
Multithreading in UI application

When some threads are more equal than others

Dmitry Ivanov, Hydra 2020

korifey_ad

UI/UX
REQUIREMENTS

Responsiveness

UI App

UI App

Three important limits

• 0.1 sec — feels like an instant reaction

• 1 sec — flow of thought stays uninterrupted

• 10 sec — keeping the attention focused on the task

[Robert Miller, Response time in man-computer conversational transactions, 1968]

Progress and cancellation

Non-modal interaction

Resource utilisation

UI Thread

Message queue
UI Thread

while (true) {

 //actions - ConcurrentQueue
 var action = actions.poll();

 if (action != null)
 action();

}

time

Message queue
UI Thread

action1

while (true) {

 //actions - ConcurrentQueue
 var action = actions.poll();

 if (action != null)
 action(); //action1

}

time

Message queue
UI Thread

action1

action2

while (true) {

 //actions - ConcurrentQueue
 var action = actions.poll();

 if (action != null)
 action(); //action2

}

time

Message queue
UI Thread

action1

action2

action3

…

while (true) {

 //actions - ConcurrentQueue
 var action = actions.poll();

 if (action != null)
 action(); //action3

}

time

Message queue
UI Thread

action1

action2

action3

…

while (true) {

 //actions - ConcurrentQueue
 var action = actions.poll();

 if (action != null)
 action();
 //else
}

time

Message queue
UI Thread

action1

action2

action3

…

while (!IsShutdown) {

 //actions - ConcurrentQueue
 var action = actions.poll();

 if (action != null)
 action();
 //else
}

time

Pump messages
UI Thread

action1

action2: Do1()

action2: Do2()

action3,
action4,

…

…

action2() {

 DoSomething1();

 Dispatcher.PumpMessages(); //Yield

 DoSomething2();
}

Reentrancy in progress
UI Thread

ShowProgress

DrawProgress()

DrawProgress()

pumped action1

…

ShowProgress() {
 while (!isCanceled && !finishedProcessing) {

 Dispatcher.PumpMessages();

 if (IsProgressChanged())
 DrawProgress();
 }
}

pumped action2

.NET Approach: COM
UI Thread (STA)

…

Another STA Thread

call method()

return result
exec method()

.NET Approach: Problem
UI Thread (STA)

…

Another STA Thread

mutual calls

.NET Approach: Solution
UI Thread (STA)

…

Another STA Thread

mutual calls

pumpingpumping
return results

exec method() exec method()

.NET Approach: Locks
 Locks + invoke messages can easily lead to deadlocks

UI Thread (STA) Another thread
acquire lock

try acquire lock call method()

.NET Approach: Locks
 Locks should pump messages !

Monitor.Enter()
WaitHandle.WaitOne()

SynchronizationContext.Wait()

PUMP

UI Thread (STA) Another thread
acquire lock

try acquire lock call method()

exec method()

release locklock acquired

return result

.NET: Single thread deadlock

UI Thread (STA) Some thread
acquire RL

pumping

release RL

try acquire WL

execute some action from MQ

try acquire RL

.NET: Single thread deadlock

ReSharper & Rider
experience

• Very hard to develop assuming that reentancy could be everywhere

• Special concepts like ReentrancyGuard are invented

• Hardest bugs are related to reentrancy + multithreading

• Several man-months are spent fixing these bugs

Long operations
UI Thread

myAction
>0.1 s

other actions

…

myAction() {

 for (item in itemsToProcess) {
 Process(item)
 itemsToProcess.Remove(i);

 }
}

Long operations

UI Thread

myAction

other actions

…

myAction() {
 var startTime = currentTime();

 for (item in itemsToProcess) {
 Process(item)
 itemsToProcess.Remove(i);

 if (currentTime() - startTime > 100ms) {
 Dispatcher.Dispatch(action2);
 return;
 }
 }
}

myAction

Asynchronous world

UI Thread

myAction: Do1

…

myAction() {

 DoSomething1();

 DoSomething2();

 DoSomething3();
}

myAction: Do2

myAction: Do3

other actions

Asynchronous world

UI Thread

myAction: Do1

other actions

…

myAction() {

 DoSomething1();

 Dispatcher.Dispatch(() => {
 DoSomething2();

 Dispatcher.Dispatch(() => {
 DoSomething3();
 });
 }
}

myAction: Do2

other actions

myAction: Do3

other actions

Asynchronous world
async myAction() {

 DoSomething1();

 await Thread.Yield();

 DoSomething2();

 await Thread.Yield();

 DoSomething3();

}

UI Thread

myAction: Do1

other actions

…

myAction: Do2

other actions

myAction: Do3

other actions

Asynchronous IO

UI Thread

other actions

…

async myAction() {

 before();

 byte[] b = await ReadFromFileAsync();
 // ReadFromFileAsync returns Future<byte[]>

 process(b);
}

process(b)
bytes from file are ready

before()

ReadFromFileAsync

THREADING MODELS

UI Application

VIEW VIEWMODEL MODELreactive

Single-threaded Multithreaded

Threading models
Message passing

STATE

Shared state

channels, actors,
STA threadsShared + Mutable = DANGER

Single thread
UI Thread

Shared state

await

Use only one CPU core!

set 1

set 2

 get != 2

012

Pessimistic locking

a1

a2

b1

Thread A Thread B

b2

lock

Readers-writer lock

a1

a2

b1

Thread A Thread B

b2

rwlock write

read

Readers-writer lock

a1
b1

Thread A Thread B

b2

rwlock

Thread C

c1
a2

Readers-writer lock

a1
b1

Thread A Thread B

b2

rwlock

Thread C

c1
a2

ContentModelReadWriteLock
UI Thread Background threads

start:
find completion

calculate
completion

finish:
show completion

UI Thread Background threads

write activity:
text change

start:
find completion

calculate
completion

finish:
show completion canceled

ContentModelReadWriteLock

start:
find completion

calculate
completion

finish:
show completion

InterruptableReadActivity
UI Thread Background threads

interrupts here

Should check CancellationToken

canceled

write activity:
text change

CheckAndThrow()

Problems with model

start

calc

UI Thread Background threads

interrupts here

1. UI smoothness
2. Lots of checks for interrupt
3. Lots of Assert(Read/Write)
4. Bad intermediate state

write activity:
text change

start:

finish canceled

Smoothness diagnostics

• Assert that interval between CheckAndThrow() <= 100 ms

• If acquiring WriteLock >= 100 ms, log stack of release ReadLock

• Watchdog that logs number of tasks and most frequent task of UI thread

Consistency diagnostics

• Lots of state Assert: UIThread, Read, Write

• Static analysers for threading, e.g. RacerD

Improvements
• Fine grained locking - very dangerous path. Use watchdog for lock order.

• Write-preference lock

• Priorities for UI thread tasks

• Write lock on non-UI thread

acquire read acquire read

acquire write -> block acquire write -> block

Upgradable RW-lock

acquire upgradable read acquire read

acquire write -> ok acquire write -> exception

acquire upgradable read

IntellijIDEA experience

• 20 years of development in RW lock paradigm

• Try to move write actions to non-UI thread via executeWriteAction()

• 6 month of work

• Not in production 😢

Other models

Immutable model
State

Activity A Activity B

State
Copy*

State A

State A

State
Copy*

State B

Immutable model
State

Activity A Activity B

State
Copy*

State A

State
Copy*

State B

State A

Immutable TextEditor
var s = `1Mb of text`

16 refs|counts

16 refs|counts 16 refs|counts 16 refs|counts…

256 bytes block = 16*8*2 = 128 chars

4 levels = 128*16*16*16 = 512K chars

16 refs|counts

128 chars 128 chars 128 chars

Immutable / Pesistent Tree
var s = `1Mb of text`

16 refs|counts

16 refs|counts 16 refs|counts 16 refs|counts

16 refs|counts

128 chars 128 chars 128 chars

16 refs|counts

128 chars

16 refs|counts

16 refs|counts

Software transactional memory
Transaction 1 Transaction 2

read A

write B

Memory’

read B

write C

Memory

PERSISTENT ACTORS

Actor:
Devices

Actor:
Money

Actor:
Users

send

ask

JetBrains Space experience

• One year of actor-based development

• Lots of distributed deadlocks

• No good tooling for diagnostics and prevention of deadlocks

• Actor approach is dropped in favour of SQL

TRANSACTIONAL DATABASE

Client1 Client2

DB

commit/rollback commit/rollback

Future: Fast non-volatile memory

EVENT SOURCING

Frontend
Language
Server

EVENT SOURCING

Frontend
Language
Server

EVENT SOURCING

Frontend
Language
Server

1 2

0 0

3 4

EVENT SOURCING

Frontend
Language
Server

1 2

1 0

3 4

EVENT SOURCING

Frontend
Language
Server

1 2

2 0

3 4

EVENT SOURCING

Frontend
Language
Server

1 2

2 1

3 4

EVENT SOURCING

Frontend
Language
Server

{

{

{

screen

EVENT SOURCING

Frontend
Language
Server

{

{{

{

{

{

screen

EVENT SOURCING

Frontend
Language
Server

{

{{

{ A }

{A

screen

EVENT SOURCING

Frontend
Language
Server

{

}

{

A}

}

{A

A

screen

EVENT SOURCING

Frontend
Language
Server

{

}

{

A}

}

A}

A{}A

screen

EVENT SOURCING

Frontend
Language
Server

{

A

{

A}

A

A}

A{}A

screen

EVENT SOURCING

Frontend
Language
Server

{

A

{

A}

A

}

A{}A

screen

AA

Questions and answers

YOU

YOU

YOU

ME

expert as
blocking queue

