
Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/1

Spring Framework 5.0
on JDK 8 & 9

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/

Juergen Hoeller
Spring Framework Lead

Pivotal

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/2

Spring Framework 5.0 (Overview)

■ 5.0 GA as of September 28th, 2017 – one week after JDK 9 GA!

■ Embracing JDK 9 as well as Kotlin and Project Reactor

■ Driven by functional API design and reactive architectures

■ Major baseline upgrade: Java SE 8+, Java EE 7+

● JDK 8, Servlet 3.1, Bean Validation 1.1, JPA 2.1, JMS 2.0

● support for JUnit 5 (next to JUnit 4.12)

■ Comprehensive integration with Java EE 8 API level

● Servlet 4.0, Bean Validation 2.0, JPA 2.2, JSON Binding API 1.0

● e.g. Tomcat 9.0, Hibernate Validator 6.0, Apache Johnzon 1.1

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/3

Many Community Contributions

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/4

JDK 8

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/5

Rich Java 8 Development Support in Spring Framework 4.3

■ Spring Framework 4.3 delivers a rich Java 8 experience for applications

● despite being Java 6 based in the core framework itself

● feels like a Java 8 based framework already (for many scenarios)

■ Reflectively adapting to the use of Java 8 constructs in user code

● injection points, handler method parameters

● Optional, CompletableFuture, java.time, etc

■ Alignment with Java 8 conventions

● callback interfaces as “functional interfaces” for lambda expressions

● repeatable annotation declarations (simply ignored on Java 6 & 7)

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/6

Java 8 Adoption as of October 2017 (Survey by Baeldung)

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/7

Java 8+ Baseline in Spring Framework 5.0

■ Entire framework codebase is Java 8 based

● internal use of lambda expressions and collection streams

● efficient introspection of constructor/method parameter signatures

■ Framework APIs can expose Java 8 API types

● Executable, CompletableFuture, Instant, Duration

● java.util.function interfaces: Supplier, Consumer, Predicate

■ Framework interfaces make use of Java 8 default methods

● existing methods with default implementations for convenience

● new methods with default implementations for backwards compatibility

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/8

ObjectProvider API Design with java.util.function

■ @Autowired ObjectProvider<MyBean> myBeanProvider

■ Original ObjectProvider methods (dating back to 4.3)

● T getIfAvailable()

● T getIfUnique()

■ Overloaded variants with java.util.function callbacks (new in 5.0)

● T getIfAvailable(Supplier<T> defaultSupplier)

● void ifAvailable(Consumer<T> dependencyConsumer)

● T getIfUnique(Supplier<T> defaultSupplier)

● void ifUnique(Consumer<T> dependencyConsumer)

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/9

Programmatic Bean Registration with Java 8

// Starting point may also be AnnotationConfigApplicationContext

GenericApplicationContext ctx = new GenericApplicationContext();

ctx.registerBean(Foo.class);

ctx.registerBean(Bar.class,

 () -> new Bar(ctx.getBean(Foo.class)));

// Or alternatively with some bean definition customizing

GenericApplicationContext ctx = new GenericApplicationContext();

ctx.registerBean(Foo.class, Foo::new);

ctx.registerBean(Bar.class,

 () -> new Bar(ctx.getBean(Foo.class)),

 bd -> bd.setLazyInit(true));

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/10

Functional Web Endpoints with Method References

RouterFunction<?> router =

 route(GET("/users/{id}"), handlerDelegate::getUser)

 .andRoute(GET("/users"), handlerDelegate::getUsers);

public class MyReactiveHandlerDelegate {

 ...

 public Mono<ServerResponse> getUser(ServerRequest request) {

 Mono<User> user = Mono.justOrEmpty(request.pathVariable("id"))

 .map(Long::valueOf).then(this.repository::findById);

 return ServerResponse.ok().body(user, User.class);

 }

 public Mono<ServerResponse> getUsers(ServerRequest request) {

 Flux<User> users = this.repository.findAll();

 return ServerResponse.ok().body(users, User.class);

 }

}

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/11

Functional Web Endpoints in Lambda Style

UserRepository repository = ...;

RouterFunction<?> router =

 route(GET("/users/{id}"),

 request -> {

 Mono<User> user = Mono.justOrEmpty(request.pathVariable("id"))

 .map(Long::valueOf).then(repository::findById);

 return ServerResponse.ok().body(user, User.class);

 })

 .andRoute(GET("/users"),

 request -> {

 Flux<User> users = repository.findAll();

 return ServerResponse.ok().body(users, User.class);

 });

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/12

Java 8+ Open Source Frameworks in Q1 2018

■ JUnit 5

■ Reactor 3

■ Tomcat 9

■ Jetty 9.3 & 9.4

■ Undertow 2.0

■ Hibernate ORM 5.2 & 5.3

■ Hibernate Validator 6.0

(certainly more to follow in the course of this year)

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/13

JDK 9+

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/14

JDK 9: Not Just Jigsaw

■ Many general JVM improvements

● Compact Strings, G1 by default, custom JVM distributions (jlink)

■ TLS stack ready for HTTP/2 out of the box

● e.g. for Tomcat 9 to enable HTTP/2 without JVM modifications

■ Jigsaw – module path as structured alternative to class path

● symbolic module names and requires/exports metadata for jar files

■ JDK 9 is GA as of late September 2017

● Spring 5 is fully aligned in terms of JDK 9's policies and constraints

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/15

JDK 9's Modular Nature

■ JDK 9 itself comes decomposed into several modules (as jmod files)

● java.base, java.sql, java.activation, java.logging, java.naming, java.xml.bind

● Common Annotations deprecated (for JDK inclusion) in a separate module

■ Custom JVM distributions via jlink

● custom runtime image with selected modules plus dependencies

● JAXB etc easily replaceable with standalone implementations

■ Frameworks have to revisit their dependency assumptions

● JUL, JNDI, JAXB, Common Annotations to be considered as optional

● no unnecessary hard API references in framework APIs & SPIs

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/16

JDK 9 Module Graph

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/17

Jigsaw for Application Modules

■ Effectively just a jar file with extra metadata

● coherent content with clean separation

● no split packages, no cyclic dependencies

■ Explicit module with module-info descriptor

● required modules for dependencies (by module name)

● exported and opened packages (by package name)

■ Automatic module

● “Automatic-Module-Name” manifest (or default name derived from jar file)

● dependencies automatically resolved at runtime + all packages exported

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/18

Using Jigsaw with Spring

■ Framework jars as Jigsaw-compliant modules on the module path

● automatic modules with stable manifest module names (Spring 5, JUnit 5)

● spring.context, spring.jdbc, spring.webmvc, spring.webflux

■ An application's module-info.java may refer to framework modules

 module my.app.db {

 requires java.sql;

 requires spring.jdbc;

 requires spring.context;

 exports my.app.db.service;

 exports my.app.db.util;

 }

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/19

Reflection into Module-Contained Classes

■ Modules choose to 'export' all or selected packages

● 'export' means public types only

● no access to internals, not even via reflection!

■ Application modules may choose to 'open' certain packages

● allowing for deep reflection through frameworks

● accessing private field state, invoking non-public methods

■ For Spring purposes, application modules do NOT have to be 'open'

● as long as all relevant constructors and handler methods are public

● 'open' declarations only needed for interaction with non-public artifacts

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/20

Long-Term Support: Oracle versus Azul

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/21

Preparing for JDK 10 & 11

■ JDK 11 (GA in Sep 2018) will be the next long-term support release

● JDK 9 & 10 are effectively just intermediate releases on the way to 11

■ Limited technology support options towards 2019

● immediate upgrade to JDK 11, 12, 13, etc for free

● commercial long-term support for JDK 8 (until 2025!!)

● commercial long-term support for JDK 11 (until 2026)

■ The Spring Framework project (5.0.5+) is buildable on JDK 8, 9, 10

● Gradle build and default dependencies work on all three JDKs

● same setup expected to work for JDK 11

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/22

Upgrade Considerations

■ Consider staying on the JVM classpath

● Spring 5 runs fine in classpath mode as well as on the module path

● however, other libraries may not work in a module setup quite yet

● Tomcat and co run in a custom class loader arrangement anyway

■ Consider staying at Java 8 bytecode level

● Spring 5's ASM 6.0 fork accepts Java 8 as well as Java 9+ bytecode level

● ASM 5.x (very common) rejects unknown bytecode levels beyond Java 8

● compiling your code with target 1.8 reduces the risk of such tools breaking

■ Build against JDK 8, run against JDK 9 / 10 / 11?

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/23

Spring Framework 5.0
Q3 2017

JDK 8 baseline
support for JDK 9

prepared for JDK 10

integration with Java EE 8 APIs
functional style with Java & Kotlin

reactive web stack on Reactor

Unless otherwise indicated, these slides are © 2013-2018 Pivotal Software, Inc. and licensed under a
Creative Commons Attribution-NonCommercial license: http://creativecommons.org/licenses/by-nc/3.0/24

Spring Framework 5.1
Q3 2018

full support for JDK 11
shipping with ASM 6.1

shipping with Reactor 3.2

new JDK 11 HttpClient API
Lookup.defineClass on JDK 9+
support for Hibernate ORM 5.3

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

