
© 2020 All Rights Reserved
1

SQL primary key, surrogate key,
composite keys, foreign keys... and JPA

Franck Pachot, Developer Advocate

Franck Pachot, Developer Advocate

© 2020 All Rights Reserved

Franck Pachot

Developer Advocate on YugabyteDB
(PostgreSQL-compatible distributed database)

Past:
20 years in databases, dev and ops

Oracle ACE Director, AWS Data Hero

Oracle Certified Master, AWS Database Specialty

2

fpachot@yugabyte.com

dev.to/FranckPachot

@FranckPachot

© 2020 All Rights Reserved

This presentation idea started with...

3

© 2020 All Rights Reserved 4

Demo

what is a key?

what is a primary key?
what is a surrogate key?
what is a foreign key?
what is a composite key?

© 2020 All Rights Reserved

A table may have no key

5

create table people(
 first_name, last_name , birth_date , email , twitter_handle, tax_country, tax_id
) as values
 ('Franck' , 'Pachot', date '1971-02-08', 'me@pachot.net', '@FranckPachot', 'CH' , 12345689)
,('John ' , 'Doe' , date '1970-01-01', 'john@dow.net' , null , 'US' , 11223344)
,('Jane ' , 'Doe' , date '1970-01-01', 'jane@dow.net' , null , 'US' , 55667788)
;
\d+ people
select * from people;
select * from people where last_name='Pachot';
select * from people where last_name='Doe';

Problem:
I’ve no guaranteed way to
identify a unique person

© 2020 All Rights Reserved

Queries should have a key, and we can provide many keys

6

alter table people add constraint unique_twitter_handle_unique unique (twitter_handle);
alter table people add constraint unique_tax_key unique (tax_country, tax_id);
alter table people add constraint unique_email unique (email);
alter table people alter column email set not null;
\d+ people

You can have many keys

Or unique
concatenation of columns

A key is a unique column

Keys on non nullable column can
identify any row in the table

© 2020 All Rights Reserved

One of the key can be the primary key

7

Primary key is about physical organization of rows

Some database do not require a primary key
PostgreSQL: heap tables. Primary key is just a not-null unique index
Oracle: heap tables (except Index Organized Tables)
DB2: heap tables. Primary key is optional

Some databases cluster data on the primary key (B*Tree or LSM tree)
YugabyteDB: without primary key an internal uuid is generated
MySQL (InnoDB): the first unique index is used to cluster data
SQL Server: clustered index (except heap tables)

© 2020 All Rights Reserved

A key used for organization should be immutable

8

A key that is used for physical organization
Should not be updated (cons: index maintenance, fragmentation)

A key that is used for logical organization (pointer)
Must not be updated (cons: complexity of cascading changes)

When it is about physical or logical organization, we can add a non-business key
Name: (Surrogate|Artificial|Technical) key

© 2020 All Rights Reserved

Adding a surrogate key to be the primary key

9

alter table people add column people_id int;
update people t set people_id=n.id from
(select row_number()over() id,* from people) n
where (t.tax_country,t.tax_id)=(n.tax_country,n.tax_id);
select * from people;
alter table people add constraint people_pk primary key (people_id);

© 2020 All Rights Reserved

Having a generated key for the surrogate

10

create sequence people_id start with 4;
alter table people alter column people_id set default(nextval('people_id'));
\d+ people;

Generated != Surrogate
When exposed to the user (screen, bills, url) it becomes a natural key

- not immutable. e.g: you assign customer id 666 to your best customer and he wants to change

- leaks information on the internals

© 2020 All Rights Reserved

Performance is the same: all key are unique index

11

explain select * from people where people_id=1;
explain select * from people where email='me@pachot.net';
insert into people (email) select format('spam%s@gmail.com',n) from generate_series(1,1000) n;
explain analyze select * from people where people_id=1;
explain analyze select * from people where twitter_handle='@FranckPachot';
\d+ people;

© 2020 All Rights Reserved

Immutable?

12

\d+ people;
update people set people_id=0 where email='me@pachot.net';

There is no problem to update the key, primary or not.
As long as nothing references it (foreign key)

© 2020 All Rights Reserved

Foreign key can reference any key - primary or just unique

13

create table tax_reports (tax_country text, tax_id int, year int, amount numeric,
foreign key (tax_country,tax_id)
references people(tax_country,tax_id)
);
insert into tax_reports values ('CH',12345689,2021,999.99);

Primary key is just
the default if you
don’t mention
columns (because
there is only one
primary key)

© 2020 All Rights Reserved

Update the parent key

14

update people set tax_id=666666 where email='me@pachot.net';
update tax_reports set tax_id=666666 where tax_id=12345689;

We have seen lot of agility but here we have a problem

© 2020 All Rights Reserved

Foreign keys should reference immutable keys

15

alter table tax_reports add column people_id int references people;
update tax_reports set people_id=0 where tax_id=12345689;
\d tax_reports

© 2020 All Rights Reserved

A primary key can include the surrogate key from the parent

16

alter table tax_reports drop constraint tax_reports_tax_country_fkey;
alter table tax_reports alter column people_id set not null;
alter table tax_reports add primary key (people_id,year);
\d tax_reports

Typical many-to-one
Do you need another
surrogate here?

© 2020 All Rights Reserved

In short...

17

SQL may not need a key... but JPA requires an @Id

Natural keys can change 👉 it is easier to generate a key

Exposed values may be updated 👉 it is safer with surrogate key

Referenced keys (by FK) should be immutable

What about composite keys?

© 2020 All Rights Reserved 18

Composite keys

As we can always add a surrogate key,

do we need to support multi-column keys?

© 2020 All Rights Reserved

Primary keys on association tables will be composite

19

https://vladmihalcea.com/the-best-way-to-map-a-many-to-many-association-with-extra-columns-when-using-jpa-and-hibernate

many-to-many: the concatenation of the foreign keys is the primary key
No need to add a surrogate key (and another index to maintain) that will never be used

https://vladmihalcea.com/the-best-way-to-map-a-many-to-many-association-with-extra-columns-when-using-jpa-and-hibernate

© 2020 All Rights Reserved

When replacing all composite keys by surrogate:

20

Compare this with (countryID,SubDivisionID,cityID,addressID) as PK of ADDRESS

Additional index to maintain (for the surrogate key)
Additional joins on queries (users query by natural ID)
Reduces partitioning possibilities (how to partition ADDRESS by country?)
Hides optimizer statistics on business values (predicate selectivity)

© 2020 All Rights Reserved

Some entities look like association tables but are not

21

Here we need a key for the association between products and customers,

it is a business entity, and the concatenation of foreign keys is not unique

-> need a key (here generated but not surrogate)

© 2020 All Rights Reserved 22

JPA

Composite key mapping

© 2020 All Rights Reserved

“Legacy schemas and composite keys”

23

© 2020 All Rights Reserved

“Mapping from legacy databases”

24

JPA

https://download.oracle.com/otn-pub/jcp/persistence-2.0-fr-oth-JSpec/persistence-2_0-final-spec.pdf

© 2020 All Rights Reserved

“many legacy schemas use (natural) composite key”

This is too vague. The real problem is:

JPA needs an identifier with hashcode() and equals()

Natural key is a candidate, but there’s rarely one

Surrogate key is a candidate: generate an object Id and then put data

What about keys composed of surrogate keys?

(aggregations, compositions, associations)

Problem with the model or with the tool?

25

© 2020 All Rights Reserved

Composite keys can be mapped in JPA

26

The best way to map a Composite Key with JPA and Hibernate:
https://vladmihalcea.com/the-best-way-to-map-a-composite-primary-key-with-jpa-and-hibernate/

https://vladmihalcea.com/the-best-way-to-map-a-composite-primary-key-with-jpa-and-hibernate/

© 2020 All Rights Reserved

Solution: composite key as Embeddable

27

@Embeddable
public class EmployeeId implements Serializable {

@ManyToOne
@JoinColumn(name = "company_id")
private Company company; @Column(name = "employee_number")
private Long employeeNumber; public EmployeeId() {
}
public EmployeeId(Company company, Long employeeId) {

 this.company = company;
 this.employeeNumber = employeeId;

}
public Company getCompany() { return company; }
public Long getEmployeeNumber() { return employeeNumber; }
@Override
public boolean equals(Object o) {

 if (this == o) return true;
 if (!(o instanceof EmployeeId)) return false;
 EmployeeId that = (EmployeeId) o;
 return Objects.equals(getCompany(), that.getCompany()) &&
 Objects.equals(getEmployeeNumber(), that.getEmployeeNumber());

}
@Override
public int hashCode() { return Objects.hash(getCompany(), getEmployeeNumber()); }

© 2020 All Rights Reserved

Solution: composite key as Embeddable

28

@Entity(name = "Employee")
@Table(name = "employee")
public class Employee {

@EmbeddedId
private EmployeeId id;

private String name;
public EmployeeId getId() {

 return id;
}
public void setId(EmployeeId id) {

 this.id = id;
}
public String getName() {

 return name;
}
public void setName(String name) {

 this.name = name;
}

}

If mapped by (foreign key):

@ManyToOne
@JoinColumns (foreignKey = @ForeignKey(name = "FK_LAPTOP_EMP"),
 value = {
 @JoinColumn(name="company_id",referencedColumnName = "company_id"),
 @JoinColumn(name="employee_number",referencedColumnName="employee_number")
 })
private Employee laptopOwner;

© 2020 All Rights Reserved 29

Generated keys

Sequence or UUID

© 2020 All Rights Reserved

Generated keys: UUID or sequence?

30

Generated <> Surrogate
 You can generate a key that becomes a natural key
 Example: Customer ID is not immutable because exposed to customers

But a surrogate key is generated

Generated key requires unique values
- With a single point of truth (problem: scale)
- or With a large random generator (problem: size)

© 2020 All Rights Reserved

Sequences

31

Do not try to have no-gap sequences!

If you need it, it must be after-commit (on query or batch updated)

© 2020 All Rights Reserved

Sequences

32

Sequences can scale with cache (application or DB)
https://dev.to/yugabyte/uuid-or-cached-sequences-42fi
➖ Security: May leak some information about your data
➕ smaller and faster than a UUID

https://dev.to/yugabyte/uuid-or-cached-sequences-42fi

© 2020 All Rights Reserved

GenerationType.SEQUENCE

33

@SequenceGenerator(name="myseq", initialValue=42, allocationSize=666)

public class Company {
@Id
@GeneratedValue(strategy=GenerationType.SEQUENCE,generator="myseq")
private Long id; private String name; public Long getId() {

 return id;
}

YugabyteDB default db-side cacheSequenceGenerator allocationSize

© 2020 All Rights Reserved

UUID

34

UUID will always be larger than a sequence (16 bytes)
➖ Requires more CPU than a cached sequence
➕ does not leak information (GDPR)
➕ still unique when merging databases

🙏 Do not store UUID as VARCHAR(32)

© 2020 All Rights Reserved 35

Thank You

Join us on Slack:

www.yugabyte.com/slack

Star us on GitHub:

github.com/yugabyte/yugabyte-db

Core message:

● Surrogate key is almost always needed

● We cannot ignore composite keys

in a relational database

● Think about the business meaning and then

performance/agility for your RDBMS
fpachot@yugabyte.com

dev.to/FranckPachot

@FranckPachot

http://www.yugabyte.com/slack

