
Сказ о том,
как мы алгоритм каналов
в Kotlin Coroutines делали

Никита Коваль, JPoint 2019

Attention! This talk is about
concurrency and algorithms!

2

Speaker: Nikita Koval

● Graduated @ ITMO University
● Previously worked as developer and

researcher @ Devexperts
● Teaching concurrent programming

course @ ITMO University
● Researcher @ JetBrains
● PhD student @ IST Austria

3
@nkoval_

What coroutines are

● Lightweight threads, can be suspended and resumed for free
○ You can run millions of coroutines and not die!

4

What coroutines are

● Lightweight threads, can be suspended and resumed for free
○ You can run millions of coroutines and not die!

● Support writing an asynchronous code like a synchronous one
suspend fun dbRequest(c: Client, r: Request) {

val token = requestToken(c)

val result = doDbRequest(token, r)

processResult(result)

}

5

suspend functions

* “Kotlin Coroutines in Practice” by Roman Elizarov @ KotlinConf 2018 6

https://www.youtube.com/watch?v=a3agLJQ6vt8

Producer-Consumer Problem

* Both clients and workers are coroutines 7

...

Worker 1

Worker M

...

Send a task

Receive a task

Client 1

Client 2

Client N

Producer-Consumer Problem Solution

1. Let’s create a channel

val tasks = Channel<Task>()

8

Producer-Consumer Problem Solution

1. Let’s create a channel

val tasks = Channel<Task>()

2. Clients send tasks to workers through this channel
val task = Task(...)
tasks.send(task)

9

Producer-Consumer Problem Solution

1. Let’s create a channel

val tasks = Channel<Task>()

2. Clients send tasks to workers through this channel
val task = Task(...)
tasks.send(task)

3. Workers receive tasks in an infinite loop
while(true) {
 val task = tasks.receive()
 processTask(task)
}

10

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

11

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

12

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

Have to wait for send

1

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

13

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

1

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

14

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

1

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

15

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>()

Rendezvous!

1

2

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

16

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

1

val tasks = Channel<Task>()

3

2

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

17

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

1

val tasks = Channel<Task>()

3

2

4
Have to wait for receive

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

18

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

1

val tasks = Channel<Task>()

3

2

4

Rendezvous Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

19

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

1

val tasks = Channel<Task>()

3

2

4

5

Rendezvous!

Coroutines Management

20

Coroutines Management
class Coroutine {
 var element: Any?
 ...
}

fun curCoroutine(): Coroutine { ... }

suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

21

Element to be sent

Returns the current coroutine

Functions to manipulate
with coroutines

Sequential Rendezvous Channel Implementation
class Coroutine {
 var element: Any?
 ...
}

fun curCoroutine(): Coroutine { ... }

suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

val senders = Queue<Coroutine>()
val receivers = Queue<Coroutine>()

22

Queues of suspended send
and receive invocations

Sequential Rendezvous Channel Implementation
class Coroutine {
 var element: Any?
 ...
}

fun curCoroutine(): Coroutine { ... }

suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

val senders = Queue<Coroutine>()
val receivers = Queue<Coroutine>()

23

suspend fun send(element: T) {
 if (receivers.isEmpty()) {
 val curCor = curCoroutine()
 curCor.element = element
 senders.enqueue(curCor)
 suspend(curCor)
 } else {
 val r = receivers.dequeue()
 r.element = element
 resume(r)
 }
}

Check if there is no
receiver and suspends

Rendezvous: retrieve the first receiver

Sequential Rendezvous Channel Implementation

24

suspend fun send(element: T) {
 if (receivers.isEmpty()) {
 val curCor = curCoroutine()
 curCor.element = element
 senders.enqueue(curCor)
 suspend(curCor)
 } else {
 val r = receivers.dequeue()
 r.element = element
 resume(r)
 }
}

suspend fun receive(): T {
 if (senders.isEmpty()) {
 val curCor = curCoroutine()
 receivers.enqueue(curCor)
 suspend(curCor)
 return curCor.element
 } else {
 val s = senders.dequeue()
 val res = s.element
 resume(s)
 return res
 }
}

Rendezvous Channel: Golang

25

Rendezvous Channel: Golang

Uses per-channel locks

26

suspend fun send(element: T) = channelLock.withLock {
 if (receivers.isEmpty()) {
 val curCor = curCoroutine()
 curCor.element = element
 senders.enqueue(curCor)
 suspend(curCor)
 } else {
 val r = receivers.dequeue()
 r.element = element
 resume(receiver)
 }
}

Rendezvous Channel: Golang

Uses per-channel locks

27

Non-scalable, no progress guarantee...

suspend fun send(element: T) = channelLock.withLock {
 if (receivers.isEmpty()) {
 val curCor = curCoroutine()
 curCor.element = element
 senders.enqueue(curCor)
 suspend(curCor)
 } else {
 val r = receivers.dequeue()
 r.element = element
 resume(receiver)
 }
}

Rendezvous Channel: Java

28

PPoPP’06

“Our synchronous queues have been
adopted for inclusion in Java 6”
j.u.c.SynchronousQueue

Rendezvous Channel: Java

Based on Michael-Scott lock-free queue algorithm
the simplest known lock-free queue, j.u.c.ConcurrentLinkedQueue

29

Rendezvous Channel: Java

Based on Michael-Scott lock-free queue algorithm
the simplest known lock-free queue, j.u.c.ConcurrentLinkedQueue

30

Either senders or receivers are in the queue!

Rendezvous Channel: Java

Based on Michael-Scott lock-free queue algorithm
the simplest known lock-free queue, j.u.c.ConcurrentLinkedQueue

31

HEAD

N

TAIL

Stores both the element to be sent
(RECEIVE_EL for receive) and the coroutine

C

“1”

dummy
N N

C

“2”

Rendezvous Channel: Java

Based on Michael-Scott lock-free queue algorithm
the simplest known lock-free queue, j.u.c.ConcurrentLinkedQueue

32

HEAD

N

TAIL

C

“1”

dummy
N N

C

“2”

dequeue updates HEAD

enqueue updates
TAIL and NEXT

Rendezvous Channel: Java

Based on Michael-Scott lock-free queue algorithm
the simplest known lock-free queue, j.u.c.ConcurrentLinkedQueue

33

HEAD

N

TAIL

C

“1”

dummy
N N

C

“2” send(x):
 t := TAIL
 h := HEAD
 if t == h || t.isSender() {
 enqueueAndSuspend(t, x)
 } else {
 dequeueAndResume(h)
 }

Rendezvous Channel: Java

Pros:
● Clear and simple algorithm
● Guarantees lock-freedom for the registration phase

Cons:
● Сreates a new node on each suspend
● Cancellation works in O(N)
● Non-scalable

34

Rendezvous Channel: First Solution

Let’s store multiple waiters in node!

35

Rendezvous Channel: First Solution

● Each node stores K waiters
○ More cache-efficient
○ More GC-efficient

● Node removing works in O(1)

● The select expression support via descriptors
○ Will be discussed a bit later

36

Rendezvous Channel: First Solution

37

Less is better!

Rendezvous Channel: First Solution

38

Less is better!

How to achieve more performance?

Modern queues use Fetch-And-Add...
Let’s try to use the same ideas for channels!

PPoPP’13

PPoPP’16

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

40

...

senders receivers64 bits 64 bits

sendersAndReceivers

senders = cell for the next send
receivers = cell for the next receive

arr

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

41

...

senders receivers64 bits 64 bits

sendersAndReceivers

send(x):
 s, r := incSenders()
 if s >= r {
 arr[s] = Waiter{curCor(), x}
 } else {
 resume(arr[s], x)
 }

arr

senders = cell for the next send
receivers = cell for the next receive

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

42

...

senders receivers64 bits 64 bits

sendersAndReceivers

send(x):
 s, r := incSenders()
 if s >= r {
 arr[s] = Waiter{curCor(), x}
 } else {
 resume(arr[s], x)
 }

arr

send(1):

receive():

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

43

...

senders receivers64 bits 64 bits

sendersAndReceivers

send(x):
 s, r := incSenders()
 if s >= r {
 arr[s] = Waiter{curCor(), x}
 } else {
 resume(arr[s], x)
 }

arr

send(1):

receive():
1. Inc receivers

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

44

C ...

senders receivers64 bits 64 bits

sendersAndReceivers

send(x):
 s, r := incSenders()
 if s >= r {
 arr[s] = Waiter{curCor(), x}
 } else {
 resume(arr[s], x)
 }

arr

send(1): receive():
1. Inc receivers
2. Store the coroutine

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

45

C ...

senders receivers64 bits 64 bits

sendersAndReceivers

send(x):
 s, r := incSenders()
 if s >= r {
 arr[s] = Waiter{curCor(), x}
 } else {
 resume(arr[s], x)
 }

arr

send(1):
3. Inc senders

receive():
1. Inc receivers
2. Store the coroutine

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

46

C ...

senders receivers64 bits 64 bits

sendersAndReceivers

send(x):
 s, r := incSenders()
 if s >= r {
 arr[s] = Waiter{curCor(), x}
 } else {
 resume(arr[s], x)
 }

arr

send(1):
3. Inc senders
4. Make a rendezvous

receive():
1. Inc receivers
2. Store the coroutine

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

47

C ...

senders receivers64 bits 64 bits

sendersAndReceivers

send(x):
 s, r := incSenders()
 if s >= r {
 arr[s] = Waiter{curCor(), x}
 } else {
 resume(arr[s], x)
 }

arr

send(1):
3. Inc senders
4. Make a rendezvous

receive():
1. Inc receivers
2. Store the coroutine

Any problem with this solution?

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

48

...

senders receivers64 bits 64 bits

sendersAndReceivers

send(x):
 s, r := incSenders()
 if s >= r {
 arr[s] = Waiter{curCor(), x}
 } else {
 resume(arr[s], x)
 }

arr

send(1):
2. Inc senders
3. Make a rendezvous?

receive():
1. Inc receivers

The cell is
empty!

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

49

...

senders receivers64 bits 64 bits

sendersAndReceivers

arr

send(1):
2. Inc senders
3. Make a rendezvous?

receive():
1. Inc receivers

The cell is
empty!

EMPTY

coroutine

DONE

BROKEN
suspend

rendezvous

Cell life cycle
rendezvous failed, try the

operation again

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

50

...

senders receivers64 bits 64 bits

sendersAndReceivers

arr

send(1):
2. Inc senders
3. Make a rendezvous?

receive():
1. Inc receivers

The cell is
empty!

EMPTY

coroutine

DONE

BROKEN
suspend

rendezvous failed, try the
operation again

rendezvous

Cell life cycle

Do not need this BROKEN
state in practice, can just wait

Rendezvous Channel: Second Solution

● Each send-receive pair works with an unique cell
● This cell id is either senders or receivers counter after the

increment (for send and receive respectively)

51

Rendezvous Channel: Second Solution

● Each send-receive pair works with an unique cell
● This cell id is either senders or receivers counter after the

increment (for send and receive respectively)

● How to implement an atomic 128-bit counter using 64-bit ones?
● How to organize the cell storage?

52

Second Solution: Counters

53

senders_L receivers_L1/01/0

senders_H receivers_H

1 bit 31 bits 1 bit 31 bits

32 bits32 bits
We maintain highest and
lowest parts separately

0000...001111...11
highest part lowest part

L

H

Second Solution: Counters

54

senders_L receivers_L1/01/0

1 bit 31 bits 1 bit 31 bits

32 bits32 bits
We maintain highest and
lowest parts separately

Indicates that the lowest
part is overflowed

L

H senders_H receivers_H

Second Solution: Counters

55

senders_L receivers_L1/01/0

1 bit 31 bits 1 bit 31 bits

32 bits32 bits

Read-write lock for
highest parts

H_rwlock

L

H senders_H receivers_H

Second Solution: Counters

56

32 bits32 bits

H_rwlock

senders_L receivers_L1/01/0

1 bit 31 bits 1 bit 31 bits

Increment algorithm:
1. Acquire H_rwlock for read
2. Read H
3. Inc L by FAA
4. Release the lock

L

H senders_H receivers_H

Second Solution: Counters

57

32 bits32 bits

H_rwlock

senders_L receivers_L1/01/0

1 bit 31 bits 1 bit 31 bits

Increment algorithm:
1. Acquire H_rwlock for read
2. Read H
3. Inc L by FAA
4. Release the lock

L

H

Just a FAA

senders_H receivers_H

Second Solution: Counters

58

32 bits32 bits

H_rwlock

senders_L receivers_L1/01/0

1 bit 31 bits 1 bit 31 bits

Increment algorithm:
1. Acquire H_rwlock for read
2. Read H
3. Inc L by FAA
4. Release the lock
5. If the lowest part is overflowed

5.1. Acquire H_rwlock for write
5.2. Reset the bit
5.3. Inc H
5.4. Release the lock

L

H senders_H receivers_H

Second Solution: Cell Storage

59

0
N...

1
N...

K
N......

HEAD TAIL

Lock-free Michael-Scott
queue of segments

Second Solution: Cell Storage

60

0
N...

1
N...

K
N......

HEAD TAIL1. Read both HEAD and TAIL
2. Increment the counter

Second Solution: Cell Storage

61

0
N...

1
N...

K
N......

HEAD TAIL1. Read both HEAD and TAIL
2. Increment the counter
3. Either make a rendezvous

3.1. Find the cell starting from the head
3.2. Move HEAD forward if needed

Second Solution: Cell Storage

62

0
N...

1
N...

K
N......

HEAD TAIL1. Read both HEAD and TAIL
2. Increment the counter
3. Either make a rendezvous

3.1. Find the cell starting from the head
3.2. Move HEAD forward if needed

4. or suspend
4.1. Find the cell starting from the tail
4.2. Create new segments if needed

Rendezvous Channel: Second Solution

63

Less is better!

Buffered Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

64

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

One element can be sent
without suspension

Buffered Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

65

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

1

Does not suspend!

Buffered Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

66

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

1

The buffer is full, suspends
2

Buffered Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

67

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

1

Receives the buffered element,
resumes the 2nd client,

and moves its task to the buffer

3

2

Buffered Channel Semantics

Client 1
 val task = Task(...)

 tasks.send(task)

68

Client 2
 val task = Task(...)

 tasks.send(task)

Worker
 while(true) {

 val task = tasks.receive()

 processTask(task)

 }

val tasks = Channel<Task>(capacity = 1)

1

Retrieves the 2nd task,
no waiters to resume

2

34

Buffered Channel: Golang

● Maintains an additional fixed-size buffer
○ Tries to send to this buffer instead of suspending

● Performs all operations under the channel lock

69

Buffered Channel: Our Solution

Channel with capacity = 1

70

...

senders

receivers

Buffered Channel: Our Solution

Channel with capacity = 1

71

1 ...

senders

receivers

send(1): DONE

Buffered Channel: Our Solution

Channel with capacity = 1

72

1 S ...

senders

receivers

send(1): DONE
send(2): SUSPENDED

Buffered Channel: Our Solution

Channel with capacity = 1

73

1 2 ...

senders

receivers

send(1): DONE
send(2): DONE
receive(): 1

Buffered Channel: Our Solution

Channel with capacity = 1

74

1 2 ...

senders

receivers

send(1): DONE
send(2): DONE
receive(): 1

Can we use only senders and receivers
counters to define the current buffer?

Buffered Channel: Our Solution

Two counters are not enough!

75

1 S ...

senders

receivers

send(1): DONE
send(2): SUSPENDED

Buffered Channel: Our Solution

Two counters are not enough!

76

1 S ...S

senders

receivers

send(1): DONE
send(2): SUSPENDED
send(3): SUSPENDED

Buffered Channel: Our Solution

Two counters are not enough!

77

1 X ...S

senders

receivers

send(1): DONE
send(2): CANCELLED
send(3): SUSPENDED

Buffered Channel: Our Solution

Two counters are not enough!

78

1 X ...2?

senders

receivers

send(1): DONE
send(2): CANCELLED
send(3): DONE???
receive(): 1

We have to find the first non-cancelled send
request to resume (put into the buffer)

Buffered Channel: Our Solution

Two counters are not enough!

79

1 X ...2?

senders

receivers

send(1): DONE
send(2): CANCELLED
send(3): DONE???
receive(): 1

We have to find the first non-cancelled send
request to resume (put into the buffer)

Works in O(N)

Buffered Channel: Our Solution

Let’s use three counters!

80

...

senders

receivers

buffer_end

Specifies the last send
to be buffered

Buffered Channel: Our Solution

Let’s use three counters!

81

...

senders

receivers

buffer_end

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

Buffered Channel: Our Solution

Let’s use three counters!

82

...

senders

receivers

buffer_end

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

83

...

senders

receivers

buffer_end

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

84

R ...

senders

receivers

buffer_end
receive(): SUSPENDED

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

85

R ...

senders

receivers

buffer_end
receive(): 1
send(1): DONE

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

86

R 2 ...

senders

receivers

buffer_end
receive(): 1
send(1): DONE
send(2): DONE

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

87

...

senders

receivers

buffer_end

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

88

1 ...

senders

receivers

buffer_end
send(1): DONE

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

89

1 S ...

senders

receivers

buffer_end
send(1): DONE
send(2): SUSPEND

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

90

1 2 ...

senders

receivers

buffer_end
send(1): DONE
send(2): DONE
receive(): 1

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

91

...

senders

receivers

buffer_end

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

92

1 ...

senders

receivers

buffer_end
send(1): DONE

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

Buffered Channel: Our Solution

Let’s use three counters!

93

1 S ...

receivers

buffer_end
send(1): DONE
send(2): SUSPEND

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

senders

Buffered Channel: Our Solution

Let’s use three counters!

94

1 S ...S

receivers

buffer_end
send(1): DONE
send(2): SUSPEND
send(3): SUSPEND

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

senders

Buffered Channel: Our Solution

Let’s use three counters!

95

1 X ...S

receivers

buffer_end
send(1): DONE
send(2): CANCELLED
send(3): SUSPEND

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

senders

Buffered Channel: Our Solution

Let’s use three counters!

96

1 X ...3

receivers

buffer_end
send(1): DONE
send(2): CANCELLED
send(3): DONE
receive(): 1

send(x):
 senders++, receivers, buffer_end
 if senders >= receivers {
 if senders < buffer_end {
 storeElement(senders, x) // buffering!
 } else { /* suspend */ }
 } else { /* rendezvous */ }

receive():
 senders, receivers++, buffer_end++
 receiveImpl(senders, receivers)
 makeBuffered(buffer_end) // inc buffer_end
 // again on failure

senders

Buffered Channel: Our Solution (capacity = 32)

97

Buffered Channel: Our Solution (capacity = 128)

98

The select Expression

99

Client
 val task = Task(...)

 tasks.send(task)

Suspends here

The select Expression

100

Client
 val task = Task(...)

 tasks.send(task)

The select Expression

101

Client
 val task = Task(...)

 tasks.send(task)

The client was interrupted while
waiting for a worker

The select Expression

102

Client
 val task = Task(...)

 tasks.send(task)

The client was interrupted while
waiting for a worker

Do we need to process
the task anymore?

The select Expression

103

Client
 val task = Task(...)

 tasks.send(task)

The client was interrupted while
waiting for a worker

Do we need to process
the task anymore?

It would be better to cancel
the request and detect this

The select Expression

Client
 val task = Task(...)

 val cancelled = Channel<Unit>()

104

Unit is sent to this channel
if the client is interrupted

The select Expression

Client
 val task = Task(...)

 val cancelled = Channel<Unit>()

 select<Unit> {

 tasks.onSend(task) { println("Task has been sent") }

 cancelled.onReceive { println("Cancelled") }

 }

105

Waits simultaneously, at most one
clause is selected atomically.

The select Expression: Golang

● Fine-grained locking

● Acquires all involved channels locks to register into the queues
○ Uses hierarchical order to avoid deadlocks

● Acquires all these locks again to resume the coroutine
○ Otherwise, two select clauses could interfere

106

The First Solution

Operation
Descriptors

The select Expression: Second Solution

108

SelectOp

state

alternatives

Each alternative contains:
● element to be sent

(RECEIVE_EL for receive)
● channel
● action

Progress state of this select instance

The select Expression: Second Solution

109

SelectOp

state

alternatives

For each
alternative Increment the corresponding counter

Try to make a
rendezvous

Try to store the
SelectOp

Waiting phase

Remove the stored
SelectOp-s

The select Expression: Second Solution

110

SelectOp

state

alternatives

For each
alternative Increment the corresponding counter

Try to make a
rendezvous

Try to store the
SelectOp

Waiting phase

Remove the stored
SelectOp-s How to make a rendezvous

with this select instance?

The select Expression: Second Solution

111

SelectOp

state

alternatives

REG CHANNELWAITING DONE
CAS

Rendezvous during the registration phase

Registered into
all channels

Another request
makes a rendezvous

Get both the element
and the channel

For each
alternative Increment the corresponding counter

Try to make a
rendezvous

Try to store the
SelectOp

Waiting phase

Remove the stored
SelectOp-s

The select Expression: Second Solution
Client:
select<Unit> {

 tasks.onSend(task) {

 println("Task has been sent")

 }

 cancelled.onReceive {

 println("Cancelled")

 }

}

Worker:
val task = tasks.receive()

processTask(task)

The select Expression: Second Solution
Client:
select<Unit> {

 tasks.onSend(task) {

 println("Task has been sent")

 }

 cancelled.onReceive {

 println("Cancelled")

 }

}

Worker:
val task = tasks.receive()

processTask(task)

...tasks

...cancelled

SelectOp

state: REG

The select Expression: Second Solution
Client:
select<Unit> {

 tasks.onSend(task) {

 println("Task has been sent")

 }

 cancelled.onReceive {

 println("Cancelled")

 }

}

Worker:
val task = tasks.receive()

processTask(task)

SI ...tasks

...cancelled

SelectOp

state: REG

 C: Register in tasks

The select Expression: Second Solution
Client:
select<Unit> {

 tasks.onSend(task) {

 println("Task has been sent")

 }

 cancelled.onReceive {

 println("Cancelled")

 }

}

Worker:
val task = tasks.receive()

processTask(task)

SI ...tasks

...cancelled

SelectOp

state: REG

 C: Register in tasks
 W: Rendezvous attempt in tasks, wait for state != REG

The select Expression: Second Solution
Client:
select<Unit> {

 tasks.onSend(task) {

 println("Task has been sent")

 }

 cancelled.onReceive {

 println("Cancelled")

 }

}

Worker:
val task = tasks.receive()

processTask(task)

SI ...tasks

SI ...cancelled

SelectOp

state: REG

 C: Register in tasks
 W: Rendezvous attempt in tasks, wait for state != REG
 C: Register in cancelled

The select Expression: Second Solution
Client:
select<Unit> {

 tasks.onSend(task) {

 println("Task has been sent")

 }

 cancelled.onReceive {

 println("Cancelled")

 }

}

Worker:
val task = tasks.receive()

processTask(task)

SI ...tasks

SI ...cancelled

SelectOp

state: WAITING

 C: Register in tasks
 W: Rendezvous attempt in tasks, wait for state != REG
 C: Register in cancelled
 C: Change state to WAITING

The select Expression: Second Solution
Client:
select<Unit> {

 tasks.onSend(task) {

 println("Task has been sent")

 }

 cancelled.onReceive {

 println("Cancelled")

 }

}

Worker:
val task = tasks.receive()

processTask(task)

SI ...tasks

SI ...cancelled

SelectOp

state: tasks

 C: Register in tasks
 W: Rendezvous attempt in tasks, wait for state != REG
 C: Register in cancelled
 C: Change state to WAITING
 W: Change state to tasks, the rendezvous done

The select Expression: Second Solution
Client:
select<Unit> {

 tasks.onSend(task) {

 println("Task has been sent")

 }

 cancelled.onReceive {

 println("Cancelled")

 }

}

Worker:
val task = tasks.receive()

processTask(task)

SI ...tasks

X ...cancelled

SelectOp

state: DONE

 C: Register in tasks
 W: Rendezvous attempt in tasks, wait for state != REG
 C: Register in cancelled
 C: Change state to WAITING
 W: Change state to tasks, the rendezvous done
 C: Selected, change state to DONE

The select Expression: Deadlock Avoidance
Coroutine 1:
select<Unit> {

 chan_1.onSend(task) { ... }

 chan_2.onReceive { ... }

}

Coroutine 2:
select<Unit> {

 chan_2.onSend(task) { ... }

 chan_1.onReceive { ... }

}

The select Expression: Deadlock Avoidance
Coroutine 1:
select<Unit> {

 chan_1.onSend(task) { ... }

 chan_2.onReceive { ... }

}

Coroutine 2:
select<Unit> {

 chan_2.onSend(task) { ... }

 chan_1.onReceive { ... }

}

...
chan_1

...

SelectOp 1

state: REG

SelectOp 2

state: REG

chan_2

The select Expression: Deadlock Avoidance
Coroutine 1:
select<Unit> {

 chan_1.onSend(task) { ... }

 chan_2.onReceive { ... }

}

Coroutine 2:
select<Unit> {

 chan_2.onSend(task) { ... }

 chan_1.onReceive { ... }

}

SI1 ...
chan_1

...

SelectOp 1

state: REG

SelectOp 2

state: REG

chan_2
1. C1: Register in chan_1

The select Expression: Deadlock Avoidance
Coroutine 1:
select<Unit> {

 chan_1.onSend(task) { ... }

 chan_2.onReceive { ... }

}

Coroutine 2:
select<Unit> {

 chan_2.onSend(task) { ... }

 chan_1.onReceive { ... }

}

SI1 ...
chan_1

SI2 ...

SelectOp 1

state: REG

SelectOp 2

state: REG

chan_2
1. C1: Register in chan_1 2. C2: Register in chan_2

The select Expression: Deadlock Avoidance
Coroutine 1:
select<Unit> {

 chan_1.onSend(task) { ... }

 chan_2.onReceive { ... }

}

Coroutine 2:
select<Unit> {

 chan_2.onSend(task) { ... }

 chan_1.onReceive { ... }

}

SI1 ...
chan_1

SI2 ...

SelectOp 1

state: REG

SelectOp 2

state: REG

chan_2
1. C1: Register in chan_1
3. C1: Rendezvous attempt in chan_2,
 wait for state != REG

2. C2: Register in chan_2

The select Expression: Deadlock Avoidance
Coroutine 1:
select<Unit> {

 chan_1.onSend(task) { ... }

 chan_2.onReceive { ... }

}

Coroutine 2:
select<Unit> {

 chan_2.onSend(task) { ... }

 chan_1.onReceive { ... }

}

SI1 ...
chan_1

SI2 ...

SelectOp 1

state: REG

SelectOp 2

state: REG

chan_2
1. C1: Register in chan_1
3. C1: Rendezvous attempt in chan_2,
 wait for state != REG

2. C2: Register in chan_2
4. C2: Rendezvous attempt in chan_1,
 wait for state != REG

Deadlock!

The select Expression: Deadlock Avoidance

SI1 ...
chan_1

SI2 ...

SelectOp 1

state: REG

SelectOp 2

state: REG

chan_2
1. C1: Register in chan_1
3. C1: Rendezvous attempt in chan_2,
 wait for state != REG

2. C2: Register in chan_2
4. C2: Rendezvous attempt in chan_1,
 wait for state != REG

1. Each select instance has unique id
2. Change the state of the select instance of minimal id

in a waiting cycle from REG to WAITING

The select Expression: Deadlock Avoidance

SI1 ...
chan_1

SI2 ...

SelectOp 1

state: WAITING

SelectOp 2

state: REG

chan_2
1. C1: Register in chan_1
3. C1: Rendezvous attempt in chan_2,
 wait for state != REG
5. C1: Deadlock, change state to WAITING

2. C2: Register in chan_2
4. C2: Rendezvous attempt in chan_1,
 wait for state != REG

1. Each select instance has unique id
2. Change the state of the select instance of minimal id

in a waiting cycle from REG to WAITING

The select Expression: Deadlock Avoidance

SI1 ...
chan_1

X ...

SelectOp 1

state: chan_1

SelectOp 2

state: DONE

chan_2
1. C1: Register in chan_1
3. C1: Rendezvous attempt in chan_2,
 wait for state != REG
5. C1: Deadlock, change state to WAITING

2. C2: Register in chan_2
4. C2: Rendezvous attempt in chan_1,
 wait for state != REG
6. C2: Change 1st state to chan_1,
 rendezvous done

1. Each select instance has unique id
2. Change the state of the select instance of minimal id

in a waiting cycle from REG to WAITING

The select Expression: Deadlock Avoidance

SI1 ...
chan_1

X ...

SelectOp 1

state: DONE

SelectOp 2

state: DONE

chan_2
1. C1: Register in chan_1
3. C1: Rendezvous attempt in chan_2,
 wait for state != REG
5. C1: Deadlock, change state to WAITING
7. C1: Selected, change state to DONE

2. C2: Register in chan_2
4. C2: Rendezvous attempt in chan_1,
 wait for state != REG
6. C2: Change 1st state to chan_1,
 rendezvous done

1. Each select instance has unique id
2. Change the state of the select instance of minimal id

in a waiting cycle from REG to WAITING

The select Expression (capacity = 0)

130

The select Expression (capacity = 32)

131

The select Expression (capacity = 128)

132

Instead of Summary

● Locks != bad
● Non-blocking != scalable
● Nowadays concurrent programming is full of trade-offs

Channels in Kotlin Coroutines are the best in the world
https://github.com/Kotlin/kotlinx.coroutines/tree/channels

133

https://github.com/Kotlin/kotlinx.coroutines/tree/channels

134

Questions

