Ckas 0 ToMm,
KakK Mbl anropuTm KaHanosB
B Kotlin Coroutines genanu

Hukunta KoBanb, JPoint 2019

fﬂa ;\ Kotlin I ’S’T AUSTRIA

Attention! This talk is about
concurrency and algorithms!

Bulletproof Java Enterprise
applications for the hard
production life

Sebastian Daschner

1BM

CkKas 0 TOM, KaK Mbl
Jenanu anropuTtm
kaHanos B Kotlin
coroutines

Hukuta KoBanb
JetBrains & IST Austria

RU

Maximizing performance
with GraalVM (goknag +
BOpKLUOM)

Thomas Wuerthinger
Oracle

EN

Performance aspects of
Axon-based CQRS/ES
systems

Allard Buijze

AxonlQ

== EN ﬁ

Speaker: Nikita Koval

. i . |
¥ @nkoval_

Graduated @ ITMO University
Previously worked as developer and
researcher @ Devexperts

Teaching concurrent programming
course @ ITMO University
Researcher @ JetBrains

PhD student @ IST Austria

What coroutines are

e Lightweight threads, can be suspended and resumed for free
o You can run millions of coroutines and not die!

What coroutines are

e Support writing an asynchronous code like a synchronous one

suspend fun dbRequest(c: Client, r: Request) { suspend functions

val token = requestToken(c) ’//////,
val result = doDbRequest(token, r)

processResult(result)

KotlinConf

Shared + Mutable = A

* "Kotlin Coroutines in Practice” by Roman Elizarov @ KotlinConf 2018

https://www.youtube.com/watch?v=a3agLJQ6vt8

Producer-Consumer Problem

Client 1

Client 2

Client N

* Both clients and workers are coroutines

Send a task

™~

.

—

\

/

Receive a task

Worker 1

Worker M

Producer-Consumer Problem Solution

1. Let’s create a channel

val tasks = Channel<Task>()

Producer-Consumer Problem Solution

1.

2. Clients send tasks to workers through this channel

val task = Task(...)
tasks.send(task)

Producer-Consumer Problem Solution

3. Workers receive tasks in an infinite loop

while(true) {
val task = tasks.receive()
processTask(task)

10

Rendezvous Channel Semantics

Client 1
val task = Task(...)
tasks.send(task) Worker
while(true) {
val task = tasks.receive()
processTask(task)
Client 2 }

val task = Task(...)
tasks.send(task)

val tasks = Channel<Task>()

11

Rendezvous Channel Semantics

Worker

Have to wait for send

while(true) { \\

<:> val task = tasks.receive()

processTask(task)

}

val tasks = Channel<Task>()

12

Rendezvous Channel Semantics

__ Worker
yZ?? while(true) {
<:> val task = tasks.receive()
processTask(task)

}

val tasks = Channel<Task>()

13

Rendezvous Channel Semantics

Client 1
val task = Task(...)
tasks.send(task) . Worker
vZ??‘ while(true) {
<:> val task = tasks.receive()
processTask(task)
}

val tasks = Channel<Task>()

14

Rendezvous Channel Semantics

Client 1

val task = Task(.

<:> tasks.send(task)

Rendezvous!

..)
/ Worker \

while(true) {
<:> val task = tasks.receive()
processTask(task)

}

val tasks = Channel<Task>()

15

Rendezvous Channel Semantics

@ Worker
while(true) {
<:> val task = tasks.receive()
<:> processTask(task)
Client 2 }
val task = Task(...)
tasks.send(task)

val tasks = Channel<Task>()

16

Rendezvous Channel Semantics

@ Worker
while(true) {
<:> val task = tasks.receive()
<:> processTask(task)
Client 2 }
val task = Task(...)
<:> tasks.send(task) ——

Have to wait for receive

val tasks = Channel<Task>()

17

Rendezvous Channel Semantics

@ Worker
while(true) {
(:) val task = tasks.receive()
<:> processTask(task)
__Client 2 }
\%22) val task = Task(...)
i(:) tasks.send(task)

val tasks = Channel<Task>()

18

Rendezvous Channel Semantics

@ Worker
while(true) {
<:><:> val task = tasks.receive()

processTask(task)
Client 2 @}
val task = Task(...)

<:> tasks.send(task)

Rendezvous!

val tasks = Channel<Task>()

Coroutines Management

20

Coroutines Management

class Coroutine {

Element to be sent

var element: Any?

}
Returns the current coroutine
fun curCoroutine(): Coroutine { ... } —
suspend fun suspend(c: Coroutine) { ... }
fun resume(c: Coroutine) { ... }

S

Functions to manipulate
with coroutines

21

Sequential Rendezvous Channel Implementation

val senders = Queue<Coroutine>() —”””””

val receivers = Queue<Coroutine>()

Queues of suspended send
and receive invocations

22

Sequential Rendezvous Channel Implementation

Check if there is no
receiver and suspends

Rendezvous: retrieve the first receiver

if (receivers.isEmpty()) {
val curCor = curCoroutine()

,f—””’— curCor.element = element

senders.enqueue(curCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
— resume(r)

}

23

Sequential Rendezvous Channel Implementation

if (senders.isEmpty()) {

val curCor = curCoroutine()
receivers.enqueue(curCor)

suspend(curcCor)
return curCor.element
} else {

val s = senders.dequeue()

val res = s.element
resume(s)
return res

if (receivers.isEmpty()) {
val curCor = curCoroutine()
curCor.element = element
senders.enqueue(curCor)
suspend(curcCor)

} else {
val r = receivers.dequeue()
r.element = element
resume(r)

24

Rendezvous Channel: Golang

25

Rendezvous Channel: Golang

Uses per-channel locks

suspend fun send(element: T) = channellLock.withLock {
if (receivers.isEmpty()) {
val curCor = curCoroutine()
curCor.element = element
senders.enqueue(curcCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
resume(receiver)

26

Rendezvous Channel: Golang

Uses per-channel locks

suspend fun send(element: T) = channelLock.withLocRk {
if (receivers.isEmpty()) {
val curCor = curCoroutine()
curCor.element = element
senders.enqueue(curCor)
suspend(curcCor)
} else {
val r = receivers.dequeue()
r.element = element
resume(receiver)

}
}

Non-scalable, no progress guarantee...

27

Re
ndezvous Channel: Java

PPOPP'06

Scalable Synchronous Queues 4

william N. Scherer 111

University of Rochester
scherer@cs. rochesteroedu

Abstract

We present tWO new nonblocking and contention-
tions of synchronous queues, concurrent transfer g

Doug Lea Michael L. Scott
SUNY Oswego University of Rochester
t scott@cs. rochester edu

producers wait for consumers justas consumers

Our implememations extend our previous work in dual queues and

dual stacks 10 effect very high-performance hai

“Our synchr
onous queues h
. a
adopted for inclusion in Ja\\;: E?en

j.u.c.SynchronousQueue

son [31, Which Uses -
Such heavy synchronization burdens arc o

processor Opteron machines. We compare our alg

monly used alternatives from the literature and

class javuuriI.concurren{.Synclu‘mwusQueu oth d
thetic microbenchmarks and indirectly as iyl core of Java’s
Pool Executor mechanism (which in tupd is the core of
server programs). Our new algorithp consistently
java SE 5.0 Sym-hmnuusQueue factors of three b
and 14 in fait mode; this trans es to factors of two ¢
ThreadPaolExecutor. Our synchronous queues hav

for inclusion 10 Java 6.

Categories and Subject Descriptors D.1.3 [Programm
TN ngramming—-\)aralle\ Programmi

fhms to com-
the Java SE 5.0
jrectly in syn- ¢ & ;
y;_h re); i semaphore operations usually requires enough costly atomi¢ and

y Java
rform the
unfair mode

P

on contemporary multiprocessors and their operating systems, n
which the blocking and unblocking of threads tend to be very
expensive operations. Moreover, even a series of uncontended

barrier (fence) instructions 0 incur subsmmial overhead.

Itis also difficult to extend this and other “classic” synchronous
queue algorithms to support other common operations. These in-
clude polls which takes an item only if @ producer is already
present, and offer which fails unless a consumer is waiting. Simi-
larly, many app\icat'\ons require the ability t0 time out if produc-
ers or consumers do not appear within a certain patience inter-

ing Tech- val or if the waiting thread is asynchronously interrupted. One of

the java.uril.concurrent.ThreadPooIExecutor \mplementations uses
all of these capabilities: Producers deliver tasks 10 waitin
e if jmmediately available, but otherwise create new worker
L ads terminate themselves if no

- I T3

28

Rendezvous Channel: Java

Based on Michael-Scott lock-free queue algorithm
the simplest known lock-free queue, j.u.c.ConcurrentLinkedQueue

29

Rendezvous Channel: Java

Based on Michael-Scott lock-free queue algorithm
the simplest known lock-free queue, j.u.c.ConcurrentLinkedQueue

Either senders or receivers are in the queue!

30

Rendezvous Channel; Java

Based on Michael-Scott lock-free queue algorithm

. e s
= =

Stores both the element to be sent
(RECEIVE EL for receive) and the coroutine

31

Rendezvous Channel; Java

Based on Michael-Scott lock-free queue algorithm

N—> —>
dummy

|

\

dequeue updates HEAD

enqueue updates
TAIL and NEXT

32

Rendezvous Channel; Java

Based on Michael-Scott lock-free queue algorithm
the simplest known lock-free queue, j.u.c.ConcurrentLinkedQueue

—> —> send(x):
t := TAIL
h := HEAD
if t == h || t.isSender() {

enqueueAndSuspend(t, x)
} else {

dequeueAndResume(h)
}

33

Rendezvous Channel: Java

Pros:

e Clear and simple algorithm
e Guarantees lock-freedom for the registration phase

cons:

e Creates a new node on each suspend
e Cancellation works in O(N)
e Non-scalable

34

Rendezvous Channel: First Solution

Let's store multiple waiters in node!

35

Rendezvous Channel: First Solution

e Each node stores K waiters

o More cache-efficient
o More GC-efficient

e Node removing works in O(1)

e The select expression support via descriptors
o Will be discussed a bit later

36

Rendezvous Channel; First Solution

2000 A

ns/op

1000 ~

2000 A

-~ Golang ~P— new-first Kotlin =~ j.u.c.SynchronousQueue
Single Consumer, #coroutines = #threads (Go) Producer-Consumer, #coroutines = #threads (Go)
2000 A
o}
o
S
€ 1000 -

4000 4
o 3000 -
g 2000 A

1000 ~

1 2 4 8 16 32 64

Single Consumer, #coroutines = #threads (Kotlin)

- 4
N
H
(o]
(=)
(0}
W
N
(o2}
H

Number of scheduler threads

ns/op

0 T T T T T T
1 2 4 8 16 32 64

Producer-Consumer, #coroutines = #threads (Kotlin)

6000 -
Up to 150'000 ns
-
4000 A
2000 -)
0 T T T T T T T

1 2 4 8 16 32 64

Number of scheduler threads

ns/op

1000 A

Less is better!

Producer-Consumer, #coroutines = 1000 (Go)

4000 A

3000 A

2000 A

ns/op

1000 A

1 2 4 8 16 32 64

Producer-Consumer, #coroutines = 1000 (Kotlin)

2 4 8 16 32 64

[arg

Number of scheduler threads
37

ns/op

ns/op

Rendezvous Channel; First Solution

2000 A

1000 -

-~ Golang

Single Consumer, #coroutines = #threads (Go)

2000 A

ns/op

1000 -

~Pp— new-first

Kotlin

Producer-Consumer, #coroutines = #threads (Go)

—§— j.u.c.SynchronousQueue

2000 -+

ns/op

1000 A

4000 A

3000 A

2000 A

1000 ~

1 2 4 8 16 32

Single Consumer, #coroutines = #threads (|

How

to achieve more performance?

Less is better!

Producer-Consumer, #coroutines = 1000 (Go)

- 4
N
H
(o]
(=)
(0}
W
N

Number of scheduler threads

FUUU
6000 A
Up to 150'000 ns\) 3000 -
& 4000 - &
= = 2000 A
= c
2000 A A > 1000 A
<
T 0 T T T T T T T 0

2 4 8 16 32 64

Number of scheduler threads

1 2 4 8 16 32 64

Producer-Consumer, #coroutines = 1000 (Kotlin)

= -
N

Number of scheduler threads
38

I_etl,\/lodern queues use Fetch-And-Add
s try to use the same ideas for chanﬁ"els'

PPoPP'16

opP'13
PP . <86 chess A Wait-free Queue as Fast as Fetch-and-Add

ehudd Afek g Chaoran Yang John Mellor-Crummey
S versity .) .)
Ad: “\MO“ gc\m\cc‘TC‘ AOY ur Department of Computer Science, Rice University
-kgchon\ of Compt® {chaoran, johnmc}@rice.edu
Blavam®®
8wg
comper® .)) .
a;\d‘s“a? o Abstract cither blocking or non-blocking. Blocking data structures include
~ Pty . .
C — . ot 5 . at least one operation where a thread ma; need to wait for an 0p-
cuures ARM “U,Ssc \ Concurrent data structures that have fast and predictable perfor- eration by un([;lher thread to complete B\f;ckin" operations can i‘r‘n—
ent Q2 strud oy OWER LU dep mance are of critical importance for harnessing the power of multi- e ld D i epsubtl Blems : cludi :d P lock, livelock
(ract oning coneUITET G itive natme s v RC yes core processors, which are now ubiquitous. Although wait-free ob- roduce a variety argute problems, including leaclock, IVE\QC™s
o A 2 izl Spot- yes in 8 ¢ cteDs E 10 nversion;y at reason, g ing structures
Abs jsdo! de“* achront? tion v\g“ded ot S0 SPA B jects. whose operations complete in a bounded number of steps. and priority inversy on; for that reason. noR blocking data structures
Con\’e““ 0 most P yorful :?\ 0 avoid w“.o“\“e_ has led 17 x86 3 . were devised more than two decades ago, wait-free objects that can are preferred. . . .
%, use e), & o (s 1688 = jzation s et . R SRt There are three levels of progress uarantees for non-blocking
i 10 V¢ a-sweP { queves: S rent queves: g on ol V- SynehrO™ core ¢ deliver scalable high performance are still rare. data stactures. A cone p ot 8 &
compeTh oneurtent © L i"g.basfd conc howing now \© ‘.b‘iab\ " T gominant s In this paper, we present the first wait-free FIFO queue based on o2 5“‘“"‘"‘,“' concurrent ObJeC 5 . .
n puilding p(op\)*e combim & coachh: SNOL (e that js avane®, ions © fetch-and-add (FAA) While compare-and-swap (CAS) based - obstruction-free if thread can perform an arbitrary operation
L chers © " feren rim! 1eari’ . 3] A & . - o = s . 2
\Bd‘d“‘?;pwc(rakes :: ;\ s \'G““I‘ ‘:-km‘% ock ree) l: 2 con " non-blocking algorithms may perform poorly due to work wasted 0“ Ilhe object in a finite number of steps when It executes in
T h—and‘a‘m (FEA et & nonbloCy RN be\:g\onsb?’ g causes the PO by CAS failures, algorithms hat coordinate using FAA, which is '[’“’_‘f”"’"\f thread performing bit ;
ietC%() pmcessors. ‘00 quene ¥ ic Ae: d\mp\eme\‘ it four that \a\‘%\ SoLiust e »‘Y.““‘.‘ guaranteed t0 succeed, can in principle perform better under high - ((t:({:Nll 'f:'l'"e r‘ea et g a(\bar 'friry \operauon on.
" IX cmu'urruvxt FIF e(émms con bm“;= 3o 26 serC p‘ocegs‘()f hot “"‘;’-gwmg\““ d‘s““c\\'\c contention. Along with FAA, our queue uses a custom epoch-based .c_(\ _|cc _‘f‘“ co»mlp i‘:‘i'" aﬁ"”‘f) ““'? . ‘;’_\”'C"f' or i
2 ‘;&ed\\m spots “‘\ ~oncur™® cy 1eVe :oc d wultt o & oM 2 “C‘“PS scheme to reclaim memorys on x86 architectures, it requires no B ::“‘"'jb'_“ if every ey ;an p’cr 0".“ an arbitrary operation on
\e\\sx 0 25% 12 all ¢ 1n bo sin on ‘_“o;ml primitve® ;\'Y extra memory fences on our algorithm’s typical execution path. An Wai ‘; © E‘lcc‘ i af:me number of SIEps- i i
1 Aieore (J\")“-e>5m> o camming Tec h H'"‘;). Wwhile * ““’;‘,, empirical study of our new FAA-based wait-free FIFO queue under “_'?_b"c,c O"f‘ '_’\'[f:m";ss,‘l{"’:l:gl'(; :uwd}f\n:_ce. “li,nl' C_s 0\{ § c
L ecution iptors D13 \Pnsfrucxurﬂs\'. Lastss (_\“‘ wairee man 3‘“;:3 high contention on four different architectures with many hardware Pm"l. “.".y ‘f‘ ‘s_‘(‘;“i‘ ion for all threacs. = “""' rz;e g ata _’l:f (.tt\\l’rc.s
s bject DBSC';‘{?‘ % e\ Datd i ‘2‘ in pmc\\f-e vep ('m\e‘ threads shows that it outperforms prior queue designs that lack a \r: lPd_ﬂ' e arly ¢ o i o s dbpp “k“mon"”l‘ ‘“_ vt
Categorié ““Cu“e“\ program™TE o chean a&o\“ over. there 1% “'“‘c“\“ wait-free progress guarantee- Surprisingly. at the highest level of red ;;n‘:c uy’;:”"‘fm ‘uf d:l 086 u“T Yy <y I.CT'P t » ;}js\cm\
niquesy: C:; neues \ing algorith™ ferc! oW ich doﬂ\\“"‘e‘.‘cu contention, the throughput of our queue is often as high as that of a ied ; ons “8:_"6‘1'”“ Ldonf (‘]“L_l"l)?" o ““‘“‘ rsﬁol_-'ed"l ‘\v_fhex-»
stacks: and & eues nondlo” e o ;g various heo™ microbenchmark that only performs FAA. As aresult, our fast wait- isted for more than e es | »]-Pf chicd wail- ree algorithms
‘o“c\me“\ W por! jose ¥ are hard to design and considered inefficient with good reason. For
erty

free queue implememmion is useful in practice on most multi-core
Al systems today. We believe that our design can serve as an example
Y. ioufe)Y S\‘im’e“ ded ¢ of how to construct other fast wait-free objects.

example, the fastest wail-free concurrent queue {0 date, designed
by Fatourouto and Kallimanis (7], is orders of magnitude slower
than the best performing lock-free queue, LCRQ, by Morrison and
gramming Tech- Afek [19]. General methods to transform lock-free objects into
. wait-free objects, such as thcﬁl.\l-pulh».yhm-»pmh methodology by

> e AN L Hle for lock-free data struc-

e bioct Descriptors D 1.3 [Pro,

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers

senders receivers

[f—

arr

senders = cell for the next send
receivers = cell for the next receive

40

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers

senders receivers

[f—

arr

senders = cell for the next send
receivers = cell for the next receive

send(x):
s, r := incSenders()
if s >=r {
arr[s] = Waiter{curCor(), x}
} else {
resume(arr[s], Xx)

}

41

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

arr

sendersAndReceivers

senders

receivers

[f—

send(1):

receive():

send(x):
s, r := incSenders()
if s >=r {
arr[s] = Waiter{curCor(), x}
} else {
resume(arr[s], X)

}

42

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers
. . send(x):
64 bits senders recelvers |64 bits () .
s, r := incSenders()
if s >=r {
arr[s] = Waiter{curCor(), x}
arr } else {
resume(arr[s], X)
}
send(1): receive():

1. Inc receivers

43

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

64 bits

arr

send(1):

sendersAndReceivers

senders receivers

/

C

receive():
Inc receivers
Store the coroutine

send(x):

s, r := incSenders()
if s >=r {

arr[s] = Waiter{curCor(), x}
} else {

resume(arr[s], X)

}

44

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers
. . . send(x):
64 bits senders recelvers |64 bits () .
s, r := incSenders()
if s >=r {
arr[s] = Waiter{curCor(), x}
arr | C ; else {
aus resume(arr[s], Xx)
}
send(1): receive():
3. Inc senders 1. Inc receivers

2. Store the coroutine

45

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers
64 bits senders receivers |64 bits
arr ¢
send(1): receive():
3. Inc senders 1.
4. Make a rendezvous 2.

send(x):
s, r := incSenders()
if s >=r {
arr[s] = Waiter{curCor(), x}
} else {
resume(arr[s], X)

}

Inc receivers
Store the coroutine

46

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers

. send(x):
senders recelivers .
s, r := incSenders()

2L ~ N n I
\/ Any problem with this solution? ~[faiter{curCor(), x}

arr | & E—

resume(arr[s], X)

}

send(1): receive():
3. Inc senders 1. Inc receivers
4. Make a rendezvous 2. Store the coroutine

47

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers
. send(x):
senders recelivers .
s, r := incSenders()
if s >=r {
arr[s] = Waiter{curCor(), x}
arr } else {
— nes resume(arr[s], X)
The cell is }
send(1): empty! receive():
2. Inc senders 1. Inc receivers

3. Make a rendezvous?

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers
senders receivers
arnr
\ .
The cell is
send(1): empty! receive():
2. Inc senders 1. Inc receivers

3. Make a rendezvous?

Cell life cycle

EMPTY

rendezvous failed, try the

operation again

+suspend

BROKEN

coroutine

+ rendezvous

DONE

49

Rendezvous Channel: Second Solution

Assume we have an atomic array and an atomic 128-bit register

sendersAndReceivers

: Cell life cycle
senders receilivers
rendezvous failed, try the
\ / EMPTY \‘ operation again
y suspend BROKEN
arr coroutine
™~ The cell is *rendezvous

send(1): empty! receive(): DONE
2. Inc senders 1. Inc receivers
3. Make a rendezvous? Do not need this BROKEN

state in practice, can just wait | s

Rendezvous Channel: Second Solution

e Each send-receive pair works with an unique cell
e This cellid is either senders or receivers counter after the
iIncrement

51

Rendezvous Channel: Second Solution

e Each send-receive pair works with an unique cell
e This cell id is either senders or receivers counter after the
increment (for send and receive respectively)

e How to implement an atomic 128-bit counter using 64-bit ones?
How to organize the cell storage?

52

Second Solution: Counters
0000...001111...11

higheét part lowest part

| |76 | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits

H senders_H receivers_H We maintain highest and
32 bits 32 bits lowest parts separately

Second Solution: Counters

—

| [17e| senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
H senders_H receivers H
32 bits 32 bits

Indicates that the lowest
part is overflowed

™~

We maintain highest and
lowest parts separately

54

Second Solution: Counters

1/6 | senders L |1/e| receivers L
senders_H receivers H
32 bits 32 bits
I

H rwlock

Read-write lock for
highest parts

55

Second Solution: Counters

| [17e| senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
H senders_H receivers H
32 bits 32 bits

H rwlock

Increment algorithm:

1. Acquire H_rwlock for read
2. ReadH

3. Inc L byFAA

4. Release the lock

56

Second Solution: Counters

1/e | senders L |1/e| receivers L
1 bit 31 bits 1 bit 31 bits
senders_H receivers H
32 bits 32 bits

H rwlock

1. Acquire H_rwlock for read

4. Release the lock

\

Just a FAA

57

Second Solution: Counters

L |10 senders L 1/e | receivers L Increment algorithm:

1 bit 31 bits 1 bit 31 bits
H senders_H receivers H
32 bits 32 bits 5. If the lowest part is overflowed
5.1. Acquire H_rwlock for write
5.2. Reset the bit
H_rwlock 5.3. IncH

5.4. Release the lock

58

Second Solution: Cell Storage

HEAD

Lock-free Michael-Scott
queue of segments

TAIL

59

Second Solution: Cell Storage

HEAD

1.
2.

Read both HEAD and TAIL
Increment the counter

TAIL

60

Second Solution: Cell Storage

HEAD

3. Either make a rendezvous
3.1. Find the cell starting from the head
3.2. Move HEAD forward if needed

TAIL

61

Second Solution: Cell Storage

HEAD

4.

or suspend
4.1. Find the cell starting from the tail
4.2. Create new segments if needed

TAIL

62

ns/op

Rendezvous Channel: Second Solution

Single Consumer, #coroutines = #threads (Go)

2000 A
1000 A
0 T T T T T T T
1 2 4 8 16 32 64
Single Consumer, #coroutines = #threads (Kotlin)
4000 A
3000 —h
2000 A
1000 A ,./
0 T T T T T T T
1 2 4 8 16 32 64

Number of scheduler threads

-~ Golang =P new-first =& new-second Kotlin
Producer-Consumer, #coroutines = #threads (Go)
2000 A
o
o
e
2 1000 -
0 T T T T T T T

L 2 4 8 16 32 64

Producer-Consumer, #coroutines = #threads (Kotlin)

6000 -
Up to 150'000 ns
—
& 4000
(%]
=
2000 A A
/\'\ -
0 T T T T T T T
1 2 4 8 16 32 64

Number of scheduler threads

ns/op

ns/op

2000 A

1000 A

Less is better!

Producer-Consumer, #coroutines = 1000 (Go)

4000 A

3000 A

2000 A

1000 A

32 64

1 2 4 8 16

Producer-Consumer, #coroutines = 1000 (Kotlin)

T T T T T T

1 2 4 8 16 32 64

Number of scheduler threads

63

Buffered Channel Semantics

Client 1
val task = Task(...)
tasks.send(task) Worker
while(true) {
val task = tasks.receive()
processTask(task)
Client 2 }
val task = Task(...) One element can be sent
tasks.send(task) without suspension
/

val tasks = Channel<Task>(capacity = 1)

Buffered Channel Semantics

Client 1

val task = Task(...)
<:> tasks.send(task)

\

Does not suspend!

val tasks = Channel<Task>(capacity = 1)

65

Buffered Channel Semantics

©,

__Client 2

\%2z2) yal task = Task(...)

‘(:) tasks.send(task) —

The buffer is full, suspends

val tasks = Channel<Task>(capacity = 1)

66

Buffered Channel Semantics

©,

Client 2
val task = Task(...)

@ tasks.send(task) —

Worker
while(true) {

@ val task = tasks.receive()

/ processTask(task)
}

Receives the buffered element,
resumes the 2nd client,
and moves its task to the buffer

val tasks = Channel<Task>(capacity = 1)

67

Buffered Channel Semantics

@ Worker
while(true) {
<:)<:> val task = tasks.receive()
/ processTask(task)

}

@ Retrieves the 2nd task,
no waiters to resume

val tasks = Channel<Task>(capacity = 1)

68

Buffered Channel: Golang

e Maintains an additional fixed-size buffer
o Tries to send to this buffer instead of suspending

e Performs all operations under the channel lock

69

Buffered Channel: Our Solution

Channel with capacity = 1

senders

v

*

receivers

70

Buffered Channel: Our Solution

Channel with capacity = 1

senders

v

1
!

receivers

send(1): DONE

71

Buffered Channel: Our Solution

Channel with capacity = 1

senders

v

1

S

*

receivers

send(1): DONE
send(2): SUSPENDED

72

Buffered Channel: Our Solution

Channel with capacity = 1

senders

v

4

2

*

receivers

send(1): DONE
send(2): DONE
receive(): 1

73

Buffered Channel: Our Solution

Channel with capacity = 1

senders send(1): DONE
v send(2): DONE
112 receive(): 1
!
receivers

Can we use only senders and receivers
counters to define the current buffer?

74

Buffered Channel: Our Solution

Two counters are not enough!

senders

v

1

S

*

receivers

send(1): DONE
send(2): SUSPENDED

75

Buffered Channel: Our Solution

Two counters are not enough!

senders

v

1

S

*

receivers

send(1): DONE
send(2): SUSPENDED
send(3): SUSPENDED

76

Buffered Channel: Our Solution

Two counters are not enough!

senders

v

1

X

S

*

receivers

send(1): DONE
send(2): CANCELLED
send(3): SUSPENDED

77

Buffered Channel: Our Solution

Two counters are not enough!

senders send(1): DONE
v send(2): CANCELLED
1 1 x 1 22 send(3): DONE???
receive(): 1
A
receivers

We have to find the first non-cancelled send
request to resume (put into the buffer)

78

Buffered Channel: Our Solution

Two counters are not enough!

senders send(1): DONE
v send(2): CANCELLED
1 1 x 1 22 send(3): DONE???
receive(): 1
A
receivers

Works in O(N)

We have to find the first non-cancelled send
request to resume (put into the buffer)

79

Buffered Channel: Our Solution

Let’s use three counters!

senders

v

receiveP:\\\\

buffer_end

T~

Specifies the last send
to be buffered

80

Buffered Channel: Our Solution

Let’s use three counters!

senders send(x) :
senders++, receivers, buffer_end
+ if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!

* - } else { }
. \ } else { }
recelivers

buffer_end

81

Buffered Channel: Our Solution

Let’s use three counters!

senders send(x):
senders++, receivers, buffer_end
+ if senders >= receivers {

if senders < buffer_end {
ea storeElement(senders, x) // buffering!
* } else { /* suspend */ }

} else { /* rendezvous */ }

receivers
receive():
buffer end senders, receivers++, buffer_end++
- receiveImpl (senders, receivers)
makeBuffered(buffer_end) // inc buffer end
// again on failure

82

Buffered Channel: Our Solution

Let’s use three counters!

senders

v

*

receivers

buffer_end

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

83

Buffered Channel: Our Solution

Let’s use three counters!

senders

v
R

*

receivers

buffer_end .
— receive():

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

SUSPENDED

84

Buffered Channel: Our Solution

Let's use three counters! send(x):

senders++, receivers, buffer_end
if senders >= receivers {

if senders < buffer_end {
senders storeElement(senders, x) buffering!
} } else { }
} else { ¥
R .
- receive():
* senders, receivers++, buffer_end++
. receiveImpl (senders, receivers)
recelivers makeBuffered(buffer_end) inc buffer_end

again on failure

buffer_end receive(): 1

send(1): DONE

85

Buffered Channel: Our Solution

Let's use three counters! send(x):

senders++, receivers, buffer_end
if senders >= receivers {

if senders < buffer_end {
senders storeElement(senders, x) buffering!
} } else { }
} else { ¥
R 2 .
- receive():
* senders, receivers++, buffer_end++
. receiveImpl (senders, receivers)
r‘ecelver‘s\ makeBuffered(buffer_end) inc buffer_end
again on failure

buffer_end receive(): 1

send(1): DONE
send(2): DONE

86

Buffered Channel: Our Solution

Let’s use three counters!

senders

v

*

receivers

buffer_end

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

87

Buffered Channel: Our Solution

Let’s use three counters!

senders

v

1
!

receivers

buffer_end send(1):

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

DONE

88

Buffered Channel: Our Solution

Let’s use three counters!

senders

v

11| S

receiver:\\\\

buffer_end

send(1):
send(2):

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

DONE
SUSPEND

89

Buffered Channel: Our Solution

Let's use three counters! send(x):

senders++, receivers, buffer_end
if senders >= receivers {

if senders < buffer_end {
senders storeElement(senders, x) buffering!
} } else { }
} else { ¥
4| 2 .
- receive():
* senders, receivers++, buffer_end++
. receiveImpl (senders, receivers)
r‘ecelver‘s\ makeBuffered(buffer_end) inc buffer_end
again on failure

buffer_end send(1): DONE

send(2): DONE
receive(): 1

90

Buffered Channel: Our Solution

Let’s use three counters!

senders

v

*

receivers

buffer_end

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

91

Buffered Channel: Our Solution

Let’s use three counters!

senders

v

1
!

receivers

buffer_end send(1):

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

DONE

92

Buffered Channel: Our Solution

Let’s use three counters!

senders

v

111 S

receiver:\\\\

buffer_end

send(1):
send(2):

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

DONE
SUSPEND

93

Buffered Channel: Our Solution

Let’s use three counters!

senders
\j
1(S|S
!
receivers
buffer_end send(1):
send(2):
send(3):

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

DONE
SUSPEND
SUSPEND

94

Buffered Channel: Our Solution

Let’s use three counters!

senders
\j
1| X || S
!
receivers
buffer_end send(1):
send(2):
send(3):

send(x):
senders++, receivers, buffer_end
if senders >= receivers {
if senders < buffer_end {

storeElement(senders, x) buffering!
} else { ¥
} else { ¥
receive():

senders, receivers++, buffer_end++

receiveImpl (senders, receivers)

makeBuffered(buffer_end) inc buffer_end
again on failure

DONE
CANCELLED
SUSPEND

95

Buffered Channel: Our Solution

Let's use three counters! send(x):

senders++, receivers, buffer_end
if senders >= receivers {

if senders < buffer_end {
senders storeElement(senders, x) buffering!
} } else { }
} else { ¥
31X 3 .
- receive():
* senders, receivers++, buffer_end++
. receiveImpl (senders, receivers)
recelivers makeBuffered(buffer_end) inc buffer_end
again on failure
buffer_end

send(1): DONE
send(2): CANCELLED
send(3): DONE
receive(): 1

96

Buffered Channel: Our Solution (capacity = 32)

2000 -
2 1500 -
£ 1000 -

500 A

Single Consumer, #coroutines = #threads (Go)

8000 A

6000 -

4000

ns/op

2000 A

1 2 4 8 16 32 64

Single Consumer, #coroutines = #threads (Kotlin)

2 4 8 16 32 64

= 4

Number of scheduler threads

—- Golang -Pp— new-second = Kotlin

Producer-Consumer, #coroutines = #threads (Go)
2000 A
o .
2 1500
i
¥ 1000

500 A

0 T T T T T T T
1 2 4 8 16 32 64

Producer-Consumer, #coroutines = #threads (Kotlin)

6000 H

4000 A

ns/op

2000 A

= 4
N
N
o
[
(@]
W
N
[e)]
B

Number of scheduler threads

2000
2 1500 -
2 1000 |

500 A

Producer-Consumer, #coroutines = 1000 (Go)

2000
2 1500 A
£ 1000

500 A

1 2 4 8 16 32 64

Producer-Consumer, #coroutines = 1000 (Kotlin)

1 2 4 8 16 32 64

Number of scheduler threads

ns/op

ns/op

Buffered Channel: Our Solution (capacity = 128)

2000 -

1000 A

Single Consumer, #coroutines = #threads (Go)

6000 -

4000 A

2000 A

T T T T T T T

1 2 4 8 16 32 64

Single Consumer, #coroutines = #threads (Kotlin)

[
N
S
o]
=
(o)}
w
N
[e)]
2

Number of scheduler threads

-~ Golang -P— new-second = Kotlin

Producer-Consumer, #coroutines = #threads (Go)

2000 -

1500 ~

1000 A

ns/op

500 A

0 T T T T T T T
1 2 4 8 16 32 64

Producer-Consumer, #coroutines = #threads (Kotlin)
4000 A
[~
g 3000
S
2 2000 -

1000 A

0 T
2 4 8 16 32 64

[arg

Number of scheduler threads

Producer-Consumer, #coroutines = 1000 (Go)

2000 A

o 1500 -
~

n 1000 A
c

500 A

0 T T T T T T |
1 2 4 8 16 32 64

Producer-Consumer, #coroutines = 1000 (Kotlin)

1500 A

1000 ~

ns/op

500 A

2 4 8 16 32 64

[arg

Number of scheduler threads
98

The select Expression

Client

val task = Task(...)

tasks.send(task)
N\

Suspends here

99

The select Expression

C_I‘ient

zZz,

100

The select Expression

Glient

(zZzy

The client was interrupted while
waiting for a worker

101

The select Expression

Chien

gZ Zz

The client was interrupted while
waiting for a worker

Do we need to process
the task anymore?

102

The select Expression

,f“"’z&m‘%.,
\& z)

©

The client was interrupted while
waiting for a worker

Do we need to process

the task anymore?

It would be better to cancel
the request and detect this

103

The select Expression
Client

val cancelled = Channel<Unit>() /////

Unit is sent to this channel
if the client is interrupted

104

The select Expression
Client
select<Unit> {

tasks.onSend(task) { println("Task has been sent") }
cancelled.onReceive { println("Cancelled") }

Waits simultaneously, at most one
clause is selected atomically.

105

The select Expression: Golang

e Fine-grained locking

e Acquires all involved channels locks to register into the queues
o Uses hierarchical order to avoid deadlocks

e Acquires all these locks again to resume the coroutine
o Otherwise, two select clauses could interfere

106

The First Solution

The select Expression: Second Solution

SelectOp Each alternative contains:
alternatives // e element to be sent
(RECEIVE_EL for receive)
ctate ° cha_mnel
: e action

\

Progress state of this select instance

108

The select Expression: Second Solution

SelectOp

alternatives

state

For each I o Ji :
cllErEiie ncremi/n e corresion ing counter
Try to make a Try to store the
rendezvous SelectOp
Waiting phase
v

Remove the stored
SelectOp-s

109

The select Expression: Second Solution

SelectOp For each .
cllErEiie Increment the corresponding counter
alternatives r/ N\

Try to make a Try to store the

state rendezvous SelectOp
Waiting phase

v
Remove the stored
How to make a rendezvous SelectOp-s

with this select instance?

110

The select Expression: Second Solution

SelectOp

alternatives

state

For each
alternative

Increment the corresponding counter

/

Try to make a
rendezvous

N

Rendezvous during the registration phase

REG

v

CAS

—> WAITING —»

Registered into

all channels

CHANNEL

—> DONE

Another request
makes a rendezvous

Get both the element
and the channel

Try to store the
SelectOp

v

Waiting phase

v

Remove the stored
SelectOp-s

111

The select Expression: Second Solution

Client: Worker:
select<Unit> { val task = tasks.receive()
tasks.onSend(task) { processTask(task)
println("Task has been sent")
}

cancelled.onReceive {
println("Cancelled")

}

The select Expression: Second Solution

Client: Worker:
select<Unit> { val task = tasks.receive()
tasks.onSend(task) { processTask(task)
println("Task has been sent")
}
cancelled.onReceive { tasks
println("Cancelled")
) } cancelled

SelectOp
state: REG

The select Expression: Second Solution

Client: Worker:
select<Unit> { val task = tasks.receive()
tasks.onSend(task) { processTask(task)
println("Task has been sent")
} ‘ "y
cancelled.onReceive { p tasks | SI
println("Cancelled") 7 nes
) } //// cancelled

C: Register in tasks -------""~ -

SelectOp
state: REG

The select Expression: Second Solution

Client: Worker:
select<Unit> { val task = tasks.receive()
tasks.onSend(task) { processTask(task)

println("Task has been sent")

}

cancelled.onReceive { fasks | S|
println("Cancelled") et - e
} cancelled
}
C: Register in tasks -
W: Rendezvous attempt in tasks, wait for state != REG SelectOp

state: REG

The select Expression: Second Solution

Client: Worker:
select<Unit> { val task = tasks.receive()
tasks.onSend(task) { processTask(task)
println("Task has been sent")
}
cancelled.onReceive { tasks | SI
println("Cancelled") mus
} cancelled | Sl
} - e
C: Registerin tasks P
W: Rendezvous attempt in tasks, wait for state != R_E_Cl,———”'/ SelectOp

state: REG

The select Expression: Second Solution

Client: Worker:
select<Unit> { val task = tasks.receive()
tasks.onSend(task) { processTask(task)
println("Task has been sent")
}
cancelled.onReceive { tasks | SI
println("Cancelled") mus
) } cancelled | SI

: Register in tasks

: Register in cancelled

C

W: Rendezvous attempt in tasks, wait for state != REG SelectOp

C

C: Change state to WAITING state: WAITING

The select Expression: Second Solution

Client: Worker:
select<Unit> { val task = tasks.receive()
tasks.onSend(task) { processTask(task)
println("Task has been sent")
}
cancelled.onReceive { tasks | St
println("Cancelled") mus
} cancelled | SI
}
C: Register in tasks
W: Rendezvous attempt in tasks, wait for state != REG SelectOp
C: Registerin cancelled
C: Change state to WAITING state: tasks
W: Change state to tasks, the rendezvous done

The select Expression: Second Solution

Client;

select<Unit> {
tasks.onSend(task) {
println("Task has been sent")
}
cancelled.onReceive {
println("Cancelled")

}
}

: Register in tasks

: Rendezvous attempt in tasks, wait for state != REG
: Register in cancelled

: Change state to WAITING

: Change state to tasks, the rendezvous done

: Selected, change state to DONE

N0 = 0 0O = 0

Worker:
val task = tasks.receive()
processTask(task)

tasks | St

cancelled | X

SelectOp
state: DONE

The select Expression: Deadlock Avoidance

Coroutine 1: Coroutine 2:

select<Unit> { select<Unit> {
chan_1.onSend(task) { ... } chan _2.onSend(task) { ... }
chan_2.onReceive { ... } chan_1.onReceive { ... }

} }

The select Expression: Deadlock Avoidance

Coroutine 1: Coroutine 2:
select<Unit> { select<Unit> {
chan_1.onSend(task) { ... } chan _2.onSend(task) { ... }
chan_2.onReceive { ... } chan_1.onReceive { ... }
} chan 1 }
SelectOp 1 . SelectOp 2
state: REG state: REG

chan_2

The select Expression: Deadlock Avoidance

Coroutine 1: Coroutine 2:
select<Unit> { select<Unit> {
chan_1.onSend(task) { ... } chan _2.onSend(task) { ... }
chan_2.onReceive { ... } chan_1.onReceive { ... }
’ chan_1 }
SelectOp 1 Sl o SelectOp 2
state: REG state: REG

chan 2
1. C1: Registerin chan_1 -

The select Expression: Deadlock Avoidance

Coroutine 1: Coroutine 2:
select<Unit> { select<Unit> {
chan_1.onSend(task) { ... } chan _2.onSend(task) { ... }
chan_2.onReceive { ... } chan_1.onReceive { ... }
} chan 1 }
SelectOp 1 Sl SelectOp 2
state: REG I, state: REG

_ _ chan_2 _ _
1. C1: Registerin chan_1 2. C2: Register in chan_2

The select Expression: Deadlock Avoidance

Coroutine 1: Coroutine 2:

select<Unit> { select<Unit> {
chan_1.onSend(task) { ... } chan _2.onSend(task) { ... }
chan_2.onReceive { ... } chan_1.onReceive { ... }

’ chan_1 }

SelectOp 1 Sl o SelectOp 2
state: REG i, state: REG
chan_2

1. C1: Registerin chan_1 - 2. C2: Registerin chan_2

3. C1: Rendezvous attempt in chan_2,
wait for state != REG

The select Expression: Deadlock Avoidance

Coroutine 1:

select<Unit> {
chan_1.onSend(task) { ... }
chan_2.onReceive { ... }

}

SelectOp 1
state: REG

1. C1: Registerin chan_1
3. C1: Rendezvous attemptin chan_2,
wait for state != REG

chan_1

SI

SI

chan_2

Deadlock!

Coroutine 2:

select<Unit> {
chan _2.onSend(task) { ... }
chan_1.onReceive { ... }

}

SelectOp 2
state: REG

2. C2: Registerin chan_2
4. C2: Rendezvous attempt in chan_1,
wait for state != REG

The select Expression: Deadlock Avoidance

chan_1

SelectOp 1
state: REG

SI

SI

1. C1: Registerin chan_1
3. C1: Rendezvous attemptin chan_2,
wait for state != REG

chan_2

SelectOp 2
state: REG

2. C2: Registerin chan_2
4. C2: Rendezvous attempt in chan_1,
wait for state != REG

1.
2.

Each select instance has unique id
Change the state of the select instance of minimal id
in a waiting cycle from REG to WAITING

The select Expression: Deadlock Avoidance

chan_1
SelectOp 1 Sl SelectOp 2
state: WAITING S| state: REG
2
_ _ chan_2
1. C1: Registerin chan 1 - 2. C2: Registerin chan_2
3. C1: Rendezvous attemptin chan_2, 4. C2: Rendezvous attempt in chan_1,
wait for state != REG wait for state != REG

5. C1: Deadlock, change state to WAITING

1. Each select instance has unique id
2. Change the state of the select instance of minimal id
in a waiting cycle from REG to WAITING

The select Expression: Deadlock Avoidance

chan_1
SelectOp 1 St, SelectOp 2
state: chan_1 X state: DONE
_ _ chan_2
1. C1: Registerin chan 1 - 2. C2: Registerin chan_2
3. C1: Rendezvous attemptin chan_2, 4. C2: Rendezvous attempt in chan_1,
wait for state != REG wait for state != REG
5. C1: Deadlock, change state to WAITING 6. C2: Change 1st state to chan_1,

rendezvous done

1. Each select instance has unique id
2. Change the state of the select instance of minimal id
in a waiting cycle from REG to WAITING

The select Expression: Deadlock Avoidance

chan_1
SelectOp 1 St SelectOp 2
state: DONE X state: DONE
_ _ chan_2
1. C1: Registerin chan 1 - 2. C2: Registerin chan_2
3. C1: Rendezvous attemptin chan_2, 4. C2: Rendezvous attempt in chan_1,
wait for state != REG wait for state != REG
5. C1: Deadlock, change state to WAITING 6. C2: Change 1st state to chan_1,
7. C1: Selected, change state to DONE rendezvous done

1. Each select instance has unique id
2. Change the state of the select instance of minimal id
in a waiting cycle from REG to WAITING

ns/op

ns/op

The select Expression (capacity = 0)

Single Consumer, #coroutines = #threads (Go)

4000 ~

3000 A

2000 A

1000 A

0 T T T T T T T
1 2 4 8 16 32 64

Single Consumer, #coroutines = #threads (Kotlin)
6000 A

4000 A

2000 A

0 T L T T T T T
1 2 4 8 16 32 64

Number of scheduler threads

o 3000 A
o

@ 2000 1

-

4000 A

1000 A

0

Golang =P new-second =& Kotlin

Producer-Consumer, #coroutines = #threads (Go)

1 2 4 8 16 32 64

Producer-Consumer, #coroutines = #threads (Kotlin)

15000 A

2 4 8 16 32 64

- 4

Number of scheduler threads

4000 -

3000 A

2000 A

ns/op

1000 A

Producer-Consumer, #coroutines = 1000 (Go)

20000 -

15000 A

10000 A

ns/op

5000 A

1 2 4 8 16 32

64

Producer-Consumer, #coroutines = 1000 (Kotlin)

T T T T

2 4 8 16 32

- -

Number of scheduler threads

T

64

130

The select Expression (capacity = 32)

-#- Golang -P— new-second = Kotlin

Single Consumer, #coroutines = #threads (Go) Producer-Consumer, #coroutines = #threads (Go) Producer-Consumer, #coroutines = 1000 (Go)
4000 A 3000 A
3000 2000 +
Q Q a 2000 A
o o o
E 2000 A E 1000 E
1000 A
1000 -
0 T T T T T T T O T T T T T T T O T T T T T T T
i 2 4 8 16 32 64 i 2 4 8 16 32 64 1 2 4 8 16 32 64
Single Consumer, #coroutines = #threads (Kotlin) Producer-Consumer, #coroutines = #threads (Kotlin) Producer-Consumer, #coroutines = 1000 (Kotlin)
—t 10000 -
4000 A
o 6000 - _— o
o o o
P 1 5000 - ~
@ 4000 © € 2000 A
2000 A 2500 A
0 T T T T T T T 0 T T T T T T T O T T T T T T T
1 2 4 8 16 32 64 I 2 4 8 16 32 64 1 2 4 8 16 32 64
Number of scheduler threads Number of scheduler threads Number of scheduler threads

The select Expression (capacity = 128)

Single Consumer, #coroutines = #threads (Go)

4000 A

o 3000 -

@ 2000 -
c

1000 A

0 T T T T T T T

Single Consumer, #coroutines = #threads (Kotlin)
8000 A

6000 A

op

~

4000 A

ns

2000 A

e
N
IS
0]
=
(o))
w
N
[e)]
s

Number of scheduler threads

o 1500 A
S

~
0w
=

ns/op

2000 -

-~ Golang =P~ new-second = Kotlin

Producer-Consumer, #coroutines = #threads (Go)

1000 -

500 -

0 T T T T T T T
1 2 4 8 16 32 64

Producer-Consumer, #coroutines = #threads (Kotlin)

4000 -

2000 A

g
N
N
(o]
[}
(o))
w
N
(o))
S

Number of scheduler threads

Producer-Consumer, #coroutines = 1000 (Go)

2000 -
2 1500 -
2 1000 -

500 A

0 T T T T T T T
1 2 4 8 16 32 64

Producer-Consumer, #coroutines = 1000 (Kotlin)

3000 -

2000 -

ns/op

1000 A

furgs
N
N
o
=
(o)}
W
N
[o)]
H

Number of scheduler threads

132

Instead of Summary

e Locks !=bad
e Non-blocking != scalable
e Nowadays concurrent programming is full of trade-offs

Channels in Kotlin Coroutines are the best in the world €3
https://qithub.com/Kotlin/kotlinx.coroutines/tree/channels

133

https://github.com/Kotlin/kotlinx.coroutines/tree/channels

Questions

