wait sender;

by

woven
D planet



Concurrent Data Structures

oven



Concurrent Data Structures

Developers commonly need data structures that allow concurrent
access.

Proposals for standardization include:
e Concurrent Queues
e Concurrent Hash Maps

woven
0 planet



Concurrent Queues

Queues are a core mechanism for communicating between
threads.

concurrent_queue<MyData> q;

void producer_thread(){
g.push(generate_data());

}

void consumer_thread(){
process_data(q.value_pop());

by

woven
O planet



Concurrent Hash Maps

e Hash maps are often used for fast look-up of data
e Using a mutex for synchronization can hurt performance

e Special implementations designed for concurrent access can
be better

woven
0 planet



Safe Memory Reclamation
Facilities

oven



Safe Memory Reclamation Facilities

Lock-free algorithms need a way to delete data when no other thread is
accessing it.

RCU provides a lock-free read side. Deletion is either blocking or deferred on a
background thread.

Hazard pointers defer deletion, and provide a different set of performance
tfrade-offs.

Both mechanisms are in the second Concurrency TS for future C++
standardization.

woven
0 planet



Proposals

Here are the papers for those future things that have proposals:
@ Synchronized Value: P0290
@ Senders and Receivers: P2300
@ Concurrency TS2 draft (Hazard pointers and RCU): N4895
@ Concurrent Queues: P0260
e Concurrent Hash Map: P0652 P1761

woven
0 planet


http://wg21.link/p0290
http://wg21.link/p2300
http://wg21.link/n4895
http://wg21.link/p0260
http://wg21.link/p0652
http://wg21.link/p1761

L | BTTTHTS

C++ Concurrency in Action
Second Edition

Covers C++17 and the
first Concurrency TS
C++20 Addendum coming soon!

cplusplusconcurrencyinaction.com

woven
O planet


https://www.cplusplusconcurrencyinaction.com

Questions?

oven



	New Concurrency Features in C++20
	Cooperative Cancellation
	New thread class
	New synchronization facilities
	Latches
	Barriers
	Semaphores
	Updates to Atomics
	Coroutines
	New Concurrency Features for Future Standards
	A synchronization wrapper for ordinary objects
	Executors
	Coroutine support for concurrency
	Concurrent Data Structures
	Safe Memory Reclamation Facilities
	Questions?

