
Erasure Coding at Scale

Maxim Babenko

YT Storage Subsystem

What is YT?

3

› The primary storage and compute platform at Yandex
› Stores data of various kinds (logs, ML models, ads info, crawler

indexes etc)
› Runs on (mostly) commodity hardware in our own datacenters
› Provides MapReduce-like APIs (with vast extensions) for long-

running batch operations
› Provides low-latency key-value storage with multi-row commits

and snapshot isolation semantics
› Multi-tentant: supports running both ad-hoc and production

workloads within the same cluster

Storage Overview

4

› Data is stored at nodes (~10-100K)
› Each node has ~10 disks, 1-10T each
› Various physical disk types: HDD, SDD, NVMe
› Total capacity ~1EB

Важно: если нужно вернуться на предыдущий способ
выделения, нужно нажать на клавишу Уменьшить
отступ

Storage Overview

5

Most disk capacity is occupied by tables
Strongly-typed schema
Collection of rows
Row order is important
Sorted tables enable fast reduce (join) operations

Tables are split into (blob) chunks
Logical unit (portion) of data
Blob chunks are immutable
1G is a good size for a chunk

Metadata and Control Plane

6

Namespace tree (Cypress)
Not covered by this talk

Chunk metadata
~1B of chunks in a large cluster
Sequence of chunks for each table
Replicas of each chunk

Metadata and Control Plane

7

Metadata
TBs of metadata for large clusters
Purely in-memory data structures
Metadata sharding: master cells

Masters
Separate group of machines handling metadata
RAFT-like consensus protocol for fault tolerance
~10-20 of RAFT quorum groups (cells) for large clusters
Typically 5-7 masters in each group

Важно: если нужно вернуться на предыдущий способ
выделения, нужно нажать на клавишу Уменьшить
отступ

Metadata and Control Plane

8

Chunk replica orchestration
Decide which nodes should receive replicas of new chunks

Handle replica loss due for failures
Schedule and track chunk jobs: replication, removal, repair, seal

Orchestration involves some transient data structures
Handled at RAFT group leaders
Reconstructed upon re-election

Важно: если нужно вернуться на предыдущий способ
выделения, нужно нажать на клавишу Уменьшить
отступ

Replicated Blob Chunks

Why replicate?

10

10-100 of disk failures per day on large clusters
Spontaneous node outages due to whole node or even rack failures
Rolling restarts

RF=3 is the golden standard for data replication
In other words: x3 disk space overhead
Can tolerate up to 2 simultaneous disk failures

Less overhead?
RF=2 is viable but not very reliable, data loss may occur
RF=1 is totally unreliable (but could be used for temporary data)

How Strong Are the Guarantees?

11

Is is enough to tolerate 2 disk failures?
We still have 10-100 of failures per day!
What is “simultaneous failure” exactly?
Do disks actually die “simultaneously”?

Timing is important
Tens of minutes to ensure proper replication of all
affected chunks after a single node loss

Chunk Placement Freedom

12

None
Node-to-node replication

Full
Each chunk replica can be placed anywhere

Something in the middle
Divide disks into logical partitions
Replicate each partition to a number of groups
Somehow assign partition groups to chunks

Free Placement Pros and Cons

13

Pros
Really fast recovery: the whole cluster is participating
Highly elastic storage: can easily add/remove nodes

Cons
Need for sophisticated metadata storage
Weaker out-of-the-box data locality
Higher network utilization

Other Types of Failures

14

Single disk failure
No hot-plug as of now, takes the whole node down for maintenance

Node hardware failure (CPU, memory, PSU, NIC etc)
Same as above

Rack failure
Could be a ToR switch firmware update

Whole DC is down
Not very important for single-DC clusters
Mostly same as rack failure for multi-DC clusters

Placement Anti-Affinity

15

Failure domains
Subsets of nodes that tend to die simultaneously
Failure domain shares some physical SPoF

Examples
Node
Rack
Datacenter

Anti-affinity constraints
Don’t place too many replicas in the
same failure domain!

Single-DC Placement Anti-Affinity

16

Failure domains
Nodes, racks
Don’t place more than one replica in each failure domain

Sample scenarios
Rack goes down: just one replica is lost
Rack plus an arbitrary node go down: still have a live replica
Rack plus two nodes: some data could become unavailable

Важно: если нужно вернуться на предыдущий способ
выделения, нужно нажать на клавишу Уменьшить
отступ

Blob Chunk Structure

17

Metadata
Protobuf with extensible structure
Index for block offsets and lengths in payload

Payload
A sequence of blocks (opaque blobs)
Blocks are compressed/uncompressed as a whole
Block is a unit of read

We don’t want metadata proliferation => we like big
chunks (>1GB)

Write Pipeline

18

Client is producing data block-by-block
Do not store the whole chunk in memory (can take GBs)

Forward blocks to pre-allocated replica nodes
Pipeline shape

 a chain or a star

Theory vs Practice

19

Theory
Need RF=3 replicas
All flushed to a persistent medium

Practice
Let’s write URF=2 replicas and extend these to RF=3 at background
Let’s not interrupt the pipeline even if just MURF=1 alive replica remains
Let’s not invoke fdatasync and hope the best

One should choose which of the above to apply with care!

Read Pipeline

20

Primary goal: read fast

Probe replicas before reading, choose the least-loaded one

One the best replica is selected, issue a read request

Replicas may vanish, re-appear and move

Refresh replica placement info from time to time

Read hedging (ask multiple replicas in short succession)

Erasure Blob Chunks

Erasure Coding

22

Contract
Given: N data parts (blobs, typically of the same length L)
Compute: K parity parts (blobs of length L)
Such that: given any subset of G (<N+K) parts it is possible to
reconstruct all the parts

Simple replication
N=1, K=RF-1, G=1

Erasure-coded Chunks
Place all N+K parts at distinct nodes (or even failure domains)
Fault tolerance: can tolerate up to N+K-G node failures

The Math Beneath

23

Words
Parts are sequences of words
Word is an element of a finite field

Erasure coding
For each position within data parts compute from N data words some K parity
words such that any G words of the above are sufficient to reconstruct the whole
set of data

Erasure decoding
Resembles reconstructing a polynomial from given
values at given points

Erasure Coding in Practice

24

Reed-Solomon codes are quite popular
N and K could be arbitrary
Typically words are bytes, GF(28)
Addition/subtraction is just XOR and is very fast
Multiplication is hard and reduces to polynomial arithmetics
Division is no better

Popular implementations
Old-and-mature Jerasure library
Pretty modern ISA-L from Intel (requires modern
processors with proper SIMD instructions)

Constructing The Parts From Chunk Data

25

Chunk splitting
Divide each chunk into N data parts of same length
Compute K additional data parts
Pretty much preserves the block structure
Need to have the whole chunk in memory prior to encoding
Preferred for batch workloads

Constructing The Parts From Chunk Data

26

Chunk striping
ith byte goes to (i mod N)th part
Can encode data on-the-fly
Reading a range of chunk involves contacting many nodes
Not useful for batch workloads but essential for journals

Erasure Repair: Basics

27

Node goes down
Masters detect that some chunk parts are missing
Repair jobs are spawned at nodes to run the decode pipelines
Recovering from a node loss is fast since all cluster nodes participate

Readers may…
Wait until data is fully recovered
Run on-the-fly repair

Erasure Repair: More Tricks

28

Repair order
Masters maintain queues of pending repairs
When client is missing some data parts it contacts masters
These requests promote (lift-to-front) chunks that are being actively
read thus prioritizing repairs

Safeguards
Repair traffic and concurrency are throttled not to overload the system

Nice side effect
Node decommission is better handled via repair rather then replication

Erasure Coding Examples

29

Reed-Solomon with N=6, K=3
Needs 9 nodes (or even racks) to store a chunk

Pros
Incurs x1.5 disk space overhead
Tolerates up to 3 disk failures (better than RF=3)

Cons
Repairing even a single data part requires reading 6 other parts
Decoding always involves GF-multiplication and is CPU-intensive

Erasure Coding Examples

30

LRC(12,2,2)
LRC stands for Local Reconstruction Codes
N=12, K=4, RF=16
Incurs x4/3 disk space overhead
Not Maximum Distance Separable: cannot tolerate arbitrary 4 failures
But can tolerate up to 3 arbitrary failures

Single data part failure
Needs just 3 another parts for decoding
Decoding involves just additions (XORs)
Much of Yandex cold data is now stored using this scheme

Detour: Data Journalling

Текст

Chunk Mutability

32

Table chunks are immutable
Must have all data in memory before writing out to disks
Write pipeline is optimized for throughput rather than latency

What about OLTP?
KV storages need place to store changesets (WALs)
KV storages struggle for low latency
Can pack changesets into chunks but cannot wait until chunk is
full before flushing it to disks

Journal Chunks: Contract

33

› Journal chunks (AKA append-only chunks)
› Contains a sequence of (typically small) records
› When record is appended, is receives a record number (LSN)
› Records are not reordered (w.r.t. LSN)
› Once a record is acked by write pipeline it and all its predecessors are

reliably stored
› System never loses any acked records
› During a crash, system may discard some records

that were submitted (but were not acked yet)
› Ack latencies are low (tens of ms)

Journal Chunks: Implementation

34

Basic notions
RF = total number of replicas to store
WQ = write quorum, number of replicas to wait before acking the records
RQ = read quorum, number of alive replicas needed to determine the number
of acked records

Safety
RQ + WQ > RF (or each read quorum intersects each write quorum)

Example
RQ=3, WQ=2, RF=4

Journal Chunks: Write Pipeline

35

Write pipeline
Send new records to all replicas
Ack when WQ replicas are flushed

Consistency
Replicas are prefixes of each other

Handling replica failures
If less than WQ replicas were successfully
written then switch to another chunk

Journal Chunks: Read Pipeline

36

Given a subset of replicas, can we read the data?
Replica consistency => the longest replica is always enough

But how can we be sure about the number of acked records?
If <RQ replicas are alive, all of them may lack the last acked records
Otherwise the longest replica contains all the acked records

Journal Chunks: Analysis

37

Pros
Can handle mutable (append-only) data structures
Provides strong safety guarantees

Cons
Much higher disk and network bandwidth footprint

RF=3 provides 2-node fault tolerance for immutable chunks
RF=3, RQ=WQ=2 provides 1-node fault tolerance for mutable chunks
RF=3, RQ=1, WQ=3 provides 2-node fault tolerance for mutable chunks
 but at the cost of increased latency
RF=5, RQ=WQ=3 provides 2-node fault tolerance
 but at the cost of x5 bandwidth usage

Disk storage space?
Not actually a concern for WALs

Erasure Journal Chunks

Motivation

39

Erasure-coded blob chunk can save on disk space
But also on disk and network bandwidth

The latter are typically limiting factors for WALs
Also mind SSD wear (DWPDs are not that big nowadays)

Let’s write erasure-coded journals!

Splitting vs Striping

40

Recall that we did splitting for
erasure-coded blobs

Reading a small range from an erasure-
coded blob touches just one part

But we need the whole chunk data to
be known in advance

Splitting is not an option for journals => will
do striping

Quorums for Erasure-Coded Journals

41

ReedSolomon(N,K) is used for coding
RF = N + K (the total number of replicas)

Safety
RQ + WQ > RF for replicated journals
RQ + WQ > RF + N - 1 for erasure-coded journals

RHS declares the needed size of intersection between RQ and WQ
Higher RHS means more alive replicas are needed

Some Practical Scenario

42

Practical scenario
Reed-Solomon with N=3, K=3, RF=6, WQ = 5, RQ = 4
Tolerates up to 2 node failures
x2 bandwidth overhead

Previously for replicated journals
RF = 5, WQ = RQ = 3
Tolerates up to 2 node failures
x5 bandwidth overhead

Huge savings on bandwidth!

Safety argument

43

The Perils of Jerasure

44

DATA[0] <00000000000000000000000000000000>

DATA[1] <01010101010101010101010101010101>

DATA[2] <02020202020202020202020202020202>

DATA[3] <03030303030303030303030303030303>

DATA[4] <04040404040404040404040404040404>

DATA[5] <05050505050505050505050505050505>

Reed-Solomon with N=6, K=3

The Perils of Jerasure

45

DATA[0] <00000000000000000000000000000000>

DATA[1] <01010101010101010101010101010101>

DATA[2] <02020202020202020202020202020202>

DATA[3] <03030303030303030303030303030303>

DATA[4] <04040404040404040404040404040404>

DATA[5] <05050505050505050505050505050505>

PARITY[0] <01010101010101010101010101010101>

PARITY[1] <03030303030303030606060606060606>

PARITY[2] <04040404040404040505050505050505>

Reed-Solomon with N=6, K=3, Jerasure encoder

The Perils of Jerasure

DATA[0] <00000000000000000000000000000000>

DATA[1] <01010101010101010101010101010101>

DATA[2] <02020202020202020202020202020202>

DATA[3] <03030303030303030303030303030303>

DATA[4] <04040404040404040404040404040404>

DATA[5] <05050505050505050505050505050505>

PARITY[0] <03030303030303030303030303030303>

PARITY[1] <0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a>

PARITY[2] <24242424242424242424242424242424>

46

Reed-Solomon with N=6, K=3, ISA-L encoder

The Perils of Jerasure

47

Jerasure does not act byte-per-byte
For erasure journals, read and write portions are typically not aligned
This complicates reading and decoding arbitrary ranges

ISA-L is a “pure” Reed-Solomon encoder
For erasure-coded journals, we exclusively use ISA-L
Also ISA-L is just faster
Old chunks are still Jerasure-encoded and will remain as such

Cross-DC Case

48

ReedSolomon(3,3) works nicely for 3 DCs
Place 6 replicas in 2+2+2 crossDC arrangement
Any 2 nodes can go down simultaneously
Any DC can go down

Also nice
Cross-DC links are not cheap
Disk bandwidth savings imply cross-DC network bandwidth savings

Conclusions

Текст

Things to Remember

50

› Erasure coding is a real thing, you can rely on it

› You can store most of your cold data in erasure

› Erasure writes are not very cheap but modern processors can run
encoding-decoding really fast

› Reads may suffer hotspots but on-the-fly repair may help
(but mind the increased bandwidth usage and CPU utilization)

› Erasure coding not only saves on disk space but also on bandwidth

Thank you
Maxim Babenko

Head of distributed computing technologies team

babenko@yandex-team.ru

@maxim_babenko

