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Spark Yoga - saving time & 
money with lean data pipelines
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Yoga Asanas

Yep thats me :) 3



What will we focus on today 
?
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What will we focus on today 
?

1. Some Asanas for Spark 

2. And some simple actual Yoga 
Asanas too at the end :)
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Spark Yoga Asanas 

● Using Spark in a specific way to save time & money
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Spark Yoga Asanas

● Using Spark in a specific way to save time & money
○ Tuning / Using a specific Spark Configuration parameter
○ Choosing the kind of data lake it interacts with
○ Running the spark job in a specific way
○ Choosing the kind of framework it runs in
○ Balancing Time With Co$t
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Tuning / Using a specific Spark Configuration parameter (Asana 1)
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Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

1. Spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version = 2 (saves time)
a. Or experiment with s3a committers

2. spark.serializer=org.apache.spark.serializer.KryoSerializer (better serialization)

3. spark.sql.autoBroadcastJoinThreshold=256MB (helps with the join)
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Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

1. Spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version = 2 (saves time)
a. Or experiment with s3a committers

2. spark.serializer=org.apache.spark.serializer.KryoSerializer (better serialization)

3. spark.sql.autoBroadcastJoinThreshold=256MB (helps with the join)

4. spark.hadoop.fs.s3a.connection.ssl.enabled=false (saves time)

5. If executor < 32G, Use -XX:+UseCompressedOops (pointer size reduction)
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Choosing the kind of data lake it interacts with (Asana 2)
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Choosing the kind of data lake it interacts with (Asana 2)

1. S3* or any other cloud object storage 
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1. S3* or any other cloud object storage  
2. HDFS (On Premise / Cloud)

Choosing the kind of data lake it interacts with (Asana 2)
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Choosing the kind of data lake it interacts with (Asana 2)

1. S3* or any other cloud object storage  
2. HDFS (On Premise / Cloud)

The above are the more notable choices. Are they the only choices ? 
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Choosing the kind of data lake it interacts with (Asana 2)

1. S3* or any other cloud object storage  
2. HDFS (On Premise / Cloud) 

Evaluation Criteria:
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Choosing the kind of data lake it interacts with (Asana 2)

1. S3* or any other cloud object storage  
2. HDFS (On Premise / Cloud)

Evaluation Criteria:

1. Data access Time
2. Maintenance
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Choosing the kind of data lake it interacts with (Asana 2)

S3/Cloud Storage HDFS (onprem / cloud)

Infra Maintenance no yes

Access times Over network - https?  Local access to node 

Compute  No, Need extra nodes  Yes with hadoop
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Choosing the kind of data lake it interacts with (Asana 2)

How about Local File System ? 

S3/Cloud Storage HDFS
(onprem / cloud)

Local File System + S3

Infra 
Maintenance

no yes Yes. local storage might be 
limited, extend via EBS ? 

Access times Over network 
- https?  

Local access 
to node 

Local access 
to node 

Compute  No, Need extra 
nodes

 Yes with hadoop Yes, you launch 
workers on the box
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Choosing the kind of data lake it interacts with (Asana 2)

Pro tip:  ‘aws cp’ to local file system is faster than spark interacting with s3 

S3/Cloud Storage HDFS
(onprem / cloud)

Local File System + S3

Infra 
Maintenance

no yes Yes. local storage might be 
limited, extend via EBS ? 

Access times Over network 
- https?  

Local access 
to node 

Local access 
to node 

Compute  No, Need extra 
nodes

 Yes with hadoop Yes, you launch 
workers on the box
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Example of Orchestration 

Note: while using local file system(file://), you need to download the entire dataset to each host
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Choosing the kind of data lake it interacts with (Asana 2)

Sometimes usage of Local File System along with S3, 

        o- Can lead to less running times as its a local data access pattern 

        o-  Yes, we launch & maintain our own cluster, which might not be a burden as long as cost is low.

S3/Cloud Storage HDFS Local File System + S3

Infra Maintenance no yes Yes. local storage might be 
limited, extend via EBS ? 

Access times Over network - 
https?  

Local access 
to node 

Local access 
to node 

Compute  No, Need extra 
nodes

 Yes with 
hadoop

Yes, you launch 
workers on the box
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Running the spark job in a specific way (Asana 3)
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We always tend to go the spark-client mode / run in a cluster .
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Running the spark job in a specific way (Asana 3a)

We always tend to go the spark-client mode / run in a cluster.

How about the Spark - Local mode      ?

Spark.master = local[*]  

● Valid way of running jobs. One might think it’s for only running tests.
● I say why not ? You get benefit of spark DSL while solving your problem.
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○ Cluster is not always needed !
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Running the spark job in a specific way (Asana 3a)

We always tend to go the spark-client mode / run in a cluster.

How about the Spark - Local mode      ?

Spark.master = local[*]  

● Valid way of running jobs. One might think it’s for only running tests.
● I say why not ? You get benefit of spark DSL while solving your problem.
● You can always scale horizontally by going to a cluster

○ Cluster is not always needed !

● Also you have the option of running in a kubernetes pod !
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Running the spark job in a specific way (Asana 3b)

Data preparation 
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Running the spark job in a specific way (Asana 3b)

Data preparation 

Repartition the data for better parallelization of work.

Ex: we wish to increase our write throughput to the db
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Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data 
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Data preparation - Sharding Data 
Goliath vs Mini Goliath’s
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Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data 
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size , not large dataset => smaller 
boxes/cluster
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Data preparation - Sharding Data 

● Divide & Conquer principle
○ Say 100 shards/buckets/folders
○ 100 spark jobs on 100 smaller datasets

● Resource allocation now based on shard 
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Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data 

● Divide & Conquer principle
○ Say 100 shards/buckets/folders
○ 100 spark jobs on 100 smaller datasets

● Resource allocation now based on shard 
size , not large dataset => smaller 
boxes/cluster

● Isolated failures & ReRun - rerun jobs only 
for failed buckets

● Debugging failures / Improving 
performance focussed wrt small bucket

Goliath vs Mini Goliath’s
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Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding data

Does it help always ?

● No, Say you shard using user-id/order-id & a spark job needs to cut across all 
the shards (group by country rather than group by user - id)

● We might have to aggregate/merge the results obtained in each job to get the 
final result. This might be complex.
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The Setup

S3 Bucket for Raw data with 100 
parts/shards/folders
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The Setup

● Dynamically create ‘n’ Airflow dags.
● Run ‘n’ Airflow Dags for ‘n’ shards/folders

Sample source code taken from 
https://www.astronomer.io/guides/dynamically-generating-dags
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Running the spark job in a specific way (Asana 3d)

Reusable datasets

● Are there multiple actions on same dataset in the lineage ?
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Running the spark job in a specific way (Asana 3d)

Reusable datasets

● Are there multiple actions on same dataset in the lineage ?

Dataset1  = spark.load(...)

Dataset2 =  complex_transform_(Dataset1); // takes lot of time.

Dataset2.count() //action 1

Dataset2.save() // action 2
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Running the spark job in a specific way (Asana 3d)

Reusable datasets

● Are there multiple actions on same dataset in the lineage ?

Dataset1  = spark.load(...)

Dataset2 =  complex_transform_(Dataset1); // takes lot of time.

Dataset2.persist(DISK_ONLY); // try with memory if you have it

Dataset2.count() //action 1

Dataset2.save() // action 2
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Choosing the framework it runs in (Asana 4)
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● EMR/Yarn - choice for most people
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Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people.
● How about Standalone Cluster ?

○ Yes you maintain the cluster
○ But sometimes you can be smart with it

■ I/O intensive jobs - ex: writing to cassandra 
● => Less CPU used
● => Not all cores used to full potential
● Can we increase Threads -> YES !
● Box has N cores -> you configure SPARK_WORKER_CORES to M cores (M > N)
● This is called Core-Oversubscribing

○ EMR might not give this option*. Only increase number of boxes => more$  
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Oversubscribing
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Choosing the framework it runs in (Asana 4)

Spark on Kubernetes
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Choosing the framework it runs in (Asana 4)

Spark on Kubernetes

+

Using Spot instances 
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Choosing the framework it runs in (Asana 4)

Spark on Kubernetes

+

Using Spot instances 

        =

Cheaper way to run workloads
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Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter with an SLA (time) in mind.

68
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Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?
○ Storage Cost during computation

● Sometimes we can decrease $ with acceptable increase in SLA (time)
○ Ex: Say running time 

■ on Two c5.4x.large is 8 hours => X$ for 8 hour run time
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Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time)  in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?
○ Storage Cost during computation

● Sometimes we can decrease $ with acceptable increase in SLA (time)
○ Ex: Say running time 

■ on Two c5.4x.large is 8 hours => X$ for 8 hour run time
■ Theoretically on Two t3.2x.large is ~16 hours => Y$ for 16 hour run time (Y<X)
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Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?
○ Storage Cost during computation

● Sometimes we can decrease $ with acceptable increase in SLA (time)
○ Ex: Say running time 

■ on Two c5.4x.large is 8 hours => X$ for 8 hour run time
■ Theoretically on Two t3.2x.large is ~16 hours => Y$ for 16 hour run time (Y<X)
■ If you are ok with the SLA of 16 hours, why not  go for it ? 
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Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2
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Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

Dataset records = spark.session.orc.load(“s3a://...”).select(few columns); // 15gb in s3 folder

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Running Time: 12.5 min
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Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

(spark.hadoop.fs.s3a.connection.ssl.enabled=false)

Dataset records = spark.session.orc.load(“s3a://...”).select(few columns); // 15gb in s3 folder

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Running Time: 11.4min
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Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

(spark.hadoop.fs.s3a.connection.ssl.enabled=false)

Dataset records = spark.session.orc.load(“s3a://...”).select(few columns); // 15gb in s3 folder

records.persist(DISK_ONLY); // if you have lot of free ram, try  with memory

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Running Time: 8.54 min
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Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

(aws s3 cp data to local disk & read from there- took 2min)

Dataset records = spark.session.orc.load(“file://...”).select(few columns); // 15gb in s3 folder

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Running Time: 5.9min           (including 2min for downloading data)
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Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

(aws s3 cp data to local disk & read from there)

Dataset records = spark.session.orc.load(“file://...”).select(few columns); // 15gb in s3 folder

records.persist(DISK_ONLY); // if you have lot of free ram, try  with memory

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Total Running Time: 6.8min        (includes downloading data to disk. The best was 5.9min)
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Exercise (Results)

*Aws s3 cp took 2 minutes

Scenario Minutes

Program as it is (from s3) 12.5

Program as it is (from s3) + ssl disable 11.4

Persisting disk (from s3) 8.6

Persist disk (from s3) + ssl disable 8.5

Aws cp to local 5.9
Aws cp to local + Persist (disk) 6.8

Aws cp to local + Persist (mem_ser)
xms=6g 6.9

Aws cp to local + Persist (mem)
xms=6g 6.7
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Note: Please do run your own tests !
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Explore your own code.



Finally, It’s about the Balance
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So try out these 
Asanas

for a cost-effective 
Spark Life
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Thank you

linkedin.com/in/213vishnu

twitter.com/sweetweet213

https://mash213.wordpress.com/
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