
Dmitri Nesteruk
ActiveMesa
@dnesteruk



Write

CompileExecute

Stop



Cognitive context switch: jumping between program and IDE
Significant time delay (e.g., when writing a plugin)
Recompilation is tedious and happens at a large scale (project, 
not individual file)
Jumping into IDE makes sense for complicated, large-scale 
changes; I just want to change one line of code!
Ideal situation is where the developed program is never 
stopped



We want to design a system where small, incremental changes 
can be made as the program is running
Learn to recompile and substitute types
Instantiate updated types at runtime
Create a centralized, REPL-able container where types can be 
substituted
Ensure container registration is persistent



InProcessCompiler: uses a CodeDomProvider (Roslyn?) to 
compile C# as the program is running

Generates a temporary DLL with just one type
Any subsequent in-process compilation references that DLL

Centralized dependency injection container
Keeps a dependency graph
Uses property injection
Overwrites all instances of a particular component 



Takes source code as text; compiles it to a DLL
The newly created type is incompatible with the old

Even with same interface or identical content!
Solution: interfaces

Define interface IFoo
Implement IFoo in type Foo
Foo is changed; a new version is compiled at runtime
Old Foo and new Foo are incompatible; but
Both can be assigned to an IFoo reference!



Keep a list of available services
Each service has an associated file with its own source code

One class per file rule
Container can offer a list of editable types at runtime
After editing a type, it gets updated in the container



Dependency injection helps us satisfy necessary dependencies
But what if one component changes?
We don’t want a service locator

services.Get<IMyService>()
Instead, we want container to iterate types it already created 
and update all their injected members

Property injection with attributes (intrusive , CoC?)
Keep a WeakReference to everything container creates
When a component changes, redo property injection

REPLability: creating new types



Persist the state of recreated components
What to do if the structure changes?

Get REPL (csi) to detect generated assemblies and #r them
Automatically add generated files to project
Detect circular dependencies



Questions?
Answers?
Hate mail?
@dnesteruk


	Dynamic Prototyping: Development Without Recompilation
	Typical development Cycle
	What’s the Problem?
	The Plan
	Tools of the Trade
	InProcessCompiler
	A More Public Registry
	DynamicContainer
	TODO
	That’s It!

