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Context

Multi-core and/or multi-processor shared-memory system

processor

= thread/core/processorsequential code =



Setting

A simplified model of the system

Ignoring memory consistency 
model (of hardware / 
programming language), 
memory fences, etc.

Examples in pseudo code
(C/Java inspired)

memory

code codecode

read write read read read

any interleaving is possible



Connection of model to reality

Modeling parallelism with a sequential execution model?!

Intuition (1/2): Non-conflicting parallel memory operations commute

Þ Pretend they happen in some sequential order; it doesn’t matter

t0 = X // read

Y = t1 // write

t0 = X // read

t1 = X // read



Connection of model to reality

Modeling parallelism with a sequential process?!

Intuition (2/2): Conflicting memory operations serialize in hardware

Þ They do happen in some sequential order

t0 = X // read

X = t1 // write

Y = t0 // write

Y = t1 // write
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Approach

Show general principles via a concrete running example

Goal: Design a concurrent FIFO queue
Multi-producer, multi-consumer, unbounded

ÞData structure: Linked list with Head and Tail pointers

Challenge: Synchronize concurrent operations



Two-lock queue [Michael & Scott ‘96]

First approach:
Lock-based algorithm
Allows concurrent enqueue & dequeue

Sentinel Node { T val; Node* next; };

Initially:
Head = Tail = new Node(NULL);
Head->next = NULL;

Head

Tail



Two-lock queue: enqueue()

enqueue(T val) {
Node *n = new Node(val);
lock(&tail_lock);
Tail->next = n;
Tail = n;
unlock(&tail_lock); }

Head

Tail



Two-lock queue: dequeue()

dequeue(T val) {
lock(&head_lock);
Node *n = Head->next;
if (n) {
rv = n->val;
Head = n->next;

} else {
rv = EMPTY;

}
unlock(&tail_lock);
return rv;

}

Head

Tail



Two-lock queue scalability

At most two cores can be doing useful queue work

Head

Tail



Lock-free synchronization

Lock-free (or nonblocking) algorithm
Formal definition: Some executing method must eventually complete

(But individual method invocations might starve!)

Þ Rules out use of locks
If lock holder stops taking steps, nobody can make progress

Instead rely on atomic read-modify-write instructions, such as 
compare-and-set (CAS)



CAS

CAS(T *addr, T old, T new) {
atomic {

if (*addr != old)
return false;

*addr = new;
return true;

}
}

CAS

read-to-CAS segment

t=X //read
CAS

read

CAS(&X,t,t+1)

time



Lock-freedom to the rescue!

Lock-freedom is often used as proxy for performance

In practice, lock holders don’t die, but can be delayed
Þ Intuition: Not waiting for delayed lock holders improves performance



Lock-free queue [Michael & Scott ‘96]

Second queue approach:
Lock-freeing the two-lock queue

Sentinel Node { T val; Node* next; };

Initially:
head = tail = new Node(NULL);
head->next = NULL;

Head

Tail



“Recipe” for lock-freeing code

Replace each write w in the critical section with a CAS
Intuition: Guarantees write isn’t lost (overwritten)

Challenge:  Dealing with inconsistent state of the data structure
Occurs when a thread stalls mid-operation

w1; w2 w1’; w2’

Lock-based Lock-free

w1 ???

Typical 
solution: 
Helping

w2; w1’; w2’



Lock-free enqueue [Michael & Scott ‘96]

Logical enqueue happens on node connection
Þ Dequeue can now see node
Physical enqueue follows

void enqueue(T v) {
Node *n = new Node(v);
while (true) {
Node *tail = Tail;
Node *next = tail->next;

if (next == NULL) {
if (CAS(&tail->next,NULL,n))
break;

} else {
CAS(&Tail, tail, next);

}
}
CAS(&Tail, tail, n); }

Head

Tail

CAS

CAS



Lock-free enqueue [Michael & Scott ‘96]

Helping:
If observe inconsistent state, fix it & retry

void enqueue(T v) {
Node *n = new Node(v);
while (true) {
Node *tail = Tail;
Next *next = tail->next;

if (next == NULL) {
if (CAS(&tail->next,NULL,n))
break;

} else {
CAS(&Tail, tail, next);

}
}
CAS(&Tail, tail, n); }

Head

Tail

CAS



Lock-free dequeue [Michael & Scott ‘96]

Make first node the new sentinel
Old sentinel can be reclaimed

T dequeue() {
while (true) {
Node* head = Head;
Node* tail = Tail;
Next* next = head->next;

if (head == tail) {
if (!next) return EMPTY;
CAS(&Tail, tail, next);
} else {
T rv = next->value;
if (CAS(&Head,head,next))
return rv;

}}}

Head

Tail

CAS



Lock-free dequeue [Michael & Scott ‘96]

Helping:
Fix up inconsistent state, if observed

T dequeue() {
while (true) {
Node* head = Head;
Node* tail = Tail;
Next* next = head->next;

if (head == tail) {
if (!next) return EMPTY;
CAS(&Tail, tail, next);
} else {
T rv = next->value;
if (CAS(&Head,head,next))
return rv;

}}}

Head

Tail

CAS



Lock-freedom to the rescue?

Why the 
drop?

Why the  
(sharp) 
drop?
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Cache coherence

The cache incoherence problem: core can read stale data

memory
read x

X=5

X=5

cache cache

write x:=55



read x

Cache coherence

The cache incoherence problem: core can read stale data

memory
X=5

cache cache

X=55



Cache coherence

The cache incoherence problem: core can read stale data
Solution: Caches use a distributed protocol to guarantee fresh data

Þ In a cache coherent system, caches are invisible
Any execution observed could also occur without caches
(Hence, our simplified model!)



MSI protocol

Common denominator of commercial protocols (e.g.: MESIF, MOESI)

Idea: Single-writer/multi-reader protocol
For any cache line, at any time, there is either a single core that may write 
it (and read it), or some number of cores that may read it

A core’s cache has a state for every line:
• M(odified): core allowed to write/read
• S(hared): core allowed to read
• I(nvalid): core can’t read nor write



MSI protocol: obtaining write permission

Core attempts to write a cache line

I M
GetM

Cache sends 
GetM request 
to obtain 
ownership

interconnect

Responses and 
data arrive, 
transaction 
completes

Protocol 
exchanges 
messages



MSI protocol: obtaining write permission

Modern servers use directory-based protocols
Directory holds the state of each line & manages ownership transfers

IM
GetM

Directory
(shared last-level 

cache)

SS

Invalidation

Data[Ack=3]

Inv-Ack

SII I



MSI protocol: obtaining write permission

Servers use directory-based protocols
Directory holds the state of each line & manages ownership transfers

IM
GetM

Directory

M

Fwd-GetM

Data[Ack=0]

I



Cache coherence serialization

What happens when 
many cores write to a 
cache line concurrently?

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

time



Cache coherence serialization

What happens when all 
cores write to a cache 
line concurrently?
Directory serializes
requests

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Data

time
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line concurrently?
Directory serializes
requests

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Fwd-GetM

…
.

Data

time



Cache coherence serialization

What happens when all 
cores write to a cache 
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Cache coherence serialization
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Cache coherence serialization

What happens when all 
cores write to a cache 
line concurrently?
Directory serializes
requests

C2
GetM

C3 D
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lat
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Cache coherence serialization

What happens when all 
cores write to a cache 
line concurrently?
Directory serializes
requests
ÞTime to acquire write 

permission increases 
linearly with # of 
acquiring cores!
Cache line contention

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Fwd-GetM

Fwd-GetM

Fw
d-G

etM

…
.

Data

Data
time



Atomic read-modify-write instructions

No need to “lock the bus”
• Get line in M state 
• Cache stalls incoming requests 

for line
• Cores performs RMW 

instruction (read+write)
• Cache resumes processing 

incoming requests

I
GetM

interconnectM

CAS

Atomicity guaranteed if cache line isn’t invalidated between R and W



Contended atomics → cache line contention

Acquire time = N * L cycles
N = # of contending cores
L = invalidation latency

Cache line 
contention

Cache line  contention 
outweighs parallelism

Scalable 
MCS lock

???



CAS failures

A failed CAS delays all cores but doesn’t complete useful work



CAS failures

Raw CAS throughput is higher than CAS loop (queue) throughput

potential for 
improvement

do { t = X;
} while CAS(&X,

t,t’));
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Avoiding CAS failures

Idea: Try to replace CAS with an atomic instruction that doesn’t fail, so 
that every atomic operation contributes to useful work

Will use fetch-and-add (FAA)

FAA(int *addr, int x) {
atomic {

int old = *addr;
*addr += x;
return old;

}
}



Avoiding CAS failures

Plan:

Simple but unrealistic algorithm to illustrate idea

Convert it to a practical algorithm



(Unrealistic) FAA queue

Data structure is infinite array
Head and Tail are indices (conceptually, pointers) into array

…
Head

Tail

Cell { T val; };

Initially:
Head = Tail = 0;
Q = Cell[]
All cells have value 

┴ ┴ ┴ ┴

┴



(Unrealistic) FAA queue enqueue

Obtain unique cell index (contended operation)
CAS value into cell (not contended)

…
Head

Tail

enqueue(x) {
while (true) {
t = F&A(&Tail, 1)
if (CAS(&Q[t],  , x))
return

}
}

┴ ┴ ┴ ┴x

FAA

┴



(Unrealistic) FAA queue dequeue

Obtain unique cell index (contended operation)
If cell not empty: return value
If cell empty: 

…
Head

Tail

dequeue(x) {
while (true) {
h = F&A(&Head, 1)
if (!CAS(&Q[h],   ,  ))
return Q[h]

if (Tail ≤ h+1) return EMPTY
}
}

┴ ┴ ┴

FAA

┴

┴

x

┴

Prevent future 
enqueue from 
using this cell (it 
will retry)



FAA queue problems

1) Infinite arrays don’t exist



FAA queue problems

1) Infinite arrays don’t exist
2) Algorithm isn’t lock-free!

…
Head:
0

Tail:
0

┴ ┴ ┴ ┴

Dequeue

Enqueue

CAS
┴ ┴

Head:
1

Tail:
1

Head:
2

Tail:
2



FAA queue problems

1) Infinite arrays don’t exist
2) Algorithm isn’t lock-free!

…
Head:
0

Tail:
0

┴ ┴ ┴ ┴

Dequeue
Head:
1

Tail:
1

Head:
1

Tail:
1

Heuristic solution:
Dequeue waits for enqueue
to make progress
Still not formally lock-free

Next:
LCRQ algorithm, solves both problems



Cyclic ring queue (CRQ)

1) Don’t have infinite arrays →Represent queue as cyclic array

…
Head

┴ ┴ ┴ ┴

Tail

R cells

Seq #

Cells updated with 
wide CAS (available 
on x86)



CRQ enqueue

If cell’s seq# not 
greater than mine, 
deposit value and 
update seq# to mine.
Otherwise, retry15

Head:
12

Tail:
15

Enque
ue

F&A
Tail:
16

15
CAS

X

£



CRQ dequeue

12

Head:
12

Tail:
15

Dequeue

Head:
13

12
CAS

12+R

£

Cell empty:
If seq# not greater 
than mine, prevent 
future enqueue.



CRQ dequeue

15

Head:
15

Tail:
16

Dequeue

F&AHead:
16

15
CAS

X15+R

=

Cell empty:
If seq# not greater 
than mine, prevent 
future enqueue.
Cell not empty:
If seq# = mine, return 
value and bump seq# 
to next iteration
If seq# > mine, retry



CRQ dequeue

Cell empty:
If seq# not greater 
than mine, prevent 
future enqueue.
Cell not empty:
If seq# = mine, return 
value and bump seq# 
to next iteration
If seq# > mine, retry
Otherwise: retry???

15

Head:
15+R

Dequeue

15+R
X15+R Y

Dequeue
15

Enqueue

15+R

Lost 

item
Tail:
16

Head:
16

Tail:
16+R

Head:
16+R

K

Head:
K+1

Dequeue arrives before enqueue while cell is 
occupied by previous iteration – no analogy 
in infinite array case.

<



CRQ dequeue

Cell empty:
If seq# not greater 
than mine, prevent 
future enqueue.
Cell not empty:
If seq# = mine, return 
value and bump seq# 
to next iteration
If seq# > mine, retry
Otherwise: retry???

Solution:
Bump seq# + mark the cell as unsafe for future 
enqueues (1 bit extra state)

Mark removed by later enqueue E if E detects 
that the corresponding dequeue hasn’t started
yet (by checking Head ≤ E’s index)

(full details in paper: 
https://www.cs.tau.ac.il/~mad/publicati
ons/ppopp2013-x86queues.pdf)



CRQ livelocks

1) Don’t have infinite arrays →Represent queue as cyclic array
2) Algorithm (still) isn’t lock-free!

DequeueEnqueue



LCRQ                          [Morrison and Afek PPoPP‘13]

1) Don’t have infinite arrays →Represent queue as cyclic array
2) Algorithm isn’t lock-free! → List of CRQs

Starving..

Link new CRQ initialized with element
Enqueue

X

Enqueue

CAS

CAS
Close queue



Evaluation



Conclusion & takeaways

Lock-freedom doesn’t imply being faster than locking
Þ Need to consider problem domain and workload

Contended CAS failures are very wasteful due to coherence serialization
Þ Design to avoid them

Better yet: design to avoid contention in the first place
(Probably not possible for every data structure)


