
 Vishnu Rao
Senior data engineer at Eyeota

(ex - Flipkart)

Spark Yoga - saving time &
money with lean data pipelines

1

2

Yoga Asanas

Yep thats me :) 3

What will we focus on today
?

4

What will we focus on today
?

1. Some Asanas for Spark

5

What will we focus on today
?

1. Some Asanas for Spark

2. And some simple actual Yoga
Asanas too at the end :)

6

Spark Yoga Asanas

● Using Spark in a specific way to save time & money

7

Spark Yoga Asanas

● Using Spark in a specific way to save time & money
○ Tuning / Using a specific Spark Configuration parameter

8

Spark Yoga Asanas

● Using Spark in a specific way to save time & money
○ Tuning / Using a specific Spark Configuration parameter
○ Choosing the kind of data lake it interacts with

9

Spark Yoga Asanas

● Using Spark in a specific way to save time & money
○ Tuning / Using a specific Spark Configuration parameter
○ Choosing the kind of data lake it interacts with
○ Running the spark job in a specific way

10

Spark Yoga Asanas

● Using Spark in a specific way to save time & money
○ Tuning / Using a specific Spark Configuration parameter
○ Choosing the kind of data lake it interacts with
○ Running the spark job in a specific way
○ Choosing the kind of framework it runs in

11

Spark Yoga Asanas

● Using Spark in a specific way to save time & money
○ Tuning / Using a specific Spark Configuration parameter
○ Choosing the kind of data lake it interacts with
○ Running the spark job in a specific way
○ Choosing the kind of framework it runs in
○ Balancing Time With Co$t

12

Tuning / Using a specific Spark Configuration parameter (Asana 1)

13

Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

14

Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

1. Spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version = 2 (saves time)

15

Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

1. Spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version = 2 (saves time)
a. Or experiment with s3a committers

16

Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

1. Spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version = 2 (saves time)
a. Or experiment with s3a committers

2. spark.serializer=org.apache.spark.serializer.KryoSerializer (better serialization)

17

Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

1. Spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version = 2 (saves time)
a. Or experiment with s3a committers

2. spark.serializer=org.apache.spark.serializer.KryoSerializer (better serialization)

3. spark.sql.autoBroadcastJoinThreshold=256MB (helps with the join)

18

Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

1. Spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version = 2 (saves time)
a. Or experiment with s3a committers

2. spark.serializer=org.apache.spark.serializer.KryoSerializer (better serialization)

3. spark.sql.autoBroadcastJoinThreshold=256MB (helps with the join)

4. spark.hadoop.fs.s3a.connection.ssl.enabled=false (saves time)

19

Tuning / Using a specific Spark Configuration parameter (Asana 1)

Some of my frequently used configs are

1. Spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version = 2 (saves time)
a. Or experiment with s3a committers

2. spark.serializer=org.apache.spark.serializer.KryoSerializer (better serialization)

3. spark.sql.autoBroadcastJoinThreshold=256MB (helps with the join)

4. spark.hadoop.fs.s3a.connection.ssl.enabled=false (saves time)

5. If executor < 32G, Use -XX:+UseCompressedOops (pointer size reduction)

20

Choosing the kind of data lake it interacts with (Asana 2)

21

Choosing the kind of data lake it interacts with (Asana 2)

1. S3* or any other cloud object storage

22

1. S3* or any other cloud object storage
2. HDFS (On Premise / Cloud)

Choosing the kind of data lake it interacts with (Asana 2)

23

Choosing the kind of data lake it interacts with (Asana 2)

1. S3* or any other cloud object storage
2. HDFS (On Premise / Cloud)

The above are the more notable choices. Are they the only choices ?

24

Choosing the kind of data lake it interacts with (Asana 2)

1. S3* or any other cloud object storage
2. HDFS (On Premise / Cloud)

Evaluation Criteria:

25

Choosing the kind of data lake it interacts with (Asana 2)

1. S3* or any other cloud object storage
2. HDFS (On Premise / Cloud)

Evaluation Criteria:

1. Data access Time
2. Maintenance

26

Choosing the kind of data lake it interacts with (Asana 2)

S3/Cloud Storage HDFS (onprem / cloud)

Infra Maintenance no yes

Access times Over network - https? Local access to node

Compute No, Need extra nodes Yes with hadoop

27

Choosing the kind of data lake it interacts with (Asana 2)

How about Local File System ?

S3/Cloud Storage HDFS
(onprem / cloud)

Local File System + S3

Infra
Maintenance

no yes Yes. local storage might be
limited, extend via EBS ?

Access times Over network
- https?

Local access
to node

Local access
to node

Compute No, Need extra
nodes

 Yes with hadoop Yes, you launch
workers on the box

28

Choosing the kind of data lake it interacts with (Asana 2)

Pro tip: ‘aws cp’ to local file system is faster than spark interacting with s3

S3/Cloud Storage HDFS
(onprem / cloud)

Local File System + S3

Infra
Maintenance

no yes Yes. local storage might be
limited, extend via EBS ?

Access times Over network
- https?

Local access
to node

Local access
to node

Compute No, Need extra
nodes

 Yes with hadoop Yes, you launch
workers on the box

29

Example of Orchestration

Note: while using local file system(file://), you need to download the entire dataset to each host

30

Choosing the kind of data lake it interacts with (Asana 2)

Sometimes usage of Local File System along with S3,

 o- Can lead to less running times as its a local data access pattern

 o- Yes, we launch & maintain our own cluster, which might not be a burden as long as cost is low.

S3/Cloud Storage HDFS Local File System + S3

Infra Maintenance no yes Yes. local storage might be
limited, extend via EBS ?

Access times Over network -
https?

Local access
to node

Local access
to node

Compute No, Need extra
nodes

 Yes with
hadoop

Yes, you launch
workers on the box

31

Running the spark job in a specific way (Asana 3)

32

Running the spark job in a specific way (Asana 3a)

We always tend to go the spark-client mode / run in a cluster .

33

Running the spark job in a specific way (Asana 3a)

We always tend to go the spark-client mode / run in a cluster.

How about the Spark - Local mode ?

Spark.master = local[*]

34

Running the spark job in a specific way (Asana 3a)

We always tend to go the spark-client mode / run in a cluster.

How about the Spark - Local mode ?

Spark.master = local[*]

● Valid way of running jobs. One might think it’s for only running tests.

35

Running the spark job in a specific way (Asana 3a)

We always tend to go the spark-client mode / run in a cluster.

How about the Spark - Local mode ?

Spark.master = local[*]

● Valid way of running jobs. One might think it’s for only running tests.
● I say why not ? You get benefit of spark DSL while solving your problem.

36

Running the spark job in a specific way (Asana 3a)

We always tend to go the spark-client mode / run in a cluster.

How about the Spark - Local mode ?

Spark.master = local[*]

● Valid way of running jobs. One might think it’s for only running tests.
● I say why not ? You get benefit of spark DSL while solving your problem.
● You can always scale horizontally by going to a cluster

○ Cluster is not always needed !

37

Running the spark job in a specific way (Asana 3a)

We always tend to go the spark-client mode / run in a cluster.

How about the Spark - Local mode ?

Spark.master = local[*]

● Valid way of running jobs. One might think it’s for only running tests.
● I say why not ? You get benefit of spark DSL while solving your problem.
● You can always scale horizontally by going to a cluster

○ Cluster is not always needed !

● Also you have the option of running in a kubernetes pod !

38

Running the spark job in a specific way (Asana 3b)

Data preparation

39

Running the spark job in a specific way (Asana 3b)

Data preparation

Repartition the data for better parallelization of work.

Ex: we wish to increase our write throughput to the db

40

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data

41

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data
Goliath vs Mini Goliath’s

42

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data

● Divide & Conquer principle
Goliath vs Mini Goliath’s

43

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data

● Divide & Conquer principle
○ Say 100 shards/buckets/folders

Goliath vs Mini Goliath’s

44

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data

● Divide & Conquer principle
○ Say 100 shards/buckets/folders
○ 100 spark jobs on 100 smaller datasets

Goliath vs Mini Goliath’s

45

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data

● Divide & Conquer principle
○ Say 100 shards/buckets/folders
○ 100 spark jobs on 100 smaller datasets

● Resource allocation now based on shard
size , not large dataset => smaller
boxes/cluster

Goliath vs Mini Goliath’s

46

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data

● Divide & Conquer principle
○ Say 100 shards/buckets/folders
○ 100 spark jobs on 100 smaller datasets

● Resource allocation now based on shard
size , not large dataset => smaller
boxes/cluster

● Isolated failures & ReRun - rerun jobs only
for failed buckets

Goliath vs Mini Goliath’s

47

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding Data

● Divide & Conquer principle
○ Say 100 shards/buckets/folders
○ 100 spark jobs on 100 smaller datasets

● Resource allocation now based on shard
size , not large dataset => smaller
boxes/cluster

● Isolated failures & ReRun - rerun jobs only
for failed buckets

● Debugging failures / Improving
performance focussed wrt small bucket

Goliath vs Mini Goliath’s

48

Running the spark job in a specific way (Asana 3c)

Data preparation - Sharding data

Does it help always ?

● No, Say you shard using user-id/order-id & a spark job needs to cut across all
the shards (group by country rather than group by user - id)

● We might have to aggregate/merge the results obtained in each job to get the
final result. This might be complex.

49

The Setup

S3 Bucket for Raw data with 100
parts/shards/folders

50

The Setup

● Dynamically create ‘n’ Airflow dags.
● Run ‘n’ Airflow Dags for ‘n’ shards/folders

Sample source code taken from
https://www.astronomer.io/guides/dynamically-generating-dags

51

https://www.astronomer.io/guides/dynamically-generating-dags

Running the spark job in a specific way (Asana 3d)

Reusable datasets

● Are there multiple actions on same dataset in the lineage ?

52

Running the spark job in a specific way (Asana 3d)

Reusable datasets

● Are there multiple actions on same dataset in the lineage ?

Dataset1 = spark.load(...)

Dataset2 = complex_transform_(Dataset1); // takes lot of time.

Dataset2.count() //action 1

Dataset2.save() // action 2

53

Running the spark job in a specific way (Asana 3d)

Reusable datasets

● Are there multiple actions on same dataset in the lineage ?

Dataset1 = spark.load(...)

Dataset2 = complex_transform_(Dataset1); // takes lot of time.

Dataset2.persist(DISK_ONLY); // try with memory if you have it

Dataset2.count() //action 1

Dataset2.save() // action 2

54

Choosing the framework it runs in (Asana 4)

55

Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people

56

Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people.
● How about Standalone Cluster ?

57

Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people.
● How about Standalone Cluster ?

○ Yes you maintain the cluster
○ But sometimes you can be smart with it

58

Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people.
● How about Standalone Cluster ?

○ Yes you maintain the cluster
○ But sometimes you can be smart with it

■ I/O intensive jobs - ex: writing to cassandra

59

Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people.
● How about Standalone Cluster ?

○ Yes you maintain the cluster
○ But sometimes you can be smart with it

■ I/O intensive jobs - ex: writing to cassandra
● => Less CPU used
● => Not all cores used to full potential

60

Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people.
● How about Standalone Cluster ?

○ Yes you maintain the cluster
○ But sometimes you can be smart with it

■ I/O intensive jobs - ex: writing to cassandra
● => Less CPU used
● => Not all cores used to full potential
● Can we increase Threads -> YES !

61

Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people.
● How about Standalone Cluster ?

○ Yes you maintain the cluster
○ But sometimes you can be smart with it

■ I/O intensive jobs - ex: writing to cassandra
● => Less CPU used
● => Not all cores used to full potential
● Can we increase Threads -> YES !
● Box has N cores -> you configure SPARK_WORKER_CORES to M cores (M > N)

62

Choosing the framework it runs in (Asana 4)

● EMR/Yarn - choice for most people.
● How about Standalone Cluster ?

○ Yes you maintain the cluster
○ But sometimes you can be smart with it

■ I/O intensive jobs - ex: writing to cassandra
● => Less CPU used
● => Not all cores used to full potential
● Can we increase Threads -> YES !
● Box has N cores -> you configure SPARK_WORKER_CORES to M cores (M > N)
● This is called Core-Oversubscribing

○ EMR might not give this option*. Only increase number of boxes => more$

63

Oversubscribing

64

Choosing the framework it runs in (Asana 4)

Spark on Kubernetes

65

Choosing the framework it runs in (Asana 4)

Spark on Kubernetes

+

Using Spot instances

66

Choosing the framework it runs in (Asana 4)

Spark on Kubernetes

+

Using Spot instances

 =

Cheaper way to run workloads

67

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter with an SLA (time) in mind.

68

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter with an acceptable SLA (time) in mind.

69

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

70

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?

71

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?
○ Storage Cost during computation

72

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?
○ Storage Cost during computation

● Sometimes we can decrease $ with acceptable increase in SLA (time)
○ Ex: Say running time

73

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?
○ Storage Cost during computation

● Sometimes we can decrease $ with acceptable increase in SLA (time)
○ Ex: Say running time

■ on Two c5.4x.large is 8 hours => X$ for 8 hour run time

74

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?
○ Storage Cost during computation

● Sometimes we can decrease $ with acceptable increase in SLA (time)
○ Ex: Say running time

■ on Two c5.4x.large is 8 hours => X$ for 8 hour run time
■ Theoretically on Two t3.2x.large is ~16 hours => Y$ for 16 hour run time (Y<X)

75

Balancing Time vs Co$t (Asana 5)

● At the end of day $ does matter but with acceptable SLA (time) in mind.
● Cost

○ Compute cluster cost i.e. how long boxes are used ?
○ Storage Cost during computation

● Sometimes we can decrease $ with acceptable increase in SLA (time)
○ Ex: Say running time

■ on Two c5.4x.large is 8 hours => X$ for 8 hour run time
■ Theoretically on Two t3.2x.large is ~16 hours => Y$ for 16 hour run time (Y<X)
■ If you are ok with the SLA of 16 hours, why not go for it ?

76

Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

77

Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

Dataset records = spark.session.orc.load(“s3a://...”).select(few columns); // 15gb in s3 folder

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Running Time: 12.5 min

78

Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

(spark.hadoop.fs.s3a.connection.ssl.enabled=false)

Dataset records = spark.session.orc.load(“s3a://...”).select(few columns); // 15gb in s3 folder

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Running Time: 11.4min

79

Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

(spark.hadoop.fs.s3a.connection.ssl.enabled=false)

Dataset records = spark.session.orc.load(“s3a://...”).select(few columns); // 15gb in s3 folder

records.persist(DISK_ONLY); // if you have lot of free ram, try with memory

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Running Time: 8.54 min

80

Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

(aws s3 cp data to local disk & read from there- took 2min)

Dataset records = spark.session.orc.load(“file://...”).select(few columns); // 15gb in s3 folder

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Running Time: 5.9min (including 2min for downloading data)

81

Exercise - Box: t3.large, Xmx: 512m , Spark Local[4] v3.1.2

(aws s3 cp data to local disk & read from there)

Dataset records = spark.session.orc.load(“file://...”).select(few columns); // 15gb in s3 folder

records.persist(DISK_ONLY); // if you have lot of free ram, try with memory

Dataset lowercase = records.map(.....transform to lowercase….);

lowercase.count(); //some action

Dataset Uppercase = records.map(.....transform to uppercase...);

Uppercase.count(); //some action

Total Running Time: 6.8min (includes downloading data to disk. The best was 5.9min)

82

Exercise (Results)

*Aws s3 cp took 2 minutes

Scenario Minutes

Program as it is (from s3) 12.5

Program as it is (from s3) + ssl disable 11.4

Persisting disk (from s3) 8.6

Persist disk (from s3) + ssl disable 8.5

Aws cp to local 5.9
Aws cp to local + Persist (disk) 6.8

Aws cp to local + Persist (mem_ser)
xms=6g 6.9

Aws cp to local + Persist (mem)
xms=6g 6.7

83

Note: Please do run your own tests !

84

Explore your own code.

Finally, It’s about the Balance

85

So try out these
Asanas

for a cost-effective
Spark Life

86

Thank you

linkedin.com/in/213vishnu

twitter.com/sweetweet213

https://mash213.wordpress.com/

87

https://sg.linkedin.com/in/213vishnu
https://twitter.com/sweetweet213
https://mash213.wordpress.com/

