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MLIib

Spark (machine
Family learning)

Apache Spark
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Spark
Family

Apache Spark
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Pre-summary

* Before RealTime

® Spark + Cassandra

® Sending messages with Kafka

® DStream Kafka Consumer

® Structured Streaming in Spark 2.1

* Kafka Writer in Spark 2.2
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Batch jobs produce reports. More and more..

g
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But customer can wait forever (ok, 1h)

e
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Data Lake
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Data Lake in production

14
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Simple Flow in Reporting/Bl systems
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Let’s use Spark. It’s fast!
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MapReduce vs Spark

file system file system file system file system
read write read write

Input
file system result 1
read ’
result 2
result 3
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MapReduce vs Spark

file system file system file system file system
read write read write
B —ca—| —wa—| — -
Input
file system result 1
read
one-time
result 2 processing
result 3
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Simple Flow in Reporting/Bl systems with Spark

X

™

g > SEETKC =
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Spark handles last year logs with ease
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Let’s use Cassandra to store events!

MEMORY

L L) L] Leadand - i

DISK

COMMIT LOG SSTABLE
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Let’s use Cassandra to read events!

BLOOM FILTER

READ

REQUEST >
COMPRESSION

OFFSETS

PARTITION
SUMMARY
< PARTITION
KEY CACHE
MEMORY
DISK e
OX...
RETURN oX...
RESULT 10701401 108108011 181007 ox...
SET OX...
PARTITION
DATA INDEX
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CREATE KEYSPACE mySpace WITH replication = {'class’:

'SimpleStrategy’', 'replication_factor': 1 };

USE test;
cassandra CREATE TABLE logs
( application TEXT,
time TIMESTAMP,
message TEXT,
PRIMARY KEY (application, time));
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val dataSet = sglContext
.read

.format("org.apache.spark.sql.cassandra")

.options(Map( "table" -> "logs", "keyspace" -> "mySpace"

Cassandra |))
to Spark -1oad()

dataSet
.filter("message = 'Log message'")

.show()
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Simple Flow in Pre-Real-Time systems

G ,\,
Cassandra APACHE ' 4%
' Sp Qr K Cassandra

. mongoDB

‘@F%al_gsdmap
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Spark cluster over Cassandra Cluster

D,
e

S S

P e

I
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St s

S
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More events every second!
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SENDING MESSAGES
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Your Father’s Messaging System

Sends Msg |
Consumes -
Client 1 Client 2
| | Mnmwge
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Your Father’s Messaging System

-+ SubslcnhEs e
Delivers

Msg

<+ Subslcnbes s
Delivers

Sends Msg | Publishes
Consumes - . |
Client 1 Client 2 Client 1 M
[ ] Mnmwge [ =
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Your Father’s Messaging System

-+ Subslcnhea Client 2
Delivers

Msg

<+ Subspnbes s
Delivers

Sends Msg | Publishes
Consumes - . |
Client 1 Client 2 Client 1 M
[ ] Mnmwge [ =

InitialContext ctx = new InitialContext();
QueueConnectionFactory f =

(QueueConnectionFactory)ctx.lookup(“gqCFactory”); QueueConnection con =

f.createQueueConnection();

con.start();
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KAFKA
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Kafka

® messaging system
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Kafka

® messaging system

® distributed
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Kafka

® messaging system
* distributed

® supports Publish-Subscribe model
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Kafka

® messaging system
* distributed
® supports Publish-Subscribe model

® persists messages on disk
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Kafka

® messaging system

® distributed

® supports Publish-Subscribe model
® persists messages on disk

® replicates within the cluster (integrated with Zookeeper)
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The main benefits of Kafka

Scalability with zero down time

Zero data loss due to replication
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Kafka Cluster consists of ...

® brokers (leader or follower)
® topics ( >= 1 partition)

® partitions

® partition offsets

®° replicas of partition

* producers/consumers
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Kafka Components with topic “messages” #1

Producer
Thread #1

Producer
Thread #2

Topic: Messages

Producer
Thread #3
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Kafka Components with topic “messages” #2

Producer
Thread #1

Part #1

: Broker #1
Producer Topic: Messages

Thread #2

Part #2

Leader
Producer
Thread #3
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Kafka Components with topic “messages” #3

Producer
Thread #1

Producer
Thread #2

Producer
Thread #3
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Part #1
Part #1
Part #2 I

Topic: Messages \

pate “ Part #1 II
g Sy

S
-

Part #2

Broker #1

Broker #2
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Kafka
Demo
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REAL TIME WITH
DSTREAMS
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RDD Factory®©

lines lines from lines from lines from lines from
DStream timeOto 1 time 1to 2 time 2 to 3 time 3to 4
flatMap
operation
words words from words from words from words from
DStream timeOto 1 time 1to 2 time 2 to 3 time 3to 4
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From socket to console with DStreams

" - spaike

™
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val conf = new SparkConf().setMaster("local[2]")

.setAppName ("NetworkWordCount")

DStream
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val conf = new SparkConf().setMaster("local[2]")
.setAppName ( "NetworkWordCount™)

val ssc = new StreamingContext(conf, Seconds(1))

DStream

ssc.start()

ssc.awaitTermination()
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val conf = new SparkConf().setMaster("local[2]")
.setAppName( "NetworkWordCount")
val ssc = new StreamingContext(conf, Seconds(1))

val lines = ssc.socketTextStream("localhost", 9999)

DStream

ssc.start()

ssc.awaitTermination()
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DStream

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

val conf = new SparkConf().setMaster("local[2]")
.setAppName( "NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)

val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

.start()

.awaitTermination()

52



DStream

<Bpam> ‘ Spark Streaming from Zinoviev Alexey

val conf = new SparkConf().setMaster("local[2]")
.setAppName( "NetworkWordCount")

val ssc = new StreamingContext(conf, Seconds(1))
val lines = ssc.socketTextStream("localhost", 9999)
val words = lines.flatMap(_.split(" "))

val pairs = words.map(word => (word, 1))

val wordCounts = pairs.reduceByKey( + )

wordCounts.print()

ssc.start()

ssc.awaitTermination()
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Kafka as a main entry point for Spark

™

% kafka mmEp SpQ "’(\Z —>
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DStreams
Demo
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<epdm>
SPARK 2.2 DISCUSSION




Continuous Applications

Pure Streaming System

Input Streaming QOutput

Stream Computation Sink
(transactions
often up to user)

(interactions with other systems
left to the user)

Continuous Application
Ad-hoc
Queries

Output
Sink

(transactions

ﬂ handled by engine)
@ 7
Job

Static Data

Continuous
Application

Input
Stream

(Bpam) ‘ Spark Streaming from Zinoviev Alexey



Continuous Applications cases

® Updating data that will be served in real time
® Extract, transform and load (ETL)
® Creating a real-time version of an existing batch job

® Online machine learning
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The main concept of Structured Streaming

You can express your streaming computation the
same way you would express a batch computation

on static data.
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logsDF = spark.read.json("s3://logs")
Batch

Spark 2.2

logsDF.select("user"”, "url", "date")

.write.parquet("s3://out")
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// Read JSON continuously from S3

logsDF = spark.readStream.json("s3://logs")

// Transform with DataFrame API and save

logsDF.select("user", "url", "date")
.writeStream.parquet("s3://out")
.start()

62



val lines = spark.readStream
.format("socket")

.option("host", "localhost")

.option("port"™, 9999)

.load()
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val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port"™, 9999)
.load()

val words = lines.as[String].flatMap(_ .split(" "))
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val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port"™, 9999)
.load()

val words = lines.as[String].flatMap(_ .split(" "))

val wordCounts = words.groupBy("value").count()
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val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port"™, 9999)
.load()

Don’t forget

val words to start ing].flatMap(_.split(" "))
Streaming

val wordCounts = words.groupBy("value").count()
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Unlimited Table

Data stream Unbounded Table
\ \\ new data in stream
\ new rows appended
N T to inputtable

Data stream as an unbounded Input Table
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WordCount with Structured Streaming [Complete Mode]

nc
catdog e dog
dog dog owied owl
. 1 2 3
Time >
Input catdog | data up catdog | clata up cardog | data up
Uﬂboumded dogdog | to t=1 dogdog tot=2 dogdog  to t=3
table of all input owleat O‘Z(‘)‘;at

owl

word count query

(S

Result cat | 1| resultup cat result up 12| resultup
dog tot=1 dog | 3| to t=2 dog tot=3
Table of

owl
word counts

Output a a a

Complete Mode print all the counts to console

w
S

—
[N}

owl
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Kafka -> Structured Streaming -> Console

o Sﬁ’b”rk .
§8 katka UNLIMITED -
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Kafka To
Console
Demo
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<epdm>
OPERATIONS
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You can ...

* filter

® sort

° aggregate
® join

® foreach

® explain
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Operators
Demo
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Deep Diving in Spark Internals
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Deep Diving in Spark Internals

[ ] Logical Plan
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Deep Diving in Spark Internals

: Optimized
[ ] L A Logical Plan
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Deep Diving in Spark Internals

: Optimized
[ ] L A Logical Plan .
Physical

Plan
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Deep Diving in Spark Internals

: Optimized
[ ] L A Logical Plan .
Physical

Plan

Planner

Selected
Physical Plan
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Deep Diving in Spark Internals

= -

. “

: Optimized
L A Logical Plan .
Physical

Plan

\.

Selected
Physical Plan
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Deep Diving in Spark Internals

f
: Optimized
B Logical Plan W Logical Plan | :
Physical
\ Plan
Incremental
#1
Incremental 2! |
#2 f '

Selected
Physical Plan

Incremental
#3



Incremental Execution: Planner polls
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Incremental Execution: Planner runs

%y Parquet
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Incremental Execution: Planner runs #2

§

%7 Parquet
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Aggregation with State

§

Incremental
#1
Incre?zental

%y Parquet




DataSet.explain()

== Physical Plan ==
Project [avg(price)#43,carat#45]
+- SortMergeJoin [color#21], [color#47]
:- Sort [color#21 ASC], false, ©
+- TungstenExchange hashpartitioning(color#21,200), None
+- Project [avg(price)#43,color#21]
. +- TungstenAggregate(key=[cut#20,color#21], functions=[(avg(cast(price#25 as
b1g1nt)),mode Final,isDistinct=false)], output=[color#21,avg(price)#43])
+- TungstenExchange hashpartitioning(cut#20,color#21,200), None
+- TungstenAggregate(key=[cut#20,color#21],
functlons [ (avg(cast(price#25 as bigint)),mode=Partial,isDistinct=false)],
output [cut#20,color#21, sum#58,count#59L])
+- Scan CsvRelation(
+- Sort [color#47 ASC], false, ©
+- TungstenExchange hashpartitioning(color#47,200), None
+- ConvertToUnsafe
+- Scan CsvRelation(----)
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<epdm>

COMPLETE, APPEND &
UPDATE




There are two main modes and one in future

® append (default)
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There are two main modes and one in future

® append (default)

®* complete
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There are two main modes and one in future

® append (default)
®* complete

® update [in dreams]
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Aggregation with watermarks

late data that was generated
at 12:04 but arrived at 12:11

In t Stream 12:02 | catdog e - 12:04  dog
g owl ca
pu 12:03 | dogdog 12:13 owl
. 12:00 12; 12:10 12:15
Time —_ »

12:00-12:10 | cat | 1 12:00-12:10 | cat | 2 12:00-12:10 | cat | 2
12:00-12:10 | dog | 3 12:00-12:10 [ dog | 3 12:00 - 12:10 | dog | 4
Resu [t Ta b[es 12:00-12:10 | owl | 1 12:00-12:10 |owl | 1
after5 minutetriggers 12:05-12:15 | cat | 1 12:05-12:15 | cat | 1
12:05-12:15 | owl | 1 12:05-12:15 [owl | 2
12:10-12:20 [owl | 1

Late data handlingin
Windowed Grouped Aggregation
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SOURCES & SINKS
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Spark Streaming is a brick in the Big Data Wall

MLIib
Aakka machine leamning

Cﬁ ‘ streaming data train models use trained
sources o
I~ with live data model
§€kcfka ~
=

Spark Streaming [ > e

BRSE i Q Y, % Parquet §€ kafka

elasticsearch.

data storage
systems

A\

cassandra
MysQaL: d process with interactively
. mongoDB staticdata DataFrames query with SQL
@ sources
elasticsearch. PostgreSOL

 Parquet Spark SQL

SQL + DataFrames
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Let's save to Parquet files

™

% kafka ) SﬁAE’E ",(\Z mm) % Parquet
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Let's save to Parquet files

%y Parquet

%y Parquet ‘SﬁAa‘K% -% PEII’CIUEt

%7 Parquet
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Let's save to Parquet files

™

&3 kafka ) Spa "23 =)
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File to
Memory
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Nightly Build
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Kafka-to-Kafka

% kafka mmE) SﬁAaEFAZ ) §8 kafka
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Pipeline
Demo
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import org.apache.spark.sql.ForeachWriter

val customWriter = new ForeachWriter[String] {
override def open(partitionId: Long, version: Long) = true

override def process(value: String) = println(value)

override def close(errorOrNull: Throwable) = {}

stream.writeStream
.queryName (“ForeachOnConsole")
.foreach(customhriter)

.start
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Pinch of wisdom

* check checkpointLocation

® don’t use MemoryStream

® think about GC pauses

® be careful about nighty builds

® use .groupBy.count() instead count()

® use console sink instead .show() function
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We have no ability...

® join two streams

* work with update mode
* make full outer join

° take first N rows

® sort without pre-aggregation
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Roadmap 2.2

® Support other data sources (not only S3 + HDFS)
® Transactional updates

* Dataset is one DSL for all operations

® GraphFrames + Structured MLLib

* KafkaWriter

® TensorFrames
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IN CONCLUSION
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Final point

Scalable Fault-Tolerant Real-Time Pipeline with
Spark & Kafka

is ready for usage
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A few papers about Spark Streaming and Kafka

Introduction in Spark + Kafka
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https://zaleslaw.gitbooks.io/data-processing-book/content/intro-kak-bystro-nachat-rabotu-s-kafka.html
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