pours and

With IT since 2007

With Java since 2009 m
With Hadoop since 2012

. With Spark since 2014

With EPAM since 2015

Contacts

E-mail : Alexey_Zinovyev@epam.com

Twitter : @zaleslaw @BigDataRussia

Facebook: https://www.facebook.com/zaleslaw
vk.com/big_data_russia Big Data Russia

vk.com/java_jvm Java & JVM langs

<epam> |

MLIib

Spark (machine
Family learning)

Apache Spark

<Epam> ‘ Spark Streaming from Zinoviev Alexey

Spark
Family

Apache Spark

<Epam> ‘ Spark Streaming from Zinoviev Alexey 2

Pre-summary

* Before RealTime

® Spark + Cassandra

® Sending messages with Kafka

® DStream Kafka Consumer

® Structured Streaming in Spark 2.1

* Kafka Writer in Spark 2.2

<epam> |

<epdm>
< REAL-TIME

<epam> |

Batch jobs produce reports. More and more..

g

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

But customer can wait forever (ok, 1h)

e

<B|]am> ‘ Spark Streaming from Zinoviev Alexey

<8

DATA
S

e

Y5

|1 brochure

t

in promo

<B|]am> ‘ Spark Streaming from Zinoviev Alexey

Data Lake

13

Data Lake in production

14

<B|]am> ‘ Spark Streaming from Zinoviev Alexe

Simple Flow in Reporting/Bl systems

<epam> |

Let’s use Spark. It’s fast!

<B|]am> ‘ Spark Streaming from Zinoviev Alexey

MapReduce vs Spark

file system file system file system file system
read write read write

Input
file system result 1
read ’
result 2
result 3

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

MapReduce vs Spark

file system file system file system file system
read write read write
B —ca—| —wa—| — -
Input
file system result 1
read
one-time
result 2 processing
result 3

(Bpam) ‘ Spark Streaming from Zinoviev Alexey

Simple Flow in Reporting/Bl systems with Spark

X

™

g > SEETKC =

<epam> ‘ Spark Streaming from Zinoviev Alexe

Spark handles last year logs with ease

(Epam> ‘ Spark Streaming from Zinoviev Alexey 20

<Euam> ‘ Spark Streaming from Zinoviev Alexey 21

Let’s use Cassandra to store events!

MEMORY

L L) L] Leadand - i

DISK

COMMIT LOG SSTABLE

<B|]am> ‘ Spark Streaming from Zinoviev Alexey

Let’s use Cassandra to read events!

BLOOM FILTER

READ

REQUEST >
COMPRESSION

OFFSETS

PARTITION
SUMMARY
< PARTITION
KEY CACHE
MEMORY
DISK e
OX...
RETURN oX...
RESULT 10701401 108108011 181007 ox...
SET OX...
PARTITION
DATA INDEX

<B|]am> ‘ Spark Streaming from Zinoviev Alexey

CREATE KEYSPACE mySpace WITH replication = {'class’:

'SimpleStrategy’', 'replication_factor': 1 };

USE test;
cassandra CREATE TABLE logs
(application TEXT,
time TIMESTAMP,
message TEXT,
PRIMARY KEY (application, time));

<Bpam> ‘ Spark Streaming from Zinoviev Alexey 24

val dataSet = sglContext
.read

.format("org.apache.spark.sql.cassandra")

.options(Map("table" -> "logs", "keyspace" -> "mySpace"

Cassandra |))
to Spark -1oad()

dataSet
.filter("message = 'Log message'")

.show()

<Bpam> ‘ Spark Streaming from Zinoviev Alexey 25

Simple Flow in Pre-Real-Time systems

G ,\,
Cassandra APACHE ' 4%
' Sp Qr K Cassandra

. mongoDB

‘@F%al_gsdmap

<epam> |

Spark cluster over Cassandra Cluster

D,
e

S S

P e

I

27

St s

S

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

More events every second!

<B|]am> ‘ Spark Streaming from Zinoviev Alexey 28

<epdm>
SENDING MESSAGES

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Your Father’s Messaging System

Sends Msg |
Consumes -
Client 1 Client 2
| | Mnmwge

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Your Father’s Messaging System

-+ SubslcnhEs e
Delivers

Msg

<+ Subslcnbes s
Delivers

Sends Msg | Publishes
Consumes - . |
Client 1 Client 2 Client 1 M
[] Mnmwge [=

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Your Father’s Messaging System

-+ Subslcnhea Client 2
Delivers

Msg

<+ Subspnbes s
Delivers

Sends Msg | Publishes
Consumes - . |
Client 1 Client 2 Client 1 M
[] Mnmwge [=

InitialContext ctx = new InitialContext();
QueueConnectionFactory f =

(QueueConnectionFactory)ctx.lookup(“gqCFactory”); QueueConnection con =

f.createQueueConnection();

con.start();

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

<epdm>
KAFKA

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Kafka

® messaging system

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Kafka

® messaging system

® distributed

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Kafka

® messaging system
* distributed

® supports Publish-Subscribe model

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Kafka

® messaging system
* distributed
® supports Publish-Subscribe model

® persists messages on disk

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Kafka

® messaging system

® distributed

® supports Publish-Subscribe model
® persists messages on disk

® replicates within the cluster (integrated with Zookeeper)

<epam> |

The main benefits of Kafka

Scalability with zero down time

Zero data loss due to replication

<epam> |

Kafka Cluster consists of ...

® brokers (leader or follower)
® topics (>= 1 partition)

® partitions

® partition offsets

®° replicas of partition

* producers/consumers

<epam> |

Kafka Components with topic “messages” #1

Producer
Thread #1

Producer
Thread #2

Topic: Messages

Producer
Thread #3

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Kafka Components with topic “messages” #2

Producer
Thread #1

Part #1

: Broker #1
Producer Topic: Messages

Thread #2

Part #2

Leader
Producer
Thread #3

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Kafka Components with topic “messages” #3

Producer
Thread #1

Producer
Thread #2

Producer
Thread #3

(Bpam) ‘ Spark Streaming from Zinoviev Alexe

Part #1
Part #1
Part #2 I

Topic: Messages \

pate “ Part #1 II
g Sy

S
-

Part #2

Broker #1

Broker #2

<Euam> ‘ Spark Streaming from Zinoviev Alexey 44

Kafka
Demo

<Euam> ‘ Spark Streaming from Zinoviev Alexey

45

<epdm>

REAL TIME WITH
DSTREAMS

<epam> |

RDD Factory®©

lines lines from lines from lines from lines from
DStream timeOto 1 time 1to 2 time 2 to 3 time 3to 4
flatMap
operation
words words from words from words from words from
DStream timeOto 1 time 1to 2 time 2 to 3 time 3to 4

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

From socket to console with DStreams

" - spaike

™

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

val conf = new SparkConf().setMaster("local[2]")

.setAppName ("NetworkWordCount")

DStream

<Bpam> ‘ Spark Streaming from Zinoviev Alexey 49

val conf = new SparkConf().setMaster("local[2]")
.setAppName ("NetworkWordCount™)

val ssc = new StreamingContext(conf, Seconds(1))

DStream

ssc.start()

ssc.awaitTermination()

<Bpam> ‘ Spark Streaming from Zinoviev Alexey 50

val conf = new SparkConf().setMaster("local[2]")
.setAppName("NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

DStream

ssc.start()

ssc.awaitTermination()

<Bpam> ‘ Spark Streaming from Zinoviev Alexey 51

DStream

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

val conf = new SparkConf().setMaster("local[2]")
.setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

.start()

.awaitTermination()

52

DStream

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

val conf = new SparkConf().setMaster("local[2]")
.setAppName("NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey(+)

wordCounts.print()

ssc.start()

ssc.awaitTermination()

53

Kafka as a main entry point for Spark

™

% kafka mmEp SpQ "’(\Z —>

<epam> |

DStreams
Demo

<Euam> ‘ Spark Streaming from Zinoviev Alexey

55

<Euam> ‘ Spark Streaming from Zinoviev Alexey 56

<epdm>
SPARK 2.2 DISCUSSION

Continuous Applications

Pure Streaming System

Input Streaming QOutput

Stream Computation Sink
(transactions
often up to user)

(interactions with other systems
left to the user)

Continuous Application
Ad-hoc
Queries

Output
Sink

(transactions

ﬂ handled by engine)
@ 7
Job

Static Data

Continuous
Application

Input
Stream

(Bpam) ‘ Spark Streaming from Zinoviev Alexey

Continuous Applications cases

® Updating data that will be served in real time
® Extract, transform and load (ETL)
® Creating a real-time version of an existing batch job

® Online machine learning

<epam> |

The main concept of Structured Streaming

You can express your streaming computation the
same way you would express a batch computation

on static data.

<epam> |

logsDF = spark.read.json("s3://logs")
Batch

Spark 2.2

logsDF.select("user"”, "url", "date")

.write.parquet("s3://out")

(Bpam) ‘ Spark Streaming from Zinoviev Alexey 61

<BI]BITI> ‘ Spark Streaming from Zinoviev Alexey

// Read JSON continuously from S3

logsDF = spark.readStream.json("s3://logs")

// Transform with DataFrame API and save

logsDF.select("user", "url", "date")
.writeStream.parquet("s3://out")
.start()

62

val lines = spark.readStream
.format("socket")

.option("host", "localhost")

.option("port"™, 9999)

.load()

<3|]am> ‘ Spark Streaming from Zinoviev Alexey 63

val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port"™, 9999)
.load()

val words = lines.as[String].flatMap(_ .split(" "))

<3|]am> ‘ Spark Streaming from Zinoviev Alexey 64

val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port"™, 9999)
.load()

val words = lines.as[String].flatMap(_ .split(" "))

val wordCounts = words.groupBy("value").count()

<e|]am> ‘ Spark Streaming from Zinoviev Alexey 65

val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port"™, 9999)
.load()

Don’t forget

val words to start ing].flatMap(_.split(" "))
Streaming

val wordCounts = words.groupBy("value").count()

<e|]am> ‘ Spark Streaming from Zinoviev Alexey 66

Unlimited Table

Data stream Unbounded Table
\ \\ new data in stream
\ new rows appended
N T to inputtable

Data stream as an unbounded Input Table

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

WordCount with Structured Streaming [Complete Mode]

nc
catdog e dog
dog dog owied owl
. 1 2 3
Time >
Input catdog | data up catdog | clata up cardog | data up
Uﬂboumded dogdog | to t=1 dogdog tot=2 dogdog to t=3
table of all input owleat O‘Z(‘)‘;at

owl

word count query

(S

Result cat | 1| resultup cat result up 12| resultup
dog tot=1 dog | 3| to t=2 dog tot=3
Table of

owl
word counts

Output a a a

Complete Mode print all the counts to console

w
S

—
[N}

owl

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Kafka -> Structured Streaming -> Console

o Sﬁ’b”rk .
§8 katka UNLIMITED -

<epam> |

Kafka To
Console
Demo

<Euam> ‘ Spark Streaming from Zinoviev Alexey

70

<epdm>
OPERATIONS

<epam> |

You can ...

* filter

® sort

° aggregate
® join

® foreach

® explain

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Operators
Demo

<Euam> ‘ Spark Streaming from Zinoviev Alexey

73

<Euam> ‘ Spark Streaming from Zinoviev Alexey 74

Deep Diving in Spark Internals

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Deep Diving in Spark Internals

[] Logical Plan

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Deep Diving in Spark Internals

: Optimized
[] L A Logical Plan

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Deep Diving in Spark Internals

: Optimized
[] L A Logical Plan .
Physical

Plan

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Deep Diving in Spark Internals

: Optimized
[] L A Logical Plan .
Physical

Plan

Planner

Selected
Physical Plan

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Deep Diving in Spark Internals

= -

. “

: Optimized
L A Logical Plan .
Physical

Plan

\.

Selected
Physical Plan

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Deep Diving in Spark Internals

f
: Optimized
B Logical Plan W Logical Plan | :
Physical
\ Plan
Incremental
#1
Incremental 2! |
#2 f '

Selected
Physical Plan

Incremental
#3

Incremental Execution: Planner polls

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Incremental Execution: Planner runs

%y Parquet

(Bpam) ‘ Spark Streaming from Zinoviev Alexe

Incremental Execution: Planner runs #2

§

%7 Parquet

(Bpam) ‘ Spark Streaming from Zinoviev Alexe

Aggregation with State

§

Incremental
#1
Incre?zental

%y Parquet

DataSet.explain()

== Physical Plan ==
Project [avg(price)#43,carat#45]
+- SortMergeJoin [color#21], [color#47]
:- Sort [color#21 ASC], false, ©
+- TungstenExchange hashpartitioning(color#21,200), None
+- Project [avg(price)#43,color#21]
. +- TungstenAggregate(key=[cut#20,color#21], functions=[(avg(cast(price#25 as
b1g1nt)),mode Final,isDistinct=false)], output=[color#21,avg(price)#43])
+- TungstenExchange hashpartitioning(cut#20,color#21,200), None
+- TungstenAggregate(key=[cut#20,color#21],
functlons [(avg(cast(price#25 as bigint)),mode=Partial,isDistinct=false)],
output [cut#20,color#21, sum#58,count#59L])
+- Scan CsvRelation(
+- Sort [color#47 ASC], false, ©
+- TungstenExchange hashpartitioning(color#47,200), None
+- ConvertToUnsafe
+- Scan CsvRelation(----)

<Bpam> ‘ Spark Streaming from Zinoviev Alexey 86

<Euam> ‘ Spark Streaming from Zinoviev Alexey 87

<epdm>

COMPLETE, APPEND &
UPDATE

There are two main modes and one in future

® append (default)

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

There are two main modes and one in future

® append (default)

®* complete

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

There are two main modes and one in future

® append (default)
®* complete

® update [in dreams]

<epam> |

Aggregation with watermarks

late data that was generated
at 12:04 but arrived at 12:11

In t Stream 12:02 | catdog e - 12:04 dog
g owl ca
pu 12:03 | dogdog 12:13 owl
. 12:00 12; 12:10 12:15
Time —_ »

12:00-12:10 | cat | 1 12:00-12:10 | cat | 2 12:00-12:10 | cat | 2
12:00-12:10 | dog | 3 12:00-12:10 [dog | 3 12:00 - 12:10 | dog | 4
Resu [t Ta b[es 12:00-12:10 | owl | 1 12:00-12:10 |owl | 1
after5 minutetriggers 12:05-12:15 | cat | 1 12:05-12:15 | cat | 1
12:05-12:15 | owl | 1 12:05-12:15 [owl | 2
12:10-12:20 [owl | 1

Late data handlingin
Windowed Grouped Aggregation

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

counts incremented only for
window 12:00 - 12:10

<epdm>
SOURCES & SINKS

<epam> |

Spark Streaming is a brick in the Big Data Wall

MLIib
Aakka machine leamning

Cﬁ ‘ streaming data train models use trained
sources o
I~ with live data model
§€kcfka ~
=

Spark Streaming [> e

BRSE i Q Y, % Parquet §€ kafka

elasticsearch.

data storage
systems

A\

cassandra
MysQaL: d process with interactively
. mongoDB staticdata DataFrames query with SQL
@ sources
elasticsearch. PostgreSOL

 Parquet Spark SQL

SQL + DataFrames

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

Let's save to Parquet files

™

% kafka) SﬁAE’E ",(\Z mm) % Parquet

<epam> |

Let's save to Parquet files

%y Parquet

%y Parquet ‘SﬁAa‘K% -% PEII’CIUEt

%7 Parquet

(Bpam) ‘ Spark Streaming from Zinoviev Alexe

Let's save to Parquet files

™

&3 kafka) Spa "23 =)

<epam> |

File to
Memory

<Euam> ‘ Spark Streaming from Zinoviev Alexey

98

<Euam> ‘ Spark Streaming from Zinoviev Alexey 99

Nightly Build

<B|]am> ‘ Spark Streaming from Zinoviev Alexey 100

Kafka-to-Kafka

% kafka mmE) SﬁAaEFAZ) §8 kafka

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

J-K-S-K-S-C

Pipeline
Demo

<Euam> ‘ Spark Streaming from Zinoviev Alexey 103

<Euam> ‘ Spark Streaming from Zinoviev Alexey 104

import org.apache.spark.sql.ForeachWriter

val customWriter = new ForeachWriter[String] {
override def open(partitionId: Long, version: Long) = true

override def process(value: String) = println(value)

override def close(errorOrNull: Throwable) = {}

stream.writeStream
.queryName (“ForeachOnConsole")
.foreach(customhriter)

.start

<3|]am> ‘ Spark Streaming from Zinoviev Alexey 105

Pinch of wisdom

* check checkpointLocation

® don’t use MemoryStream

® think about GC pauses

® be careful about nighty builds

® use .groupBy.count() instead count()

® use console sink instead .show() function

<epam> |

We have no ability...

® join two streams

* work with update mode
* make full outer join

° take first N rows

® sort without pre-aggregation

<epam> |

Roadmap 2.2

® Support other data sources (not only S3 + HDFS)
® Transactional updates

* Dataset is one DSL for all operations

® GraphFrames + Structured MLLib

* KafkaWriter

® TensorFrames

<epam> |

<epdm>
IN CONCLUSION

<epam> |

Final point

Scalable Fault-Tolerant Real-Time Pipeline with
Spark & Kafka

is ready for usage

<epam> |

A few papers about Spark Streaming and Kafka

Introduction in Spark + Kafka

<Epam> ‘ Spark Streaming from Zinoviev Alexey

https://zaleslaw.gitbooks.io/data-processing-book/content/intro-kak-bystro-nachat-rabotu-s-kafka.html

Contacts

E-mail : Alexey_Zinovyev@epam.com

Twitter : @zaleslaw @BigDataRussia

Facebook: https://www.facebook.com/zaleslaw
vk.com/big_data_russia Big Data Russia

vk.com/java_jvm Java & JVM langs

<epam> |

