Franck Pachot, Developer Advocate |

@ yugabyteDB

Franck Pachot

Developer Advocate on YugabyteDB
(PostgreSQL-compatible distributed database)

Past:
20 years in databases, dev and ops
Oracle ACE Director, AWS Data Hero
Oracle Certified Master, AWS Database Specialty

g yugabyteDB

fpachot@yugabyte.com
dev.to/FranckPachot
u @FranckPachot

© 2020 All Rights Reserved

This presentation idea started with...

<« Tweet

@ JPA Buddy

What could be the reason to use composite keys in
20217? Isn’t surrogate PK + unique index a better
option? Why would you use a composite key today?

No reason 28.4%
Memory and performance 9.7%
Natural fit for the model 55.4%

Something else? Tell us! 6.5%

(Y yugabyte © 2020 All Rights Reserved

Demo

what is a key?

what is a primary key?
what is a surrogate key?
what is a foreign key?
what is a composite key?

(Y yugabyte © 2020 All Rights Reserved

A may have no key

yb_demo_northwind=# select * from people where last_name='Pachot';
first_name | last_name | birth_date | | twitter_handle | tax_country |
———————————— Bt S T Lt s s
Franck | Pachot | 1971-02-08 | me@pachot.net | @FranckPachot | 12345689
(1 row)

I've no guaranteed way to
yb_demo_northwind=# select * from people where last_name="'Doe |dent|fy a unique person

first_name | last_name | birth_date |

+ +
| 1970-01-01 | john@dow.net | 11223344
| 1970-01-01 | jane@dow.net | 55667788

create table people (

first name, last name , birth date , email , twitter handle, tax country, tax id
) as values

('Franck' , 'Pachot', date '1971-02-08', 'me@pachot.net', 'Q@FranckPachot', 'CH' , 12345689)
, ("John ' , 'Doe’ , date '1970-01-01', 'john@dow.net' , null , 'uUs! , 11223344)

, ("Jane ! , 'Doe'’! , date '1970-01-01', 'jane@dow.net' , null , 'uUs! , 55667788)
\d+ people

select * from people;

select * from people where last name='Pachot';

select * from people where last:name:'Doe';

(Y yugabyte © 2020 All Rights Reserved

Queries should have a key, and we can provide

yb_demo_northwind=# alter table people add constraint unique_twitter_handle_unique unique (twitter_handle);
ALTER TABLE
yb_demo_northwind=# alter table people add constraint unique_tax_key unique (tax_country, tax_id);
ALTER TABLE
yb_demo_northwind=# alter table people add constraint unique_email unique (email);
ALTER TABLE
yb_demo_northwind=# alter table people alter column email set not null;
ALTER TABLE
yb_demo_northwind=# \d people
Table "public.people"
Column | Collation | Nullable | Default

first_name

last_name

birth_date

email not null

twitter_handle

tax_country

tax_id

Indexes:
"unique_email" UNIQUE CONSTRAINT, lsm (email HASH)
"unique_tax_key" UNIQUE CONSTRAINT, 1lsm (tax_country HASH, tax_id ASC)
"unique_twitter_handle_unique" UNIQUE CONSTRAINT, lsm (twitter_handle HASH)

alter table people add
alter table people add unique tax key 1
alter table people add unique email
alter table people alter column email set not null;
\d+ people

unique twitter handle unique

(email) ;

@ yugabyte

keys

Keys on non nullable column can
identify any row in the table

You can have many keys

Or unique
concatenation of columns

A key is a unique column

(twitter handle);
(tax_country, tax id);

© 2020 All Rights Reserved

One of the key be the primary key

Inde;es:
"unique_email" UNIQUE CONSTRAINT, 1lsm (email HASH)

"unique_tax_key" UNIQUE CONSTRAINT, 1lsm (tax_country HASH, tax_id ASC)
"unique_twitter_handle_unique" UNIQUE CONSTRAINT, lsm (twitter_handle HASH)

Primary key is about physical organization of rows

Some database do not a primary key

PostgreSQL: heap tables. Primary key is just a not-null unique index
Oracle: heap tables (except Index Organized Tables)
DB2: heap tables. Primary key is optional

Some databases data on the primary key (B*Tree or LSM tree)

YugabyteDB: without primary key an internal uuid is generated
MySQL (InnoDB): the first unique index is used to cluster data
SQL Server: clustered index (except heap tables)

g yugabyte

© 2020 All Rights Reserved

A key used for organization should be

Indexes:
"unique_email" UNIQUE CONSTRAINT, 1lsm (email HASH)

"unique_tax_key" UNIQUE CONSTRAINT, 1lsm (tax_country HASH, tax_id ASC)
"unique_twitter_handle_unique" UNIQUE CONSTRAINT, lsm (twitter_handle HASH)

A key that is used for organization
Should not be updated (cons: index maintenance, fragmentation)

A key that is used for organization (pointer)
Must not be updated (cons: complexity of cascading changes)

When it is about physical or logical organization, we add a non-business key
Name: (Surrogate|Artificial| Technical) key

(Y yugabyte © 2020 All Rights Reserved

Adding a key to be the primary key

yb_demo_northwind=# alter table people add column people_id int;
ALTER TABLE
yb_demo_northwind=# update people t set people_id=n.id from
yb_demo_northwind-# (select row_number()over() id,* from people) n
yb_demo_northwind-# where (t.tax_country,t.tax_id)=(n.tax_country,n.tax_id);
UPDATE 3
yb_demo_northwind=# select * from people;

first_name | last_name | birth_date | email

1970-01-01 john@dow.net
Franck 1971-02-08 me@pachot.net
RETS 1970-01-01 jane@dow.net
(3 rows)

yb_demo_northwind=# alter table people add constraint people_pk primary key (people_id);
ALTER TABLE
yb_demo_northwind=#

alter table people add column people id int;

update people t set people id=n.id from

(select row number ()over () id,* from people) n

where (t.tax country,t.tax id)=(n.tax country,n.tax id);

select * from people; B B B

alter table people add constraint people pk primary key (people id);

(Y yugabyte © 2020 All Rights Reserved

Having a key for the surrogate

Generated != Surrogate
When exposed to the user (screen, bills, url) it becomes a natural key
- not immutable. e.g: you assign customer id 666 to your best customer and he wants to change
- leaks information on the internals

tax:id | integer | | | | plain
people_id | integer | | not null | nextval('people_id'::regclass) | plain

Indexes:
"people_pk" PRIMARY KEY, lsm (people_id HASH)
"unique_email"™ UNIQUE CONSTRAINT, lsm (email HASH)

create sequence people id start with 4;
alter table people alter column people id set default(nextval ('people id'));
\d+ people;

(Y yugabyte © 2020 All Rights Reserved

Performance is the same: all key are

yb_demo_northwind=# explain select * from people where people_id=1;
QUERY PLAN

Index Scan using people_pk on people (cost=0.00..4.11 rows=1 width=172)

Index Cond: (people_id = 1)
(2 rows)

yb_demo_northwind=# explain select * from people where email='me@pachot.net';
QUERY PLAN

Index Scan using unique_email on people (cost=0.00..4.12 rows=1 width=172)

Index Cond: (email = 'me@pachot.net'::text)
(2 rows)

explain select * from people where people id=1;
explain select * from people where email='me@pachot.net';

insert into people (email) select format ('spam%s@gmail.com',n) from generate series(1,1000) n;

explain analyze select * from people where people id=1l;

explain analyze select * from people where twitter handle='@FranckPachot';

\d+ people;

@ yugabyte

© 2020 All Rights Reserved

Immutable?

There is no problem to update the key, primary or not.
As long as nothing references it (foreign key)

"people_pk" PRIMARY KEY, lsm (people_id HASH)

"unique_email" UNIQUE CONSTRAINT, lsm (email HASH)

"unique_tax_key" UNIQUE CONSTRAINT, 1lsm (tax_country HASH, tax_id ASC)
"unique_twitter_handle_unique" UNIQUE CONSTRAINT, lsm (twitter_handle HASH)

yb_demo_northwind=# update people set people_id=0 where email='me@pachot.net';
UPDATE 1
yb_demo_northwind=#

\d+ people;
update people set people id=0 where email='me@pachot.net';

© 2020 All Rights Reserved

Foreign key can reference key - primary or just unique

yb_demo_northwind=# create table tax_reports (tax_country text, tax_id int, year int, amount numeric,
yb_demo_northwind(# foreign key (tax_country,tax_id)
yb_demo_northwind (# references people(tax_country,tax_id)
yb_demo_northwind (#);
insert into tax_reports values ('CH',12345689,2021,999.99);
CREATE TABLE
yb_demo_northwind=# insert into tax_reports values ('CH',12345689,2021,999.99);
INSERT 0 1
yb_demo_northwind=# \d tax_reports
Table "public.tax_reports"

Column | Type | Collation | Nullable | Default

————————————— o}

tax_country | text |
tax_id | integer |
year | integer
amount | numeric |
Foreign-key constraints:
"tax_reports_tax_country_fkey" FOREIGN KEY (tax_country, tax_id) REFERENCES people(tax_country, tax_id)

create table tax reports (tax country text, tax id int, year int, amount numeric,
foreign key (tax country,tax id)

references people (tax country,tax id)

) ;

insert into tax reports values ('CH',12345689,2021,999.99);

@ yugabyte

Primary key is just
the default if you
don’t mention
columns (because
there is only one
primary key)

© 2020 All Rights Reserved

Update the key

We have seen lot of agility but here we have a problem

yb_demo_northwind=# update people set tax_id=666666 where email='me@pachot.net';
ERROR: update or delete on table "people" violates foreign key constraint "tax_reports_tax_country_fkey" on table "tax_reports"
DETAIL: Key (tax_country, tax_id)=(CH, 12345689) 1is still referenced from table "tax_reports".

yb_demo_northwind=# update tax_reports set tax_id=666666 where tax_id=12345689;
ERROR: 1insert or update on table "tax_reports" violates foreign key constraint "tax_reports_tax_country_fkey"
DETAIL: Key (tax_country, tax_id)=(CH, 666666) is not present 1in table "people".

update people set tax 1d=666666 where email='me@pachot.net';
update tax reports set tax 1d=666666 where tax 1d=12345689;

(Y yugabyte © 2020 All Rights Reserved

Foreign keys should reference immutable keys

yb_demo_northwind;# alter tablg tax_reports add column people_id int references people;

ALTER TABLE
yb_demo_northwind=# update tax_reports set people_id=0 where tax_id=12345689;
UPDATE 1
yb_demo_northwind=# \d tax_reports
Table "public.tax_reports"
| Collation | Nullable

tax_country

tax_id integer

year integer

amount numeric

people_id integer

Foreign-key constraints:
"tax_reports_people_id_fkey" FOREIGN KEY (people_id) REFERENCES people(people_id)
"tax_reports_tax_country_fkey" FOREIGN KEY (tax_country, tax_id) REFERENCES people(tax_country, tax_id)

alter table tax reports add column people id int references people;
update tax reports set people id=0 where tax i1d=12345689;
\d tax reports

(Y yugabyte © 2020 All Rights Reserved

A primary key can include the surrogate key from the parent

yb_demo_northwind=# alter table tax_reports drop constraint tax_reports_tax_country_fkey;

ALTER TABLE

yb_demo_northwind=# alter table tax_reports alter column people_id set not null;

ALTER TABLE .

yb_demo_northwind=# alter table tax_reports add primary key (people_id,year); Typ|Ca| many-to-one
ALTER TABLE

yb_demo_northwind=# \d tax_reports DO yOU need another

Table "public.tax_reports"

| Collation | Nullable Surrogate here?

tax_country
tax_id integer
year integer
amount numeric
people_id integer
Indexes:
"tax_reports_pkey" PRIMARY KEY, lsm (people_id HASH, year ASC)
Foreign—key constraints:
"tax_reports_people_id_fkey" FOREIGN KEY (people_id) REFERENCES people(people_id)

alter table tax reports drop constraint tax reports tax country fkey;
alter table tax reports alter column people id set not null; N
alter table tax reports add primary key (people id,year);

\d tax reports o

(Y yugabyte © 2020 All Rights Reserved

In short...

SQL may not need a key... but JPA requires an @I|d
Natural keys can change @ it is easier to generate a key

Exposed values may be updated @ it is safer with surrogate key
Referenced keys (by FK) should be immutable
What about composite keys?

(Y yugabyteDB © 2020 All Rights Reserved

17

Composite keys

As we can always add a surrogate key,
do we need to support multi-column keys?

(Y yugabyte © 2020 All Rights Reserved

Primary keys on association tables will be composite

_| post_tag v
| post v _Itag ¥
created_on DATETIME(6)
id BIGINT(20) id BIGINT(20)
! post_id BIGINT(20)
* title VARCHAR(255) name VARCHAR(255)
! tag_id BIGINT(20)
> = >

https://vladmihalcea.com/the-best-way-to-map-a-many-to-many-association-with-extra-columns-when-using-jpa-and-hibernate

many-to-many: the concatenation of the foreign keys is the primary key
No need to add a surrogate key (and another index to maintain) that will never be used

(Y yugabyteDB © 2020 All Rights Reserved 19

https://vladmihalcea.com/the-best-way-to-map-a-many-to-many-association-with-extra-columns-when-using-jpa-and-hibernate

When replacing all composite keys by surrogate:

|
Country

o Code char(2) PK ﬂL

Code3 ~ char(3) SubDivision City cniihns

CodeNumeric char(3) — - ; ; AddressID int PK

EnglishName varchar(50) SubDivisionID int PK CitylD int PK Street nvarchar(50)

NativeName varchar(50) Code nvarchar(10) Code varchar(10) ————o<] Number varchar(10)

ContinentCode char(2) FK EnglishName nvarchar(50) EnglishName nvarchar(50) Apartment varchar(10) N
NativeName nvarchar(50) NativeName nvarchar(50) CitylD int FK

+ CountryCode char(2) FK SubDivisionID int FK

T

T

Compare this with (countrylD,SubDivisionID,citylD,addressID) as PK of ADDRESS

Additional index to maintain (for the surrogate key)
Additional joins on queries (users query by natural ID)
Reduces partitioning possibilities (how to partition ADDRESS by country?)
Hides optimizer statistics on business values (predicate selectivity)

g yugabyteDB

© 2020 All Rights Reserved

20

Some entities look like association tables but are not

Orders
| Order
Products FK_ProductOrder PK OrderlD INT64
FK ProductID INT64
[Froduct Quantity INT64 EK_GustomerGrder Customers
PK ProductID| INT64 FK CustomerlD INT64
Cust
Name STRING(256) ustomer l
Price FLOAT64 PK CustomerID | INT64

FirstName STRING(256)
LastName STRING(256)

Here we need a key for the association between products and customers,
it is a business entity, and the concatenation of foreign keys is not unique
-> need a key (here generated but not surrogate)

(Y yugabyteDB © 2020 All Rights Reserved

21

JPA

Composite key mapping

(Y yugabyte © 2020 All Rights Reserved

“Legacy schemas and composite keys”

g yugabyteDB

... Writing Hibernate applications 294

8.1 Designing layered applications 295
Using Hibernate in a servlet engine 296
Using Hibernate in an EJB container 311
8.2 Implementing application transactions 320
Approving a new auction 321 = Doing it the hard way 322

Using detached persistent objects 324 = Using a long session 325
Choosing an approach to application transactions 329

8.3 Handling special kinds of data 330

Legacy schemas and composite keys 330 = Audit logging 340
8.4 Summary 347

© 2020 All Rights Reserved 23

“Mapping from legacy databases”

JPA

g yugabyteDB

2.4 Primary Keys and Entity Identity

Every entity must have a primary key.

The primary key must be defined on the entity class that is the root of the entity hierarchy or on a
mapped superclass that is a (direct or indirect) superclass of all entity classes in the entity hierarchy. The
primary key must be defined exactly once in an entity hierarchy.

A primary key corresponds to one or more fields or properties (“attributes”) of the entity class.

e A simple (i.e., non-composite) primary key must correspond to a single persistent field or
property of the entity class. The Td annotation or id XML element must be used to denote a
simple primary key. See Section 11.1.18.

e A composite primary key must correspond to either a single persistent field or property or to a
set of such fields or properties as described below. A primary key class must be defined to rep-
resent a composite primary key. Composite primary keys typically arise when mapping from
legacy databases when the database key is comprised of several columns. The EmbeddedId
or IdClass annotation is used to denote a composite primary key. See Sections 11.1.15 and
11.1.19.

JSR-317 Final Release 27 11/10/09

© 2020 All Rights Reserved

24

https://download.oracle.com/otn-pub/jcp/persistence-2.0-fr-oth-JSpec/persistence-2_0-final-spec.pdf

Problem with the model or with the tool?

“many legacy schemas use (natural) composite key”

This is too vague. The real problem is:

JPA needs an identifier with hashcode() and equals()

Natural key is a candidate, but there’s rarely one

Surrogate key is a candidate: generate an object Id and then put data

What about keys composed of surrogate keys?
(aggregations, compositions, associations)

(Y yugabyteDB © 2020 All Rights Reserved

25

Composite keys can be mapped in JPA

] employee v] phone v
: company_id BIGINT (20) ‘ » num ber VARCHAR(255)
employee_number BIGINT(20) #H— — — <> company_id BIGINT (20)

“name VARCHAR(255) > employee_number BIGINT(20)

> >

The best way to map a Composite Key with JPA and Hibernate:

https://vladmihalcea.com/the-best-way-to-map-a-composite-primary-key-with-jpa-and-hibernate/

(Y yugabyteDB © 2020 All Rights Reserved

26

https://vladmihalcea.com/the-best-way-to-map-a-composite-primary-key-with-jpa-and-hibernate/

Solution: composite key as Embeddable

tttttt

he pr.

) PmzazykeycIasSmuSbese 1

© Primary i Aalizaby

equaljy Y clasg
QEmbeddable Y for theg - USE defip
public class Employeeld implementsSerializable { © Which ¢, ~Methods ugeci:ls d haspc

@ManyToOne - m@"Mmme®me”%®ume
@JoinColumn (name = "company id") “eWwWWﬁu:mmm“OfWMe
private Company company; @Column (name = "employee number") eammwgp%
private Long employeeNumber; public EmployeeId() {
}
public Employeeld (Company company, Long employeeId) {
this.company = company;
this.employeeNumber = employeeld;
}
public Company getCompany () { return company; }
public Long getEmployeeNumber () { return employeeNumber; }
@Override
public boolean equals (Object o) {
if (this == o) return true;
if (! (o instanceof EmployeeId)) return false;
EmployeeId that = (Employeeld) o;
return Objects.equals (getCompany (), that.getCompany()) &&

Objects.equals (getEmployeeNumber (), that.getEmployeeNumber ()) ;
}

@Override
public int hashCode () { return Objects.hash (getCompany (), getEmployeeNumber()); }

(Y yugabyteDB © 2020 All Rights Reserved 27

Solution: composite key as Embeddable

If mapped by (foreign key):

@ManyToOne

@JoinColumns (foreignKey = @ForeignKey(name = "FK LAPTOP EMP"),

value = {
@Entity (name = "Employee") @JoinColumn (name="company id",referencedColumnName = "company id"),
@Table (name = "employee") @JoinColumn (name="employee number",referencedColumnName="employee number")
public class Employee { 1)

private Employee laptopOwner;
@EmbeddedId

private Employeeld id;

private String name;

public EmployeeId getId() {

return id;

}

public void setId(EmployeeId id) {
this.id = id;

}

public String getName () {

return name;

}

public void setName (String name) {
this.name = name;

}

(Y yugabyteDB © 2020 All Rights Reserved

28

Generated keys

Sequence or UUID

(Y yugabyte © 2020 All Rights Reserved

Generated keys: UUID or sequence?

Generated <> Surrogate

You can generate a key that becomes a natural key
Example: Customer ID is not immutable because exposed to customers

But a surrogate key is generated

Generated key requires unique values

- With asingle point of truth (problem: scale)
- or With alarge random generator (problem: size)

(Y yugabyteDB © 2020 All Rights Reserved

30

Sequences

Do not try to have no-gap sequences!

If you need it, it must be after-commit (on query or batch updated)

(Y yugabyteDB © 2020 All Rights Reserved

31

Sequences

Sequences can scale with cache (application or DB)

https://dev.to/yugabyte/uuid-or-cached-sequences-42fi
== Security: May leak some information about your data
== smaller and faster than a UUID

(Y yugabyteDB © 2020 All Rights Reserved

32

https://dev.to/yugabyte/uuid-or-cached-sequences-42fi

GenerationType.SEQUENCE

yugabyte=# select * from pg_sequences;
schemaname | sequencename

| sequenceowner | data_type | start_value | min_value |

max_value | increment_by | cycle | cache_size | last_value
| hibernate_sequence | yugabyte 1 | 9223372036854775807 |
| my_sequence | yugabyte | bigint

1 | 9223372036854775807 |

public 100 |
(3 rows)
yugabyte=#

SequenceGenerator allocationSize YugabyteDB default db-side cache

@SequenceGenerator (name=Tyseq", initialValue=42, allocationSize=666)
public class Company {

@Id
@GeneratedValue (strategy=GenerationType.SEQUENCE, generator=nyseq")

private Long id; private String name; public Long getId() {
return id;

}

(Y yugabyte © 2020 All Rights Reserved

UUID

UUID will always be larger than a sequence (16 bytes)

== Requires more CPU than a cached sequence
== does not leak information (GDPR)
== still unique when merging databases

o Do not store UUID as VARCHAR(32)

(Y yugabyteDB © 2020 All Rights Reserved

34

Thank You Core messae:

Join us on Slack: Surrogate key is almost always needed

Star us on GitHub: We cannot ignore composite keys
in a relational database

fpachot@yugabyte.com Think about the business meaning and then
dev.to/FranckPachot performance/agility for your RDBMS

; @FranckPachot

@ yugabyteDB

http://www.yugabyte.com/slack

