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YT Storage Subsystem



What is YT?
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› The primary storage and compute platform at Yandex 
› Stores data of various kinds (logs, ML models, ads info, crawler 

indexes etc) 
› Runs on (mostly) commodity hardware in our own datacenters 
› Provides MapReduce-like APIs (with vast extensions) for long-

running batch operations 
› Provides low-latency key-value storage with multi-row commits 

and snapshot isolation semantics 
› Multi-tentant: supports running both ad-hoc and production 

workloads within the same cluster



Storage Overview
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› Data is stored at nodes (~10-100K) 
› Each node has ~10 disks, 1-10T each 
› Various physical disk types: HDD, SDD, NVMe 
› Total capacity ~1EB

Важно: если нужно вернуться на предыдущий способ 
выделения, нужно нажать на клавишу Уменьшить 
отступ



Storage Overview
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Most disk capacity is occupied by tables 
Strongly-typed schema 
Collection of rows 
Row order is important 
Sorted tables enable fast reduce (join) operations 

Tables are split into (blob) chunks 
Logical unit (portion) of data 
Blob chunks are immutable 
1G is a good size for a chunk



Metadata and Control Plane
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Namespace tree (Cypress) 
Not covered by this talk 

Chunk metadata 
~1B of chunks in a large cluster 
Sequence of chunks for each table 
Replicas of each chunk 



Metadata and Control Plane
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Metadata 
TBs of metadata for large clusters 
Purely in-memory data structures 
Metadata sharding: master cells 

Masters 
Separate group of machines handling metadata 
RAFT-like consensus protocol for fault tolerance 
~10-20 of RAFT quorum groups (cells) for large clusters 
Typically 5-7 masters in each group 

Важно: если нужно вернуться на предыдущий способ 
выделения, нужно нажать на клавишу Уменьшить 
отступ



Metadata and Control Plane
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Chunk replica orchestration 
Decide which nodes should receive replicas of new chunks 

Handle replica loss due for failures 
Schedule and track chunk jobs: replication, removal, repair, seal 

Orchestration involves some transient data structures 
Handled at RAFT group leaders 
Reconstructed upon re-election

Важно: если нужно вернуться на предыдущий способ 
выделения, нужно нажать на клавишу Уменьшить 
отступ



Replicated Blob Chunks



Why replicate?
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10-100 of disk failures per day on large clusters 
Spontaneous node outages due to whole node or even rack failures 
Rolling restarts 

RF=3 is the golden standard for data replication 
In other words: x3 disk space overhead 
Can tolerate up to 2 simultaneous disk failures 

Less overhead? 
RF=2 is viable but not very reliable, data loss may occur 
RF=1 is totally unreliable (but could be used for temporary data)



How Strong Are the Guarantees?
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Is is enough to tolerate 2 disk failures? 
We still have 10-100 of failures per day! 
What is “simultaneous failure” exactly? 
Do disks actually die “simultaneously”? 

Timing is important 
Tens of minutes to ensure proper replication of all 
affected chunks after a single node loss 



Chunk Placement Freedom
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None 
Node-to-node replication 

Full 
Each chunk replica can be placed anywhere 

Something in the middle 
Divide disks into logical partitions 
Replicate each partition to a number of groups 
Somehow assign partition groups to chunks



Free Placement Pros and Cons
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Pros 
Really fast recovery: the whole cluster is participating 
Highly elastic storage: can easily add/remove nodes 

Cons 
Need for sophisticated metadata storage 
Weaker out-of-the-box data locality 
Higher network utilization 



Other Types of Failures
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Single disk failure 
No hot-plug as of now, takes the whole node down for maintenance 

Node hardware failure (CPU, memory, PSU, NIC etc) 
Same as above 

Rack failure 
Could be a ToR switch firmware update  

Whole DC is down 
Not very important for single-DC clusters 
Mostly same as rack failure for multi-DC clusters  



Placement Anti-Affinity
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Failure domains 
Subsets of nodes that tend to die simultaneously 
Failure domain shares some physical SPoF 

Examples 
Node 
Rack 
Datacenter 

Anti-affinity constraints 
Don’t place too many replicas in the 
same failure domain! 



Single-DC Placement Anti-Affinity
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Failure domains 
Nodes, racks 
Don’t place more than one replica in each failure domain 

Sample scenarios 
Rack goes down: just one replica is lost 
Rack plus an arbitrary node go down: still have a live replica 
Rack plus two nodes: some data could become unavailable 

  
Важно: если нужно вернуться на предыдущий способ 
выделения, нужно нажать на клавишу Уменьшить 
отступ



Blob Chunk Structure
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Metadata 
Protobuf with extensible structure 
Index for block offsets and lengths in payload  

Payload  
A sequence of blocks (opaque blobs) 
Blocks are compressed/uncompressed as a whole 
Block is a unit of read 

We don’t want metadata proliferation => we like big 
chunks (>1GB) 



Write Pipeline
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Client is producing data block-by-block 
Do not store the whole chunk in memory (can take GBs) 

Forward blocks to pre-allocated replica nodes 
Pipeline shape 

                    a chain                             or                  a star



Theory vs Practice
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Theory 
Need RF=3 replicas 
All flushed to a persistent medium 

Practice 
Let’s write URF=2 replicas and extend these to RF=3 at background 
Let’s not interrupt the pipeline even if just MURF=1 alive replica remains 
Let’s not invoke fdatasync and hope the best 

One should choose which of the above to apply with care!



Read Pipeline
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Primary goal: read fast 

Probe replicas before reading, choose the least-loaded one 

One the best replica is selected, issue a read request 

Replicas may vanish, re-appear and move 

Refresh replica placement info from time to time 

Read hedging (ask multiple replicas in short succession)



Erasure Blob Chunks



Erasure Coding
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Contract 
Given: N data parts (blobs, typically of the same length L) 
Compute: K parity parts (blobs of length L) 
Such that: given any subset of G (<N+K) parts it is possible to 
reconstruct all the parts 

Simple replication 
N=1, K=RF-1, G=1 

Erasure-coded Chunks 
Place all N+K parts at distinct nodes (or even failure domains) 
Fault tolerance: can tolerate up to N+K-G node failures



The Math Beneath
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Words 
Parts are sequences of words 
Word is an element of a finite field 

Erasure coding 
For each position within data parts compute from N data words some K parity 
words such that any G words of the above are sufficient to reconstruct the whole 
set of data 

Erasure decoding 
Resembles reconstructing a polynomial from given 
values at given points



Erasure Coding in Practice
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Reed-Solomon codes are quite popular 
N and K could be arbitrary 
Typically words are bytes, GF(28) 
Addition/subtraction is just XOR and is very fast 
Multiplication is hard and reduces to polynomial arithmetics 
Division is no better 

Popular implementations 
Old-and-mature Jerasure library 
Pretty modern ISA-L from Intel (requires modern 
processors with proper SIMD instructions) 



Constructing The Parts From Chunk Data

25

Chunk splitting 
Divide each chunk into N data parts of same length 
Compute K additional data parts 
Pretty much preserves the block structure 
Need to have the whole chunk in memory prior to encoding 
Preferred for batch workloads



Constructing The Parts From Chunk Data
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Chunk striping 
ith byte goes to (i mod N)th part 
Can encode data on-the-fly 
Reading a range of chunk involves contacting many nodes 
Not useful for batch workloads but essential for journals



Erasure Repair: Basics

27

Node goes down 
Masters detect that some chunk parts are missing 
Repair jobs are spawned at nodes to run the decode pipelines 
Recovering from a node loss is fast since all cluster nodes participate 

Readers may… 
Wait until data is fully recovered 
Run on-the-fly repair 



Erasure Repair: More Tricks

28

Repair order 
Masters maintain queues of pending repairs 
When client is missing some data parts it contacts masters 
These requests promote (lift-to-front) chunks that are being actively 
read thus prioritizing repairs 

Safeguards 
Repair traffic and concurrency are throttled not to overload the system 

Nice side effect 
Node decommission is better handled via repair rather then replication



Erasure Coding Examples
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Reed-Solomon with N=6, K=3 
Needs 9 nodes (or even racks) to store a chunk 

Pros 
Incurs x1.5 disk space overhead 
Tolerates up to 3 disk failures (better than RF=3) 

Cons 
Repairing even a single data part requires reading 6 other parts 
Decoding always involves GF-multiplication and is CPU-intensive 



Erasure Coding Examples
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LRC(12,2,2) 
LRC stands for Local Reconstruction Codes 
N=12, K=4, RF=16 
Incurs x4/3 disk space overhead 
Not Maximum Distance Separable: cannot tolerate arbitrary 4 failures 
But can tolerate up to 3 arbitrary failures 

Single data part failure 
Needs just 3 another parts for decoding 
Decoding involves just additions (XORs) 
Much of Yandex cold data is now stored using this scheme 



Detour: Data Journalling

Текст



Chunk Mutability
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Table chunks are immutable 
Must have all data in memory before writing out to disks 
Write pipeline is optimized for throughput rather than latency 

What about OLTP? 
KV storages need place to store changesets (WALs) 
KV storages struggle for low latency 
Can pack changesets into chunks but cannot wait until chunk is 
full before flushing it to disks 



Journal Chunks: Contract
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› Journal chunks (AKA append-only chunks) 
› Contains a sequence of (typically small) records 
› When record is appended, is receives a record number (LSN) 
› Records are not reordered (w.r.t. LSN) 
› Once a record is acked by write pipeline it and all its predecessors are 

reliably stored 
› System never loses any acked records 
› During a crash, system may discard some records 

that were submitted (but were not acked yet) 
› Ack latencies are low (tens of ms)



Journal Chunks: Implementation
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Basic notions 
RF = total number of replicas to store 
WQ = write quorum, number of replicas to wait before acking the records 
RQ = read quorum, number of alive replicas needed to determine the number 
of acked records 

Safety 
RQ + WQ > RF (or each read quorum intersects each write quorum) 

Example 
RQ=3, WQ=2, RF=4 



Journal Chunks: Write Pipeline
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Write pipeline 
Send new records to all replicas 
Ack when WQ replicas are flushed 

Consistency 
Replicas are prefixes of each other 

Handling replica failures 
If less than WQ replicas were successfully 
written then switch to another chunk



Journal Chunks: Read Pipeline
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Given a subset of replicas, can we read the data? 
Replica consistency => the longest replica is always enough 

But how can we be sure about the number of acked records? 
If <RQ replicas are alive, all of them may lack the last acked records 
Otherwise the longest replica contains all the acked records



Journal Chunks: Analysis
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Pros 
Can handle mutable (append-only) data structures 
Provides strong safety guarantees 

Cons 
Much higher disk and network bandwidth footprint 

RF=3 provides 2-node fault tolerance for immutable chunks 
RF=3, RQ=WQ=2 provides 1-node fault tolerance for mutable chunks 
RF=3, RQ=1, WQ=3 provides 2-node fault tolerance for mutable chunks 
    but at the cost of increased latency 
RF=5, RQ=WQ=3 provides 2-node fault tolerance 
    but at the cost of x5 bandwidth usage 

Disk storage space? 
Not actually a concern for WALs 



Erasure Journal Chunks



Motivation
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Erasure-coded blob chunk can save on disk space 
But also on disk and network bandwidth 

The latter are typically limiting factors for WALs 
Also mind SSD wear (DWPDs are not that big nowadays) 

Let’s write erasure-coded journals!



Splitting vs Striping
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Recall that we did splitting for 
erasure-coded blobs 

Reading a small range from an erasure-
coded blob touches just one part 

But we need the whole chunk data to 
be known in advance  

Splitting is not an option for journals => will 
do striping



Quorums for Erasure-Coded Journals
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ReedSolomon(N,K) is used for coding 
RF = N + K (the total number of replicas) 

Safety 
RQ + WQ > RF               for replicated journals 
RQ + WQ > RF + N - 1   for erasure-coded journals 

RHS declares the needed size of intersection between RQ and WQ   
Higher RHS means more alive replicas are needed 



Some Practical Scenario

42

Practical scenario 
Reed-Solomon with N=3, K=3, RF=6, WQ = 5, RQ = 4 
Tolerates up to 2 node failures 
x2 bandwidth overhead 

Previously for replicated journals 
RF = 5, WQ = RQ =  3 
Tolerates up to 2 node failures 
x5 bandwidth overhead 

Huge savings on bandwidth!



Safety argument
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The Perils of Jerasure
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DATA[0]   <00000000000000000000000000000000> 

DATA[1]   <01010101010101010101010101010101> 

DATA[2]   <02020202020202020202020202020202> 

DATA[3]   <03030303030303030303030303030303> 

DATA[4]   <04040404040404040404040404040404> 

DATA[5]   <05050505050505050505050505050505>

Reed-Solomon with N=6, K=3 



The Perils of Jerasure
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DATA[0]   <00000000000000000000000000000000> 

DATA[1]   <01010101010101010101010101010101> 

DATA[2]   <02020202020202020202020202020202> 

DATA[3]   <03030303030303030303030303030303> 

DATA[4]   <04040404040404040404040404040404> 

DATA[5]   <05050505050505050505050505050505> 

PARITY[0] <01010101010101010101010101010101> 

PARITY[1] <03030303030303030606060606060606> 

PARITY[2] <04040404040404040505050505050505>

Reed-Solomon with N=6, K=3, Jerasure encoder 



The Perils of Jerasure

DATA[0]   <00000000000000000000000000000000> 

DATA[1]   <01010101010101010101010101010101> 

DATA[2]   <02020202020202020202020202020202> 

DATA[3]   <03030303030303030303030303030303> 

DATA[4]   <04040404040404040404040404040404> 

DATA[5]   <05050505050505050505050505050505> 

PARITY[0] <03030303030303030303030303030303> 

PARITY[1] <0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a0a> 

PARITY[2] <24242424242424242424242424242424>
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Reed-Solomon with N=6, K=3, ISA-L encoder 



The Perils of Jerasure
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Jerasure does not act byte-per-byte 
For erasure journals, read and write portions are typically not aligned  
This complicates reading and decoding arbitrary ranges 

ISA-L is a “pure” Reed-Solomon encoder  
For erasure-coded journals, we exclusively use ISA-L 
Also ISA-L is just faster 
Old chunks are still Jerasure-encoded and will remain as such



Cross-DC Case
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ReedSolomon(3,3) works nicely for 3 DCs 
Place 6 replicas in 2+2+2 crossDC arrangement 
Any 2 nodes can go down simultaneously 
Any DC can go down 

Also nice 
Cross-DC links are not cheap 
Disk bandwidth savings imply cross-DC network bandwidth savings 



Conclusions

Текст



Things to Remember
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› Erasure coding is a real thing, you can rely on it 

› You can store most of your cold data in erasure 

› Erasure writes are not very cheap but modern processors can run 
encoding-decoding really fast 

› Reads may suffer hotspots but on-the-fly repair may help 
(but mind the increased bandwidth usage and CPU utilization) 

› Erasure coding not only saves on disk space but also on bandwidth
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