Designing Fast Lock-Free
Algorithms by Understanding
Cache Coherence Dynamics

Adam Morrison
Tel Aviv University

Outline

_

Serialization

bottlenecks
(lock-based &
lock-free code)

v

Cache
coherence
dynamics

-

Designing fast-
lock free

algorithms

_

Context

Multi-core and/or multi-processor shared-memory system

| System-|
Agent &8
' | ‘Memory
== || Controlleg

processor s

including
Display;
DMIi and
Misci 170 3

AR
| FHHEN

X lllllllllll“lll.‘lnﬁ-
o Memory Controller /0 wesssme

sequential code = q = thread/core/processor

Setting

A simplified model of the system [code code code
lgnoring memory consistency
model (of hardware / (merr|ory | |)
programming language),
memory fences, etc.

\ Y
Examples in pseudo code Q w w q w
(C/Java inspired) read write read read read

any interleaving is possible

Connection of model to reality

Modeling parallelism with a sequential execution model?!

Intuition (1/2): Non-conflicting parallel memory operations commute

l*t@ = X // read t0 = X // read
l* Y = t1 // write tl1 = X // read

= Pretend they happen in some sequential order; it doesn’t matter

Connection of model to reality

Modeling parallelism with a sequential process?!

Intuition (2/2): Conflicting memory operations serialize in hardware

l*t@ = X // read Y = te // write
l’ X = t1 // write

— They do happen in some sequential order

Y = tl // write

Part 1

r

Serialization

bottlenecks
(lock-based &

~N

\Iock-free code))

Cache
coherence
dynamics

-

Designing fast-
lock free

algorithms

_

Approach

Show general principles via a concrete running example

Goal: Design a concurrent FIFO queue
Multi-producer, multi-consumer, unbounded

—>Data structure: Linked list with Head and Tail pointers

Challenge: Synchronize concurrent operations

Two-lock queue [Michael & Scott ‘96]

First approach:

Lock-based algorithm
Allows concurrent enqueue & dequeue

6

Head

6 Tai

Sentinel Node { T val; Node* next; };

Initially:
Head = Tail = new Node(NULL);
Head->next = NULL;

Two-lock queue: enqueue()

enqueue(T val) {
Node *n = new Node(val);
lock(&tail lock);
Tail->next = n;
Tail = n;
unlock(&tail lock); }

Two-lock queue: dequeue()

dequeue(T val) {
lock(&head_lock);

/\ Node *n = Head->next;
if (n) {

6 Head m— rv = n->val;
61.3“ Head = n->next;
} else {
rv = EMPTY,;
}

unlock(&tail lock);

return rv;

Two-lock queue scalability

At most two cores can be doing useful queue work

Lock-free synchronization

Lock-free (or nonblocking) algorithm
Formal definition: Some executing method must eventually complete
(But individual method invocations might starve!)

—> Rules out use of locks
If lock holder stops taking steps, nobody can make progress

Instead rely on atomic read-modify-write instructions, such as
compare-and-set (CAS)

CAS

CAS(T *addr, T old, T new) {

atomic { read
if (*addr != old) . '/ ‘&Xlt -
return false; P reaCAS(,T+1)

*addr = new; time
read-to-CAS segment
return true;

Lock-freedom to the rescue!

Lock-freedom is often used as proxy for performance

In practice, lock holders don’t die, but can be delayed
= Intuition: Not waiting for delayed lock holders improves performance

Lock-free queue [Michael & Scott ‘96]

Second gueue approach:
Lock-freeing the two-lock queue

Tail

<

Sentinel Node { T val; Node* next; };

Initially:
head = tail = new Node(NULL);
head->next = NULL;

“Recipe” for lock-freeing code

Replace each write w in the critical section with a CAS
Intuition: Guarantees write isn’t lost (overwritten)

Challenge: Dealing with inconsistent state of the data structure -SI-ZFJgiaOIn,

Occurs when a thread stalls mid-operation Helping

Lock-based Lock-free y

R

i ‘ﬁ i

wl; w2 wl’; w2’ w2;? W’ ; w2’

Lock-free enqueue [Michael & Scott ‘96]

Logical enqueue happens on node connection
—> Dequeue can now see node
Physical enqueue follows

CAS

Head ﬁ

CAS

void enqueue(T v) {
Node *n = new Node(Vv);
while (true) {
Node *tail = Tail;
Node *next = tail->next;

if (next == NULL) {
if (CAS(&tail->next,NULL,n))
break;
} else {
CAS(&Tail, tail, next);

}

}
CAS(&Tail, tail, n); }

Lock-free enqueue [Michael & Scott ‘96]

Helping: void enqueue(T v) {

If observe inconsistent state, fix it & retry Node *n = new Node(v);
while (true) {

Node *tail = Tail;
Next *next = tail->next;

m if (next == NULL) {
if (CAS(&tail->next,NULL,n))

break;
} else {

CAS(&Tail, tail, next);

CAS

}

}
CAS(&Tail, tail, n); }

Lock-free dequeue [Michael & Scott ‘96]

Make first node the new sentinel T dequeue() {

i : hile (t
Old sentinel can be reclaimed while (true) {
Node* head = Head;
CAS Node* tail = Tail,;

/\ Next* next = head->next;

if (head == tail) {

if (!next) return EMPTY;

CAS(&Tail, tail, next);

} else {

T rv = next->value;

if (CAS(&Head,head,next))
return rv;

}r}

Lock-free dequeue [Michael & Scott ‘96]

Helping: T dequeue() {
while (true) {
Node* head = Head;
Node* tail = Tail;
Next* next = head->next;

Fix up inconsistent state, if observed

Head m— if (head == tail) {

if (!next) return EMPTY;

CAS(&Tail, tail, next);

CAS } else {

T rv = next->value;

if (CAS(&Head,head,next))
return rv;

}r}

Tail

Lock-freedom to the rescue?

11

10

9

M ops/second
(s 8)

—

Why the
(sharp)
drop?

10
Threads

12

14

16

18

20

Part 2

Serialization

bottlenecks
(lock-based &

~N

\Iock-free code))

Cache
coherence
dynamics

-

Designing fast-
lock free
algorithms

_

Cache coherence

The cache incoherence problem: core can read stale data

cache cache Q
=5

read x write x:=55

Cache coherence

The cache incoherence problem: core can read stale data

cache cache Q
=5l

read x

Cache coherence

The cache incoherence problem: core can read stale data
Solution: Caches use a distributed protocol to guarantee fresh data

—> In a cache coherent system, caches are invisible
Any execution observed could also occur without caches
(Hence, our simplified model!)

MSI protocol

Common denominator of commercial protocols (e.g.: MESIF, MOESI)

Idea: Single-writer/multi-reader protocol

For any cache line, at any time, there is either a single core that may write
it (and read it), or some number of cores that may read it

A core’s cache has a state for every line:
* M(odified): core allowed to write/read
e S(hared): core allowed to read

* I(nvalid): core can’t read nor write

MSI protocol: obtaining write permission

Core attempts to write a cache line

Cache sends
GetM request
to obtain
owhnership

interconnect

Protocol
exchanges
messages

Responses and
data arrive,
transaction
completes

MSI protocol: obtaining write permission

Modern servers use directory-based protocols
Directory holds the state of each line & manages ownership transfers

‘qi _ B—
Data [ACk_3] Directory
(shared last-level
GetM cache)
\ malidation
Inv-Ack

MSI protocol: obtaining write permission

Servers use directory-based protocols
Directory holds the state of each line & manages ownership transfers

I i : Directory
GetM

Data[Ack=0]

1 Fwd-GetM

Cache coherence serialization

What happens when
many cores write to a
cache line concurrently?

C2 C3 D
GetM

time

Cache coherence serialization

C2 C3
GetM

Dala

time

What happens when all
cores write to a cache
line concurrently?

Directory serializes
requests

Cache coherence serialization

time

What happens when all
cores write to a cache
line concurrently?

Directory serializes
requests

Cache coherence serialization

GetM

time

What happens when all
cores write to a cache
line concurrently?

Directory serializes
requests

Cache coherence serialization

time

What happens when all
cores write to a cache
line concurrently?

Directory serializes
requests

Cache coherence serialization

time

What happens when all
cores write to a cache
line concurrently?

Directory serializes
requests

Cache coherence serialization

GetM

time

What happens when all
cores write to a cache
line concurrently?

Directory serializes
requests

—Time to acquire write
permission increases
linearly with # of
acquiring cores!

Cache line contention

Atomic read-modify-write instructions

Atomicity guaranteed if cache line isn’t invalidated between R and W
No need to “lock the bus”

e Get line in M state

* Cache stalls incoming requests
for line

* Cores performs RMW interconnect

instruction (read+write)

* Cache resumes processing
Incoming requests

Contended atomics = cache line contention

L N = # of contending cores
Acquire time = N * L cycles S
L = invalidation latency

11

10 |- Scalable
MCS lock
= e
= 2 lock-based — —
s R *——0—0—0
@
= . . ——
S 7l Cache line contention lock-fre;‘\.

outweighs parallelism

»
l

277

| | | | | | |
JD 4 8 10 12 14 16 18 20

Threads

o

CAS failures

A failed CAS delays all cores but doesn’t complete useful work

read
head ..
Py ——cas=3 >
Py Fe—cAsyd =
P Fe—CAS3 >
read
head ..
Py —e—icas=3 >
% failure
jF?l e Jll'lig} >
Ps Fe—CAS >

time

CAS failures

Raw CAS throughput is higher than CAS loop (queue) throughput

30 5
CAS

25 —
= potential for = G
g 20 |— Improvement g
§ CAS per op 3 S
=

CAS loop 2
“‘Jdo { t =X;

| | | | | | L] 1]} while CAS(&KX,
8 10 12 14 16 18 20 SV .
t,t°));

Part 3

-

Serialization

bottlenecks
(lock-based &

~

\Iock-free code))

Cache
coherence
dynamics

-

Designing fast-
lock free

algorithms

g

Avoiding CAS failures

Idea: Try to replace CAS with an atomic instruction that doesn’t fail, so
that every atomic operation contributes to useful work

FAA(int *addr, int x) {

Will use fetch-and-add (FAA) atomic {

int old = *addr;
*addr += X;
return old;

¥

Avoiding CAS failures
Plan:
Simple but unrealistic algorithm to illustrate idea

Convert it to a practical algorithm

(Unrealistic) FAA queue

Data structure is infinite array
Head and Tail are indices (conceptually, pointers) into array

Head\
1 1 1 1

Cell { T val; };

Tail
Initially:
Head = Tail = 0;
Q = Cell[]
All cells have value _L

(Unrealistic) FAA queue enqueue

Obtain unique cell index (contended operation)
CAS value into cell (not contended)

Head

~

X | L

Tail

FAA

enqueue(x) {
while (true) {
t = FRA(&Tail, 1)
if (CAS(&Q[t], L, x))
return
}
}

(Unrealistic) FAA queue dequeue

Obtain unique cell index (contended operation)

If cell not empty: return value

- | L] L

If cell empty:
Head FAA
X
Tail

\ Prevent future
enqueue from

using this cell (it
will retry)

dequeue(x) {
while (true) {
h = F&A(&Head, 1)
if (!CAS(&Q[h], _L,T))
return Q[h]
if (Tail £ h+1l) return EMPTY

}
}

FAA queue problems

1) Infinite arrays don’t exist

FAA queue problems

1) Infinite arrays don’t exist

2) Algorithm isn’t lock-free!

e
Head:
2

1T

T

\“..

Tail:
2

-

FAA queue problems

1) Infinite arrays don’t exist
2) Algorithm isn’t lock-free!

o X
Head: (\“e

1

1 L L =

Tail:

Heuristic solution:

Dequeue waits for enqueue
to make progress

Still not formally lock-free

Next:
LCRQ algorithm, solves both problems

Cyclic ring queue (CRQ)

1) Don’t have infinite arrays =»Represent queue as cyclic array

Head

Tail

Cells updated with
wide CAS (available
on x86)

R cells

.,..
....
o

CRQ enqueue

If cell’s seq# not
greater than mine,
deposit value and
update seqg# to mine.

Otherwise, retry

CRQ dequeue

12

Tail:
15

Head:
13

Cell empty:

If seq# not greater
than mine, prevent
future enqueue.

CRQ dequeue

15+R

15

Cell empty:

If seg# not greater
than mine, prevent
future enqueue.

Cell not empty:

If seq# = mine, return
value and bump seq#
to next iteration

If seq#t > mine, retry

CRQ dequeue

Cell empty:

If seg# not greater
than mine, prevent
future enqueue.

Cell not empty:

If seq# = mine, return
value and bump seq#
to next iteration

If seg# > mine, retry

Dequeue arrives before enqueue while cell is _
occupied by previous iteration — no analogy \{)therwme: retry???
in infinite array case.

CRQ dequeue

Solution: Cell empty:

Bump seg# + mark the cell as unsafe for future

If seq#t not greater
enqueues (1 bit extra state) . >

than mine, prevent

future enqueue.
Mark removed by later enqueue E if E detects

that the corresponding dequeue hasn’t started Cell not empty:

yet (by checking Head < E’s index) If seq# = mine, return
value and bump seq#
(full details in paper: to next iteration

https://www.cs.tau.ac.il/~mad/publicati

ons/ppopp2013-x86queues. pdf) I\&lf seq# > mine, retry

Otherwise: retry???

CRQ livelocks

1) Don’t have infinite arrays =»Represent queue as cyclic array
2) Algorithm (still) isn’t lock-free!

LCRQ [Morrison and Afek PPoPP‘13]

1) Don’t have infinite arrays =»Represent queue as cyclic array
2) Algorithm isn’t lock-free! = List of CRQs

Close queue '

Link new CRQ initialized with element

Evaluation

45
40 | —
35 |—
30 —
25 |—
20 —
15 —
10 |—
S
0 | | |

M ops/second

LCRQ (FAA)

LCRQ (CAS)

lock-free (CAS)
1 | L 1 I

1
10

Threads

12 14 16 18 20

Conclusion & takeaways

Lock-freedom doesn’t imply being faster than locking
—> Need to consider problem domain and workload

Contended CAS failures are very wasteful due to coherence serialization
—> Design to avoid them

Better yet: design to avoid contention in the first place

(Probably not possible for every data structure)

