
Designing Fast Lock-Free
Algorithms by Understanding
Cache Coherence Dynamics

Adam Morrison
Tel Aviv University

The Blavatnik School
of Computer Science
The Raymond and Beverly Sackler
Faculty of Exact Sciences
Tel Aviv University

Outline

Serialization
bottlenecks

(lock-based &
lock-free code)

Cache
coherence
dynamics

Designing fast-
lock free

algorithms

Context

Multi-core and/or multi-processor shared-memory system

processor

= thread/core/processorsequential code =

Setting

A simplified model of the system

Ignoring memory consistency
model (of hardware /
programming language),
memory fences, etc.

Examples in pseudo code
(C/Java inspired)

memory

code codecode

read write read read read

any interleaving is possible

Connection of model to reality

Modeling parallelism with a sequential execution model?!

Intuition (1/2): Non-conflicting parallel memory operations commute

Þ Pretend they happen in some sequential order; it doesn’t matter

t0 = X // read

Y = t1 // write

t0 = X // read

t1 = X // read

Connection of model to reality

Modeling parallelism with a sequential process?!

Intuition (2/2): Conflicting memory operations serialize in hardware

Þ They do happen in some sequential order

t0 = X // read

X = t1 // write

Y = t0 // write

Y = t1 // write

Part 1

Serialization
bottlenecks

(lock-based &
lock-free code)

Cache
coherence
dynamics

Designing fast-
lock free

algorithms

Approach

Show general principles via a concrete running example

Goal: Design a concurrent FIFO queue
Multi-producer, multi-consumer, unbounded

ÞData structure: Linked list with Head and Tail pointers

Challenge: Synchronize concurrent operations

Two-lock queue [Michael & Scott ‘96]

First approach:
Lock-based algorithm
Allows concurrent enqueue & dequeue

Sentinel Node { T val; Node* next; };

Initially:
Head = Tail = new Node(NULL);
Head->next = NULL;

Head

Tail

Two-lock queue: enqueue()

enqueue(T val) {
Node *n = new Node(val);
lock(&tail_lock);
Tail->next = n;
Tail = n;
unlock(&tail_lock); }

Head

Tail

Two-lock queue: dequeue()

dequeue(T val) {
lock(&head_lock);
Node *n = Head->next;
if (n) {
rv = n->val;
Head = n->next;

} else {
rv = EMPTY;

}
unlock(&tail_lock);
return rv;

}

Head

Tail

Two-lock queue scalability

At most two cores can be doing useful queue work

Head

Tail

Lock-free synchronization

Lock-free (or nonblocking) algorithm
Formal definition: Some executing method must eventually complete

(But individual method invocations might starve!)

Þ Rules out use of locks
If lock holder stops taking steps, nobody can make progress

Instead rely on atomic read-modify-write instructions, such as
compare-and-set (CAS)

CAS

CAS(T *addr, T old, T new) {
atomic {

if (*addr != old)
return false;

*addr = new;
return true;

}
}

CAS

read-to-CAS segment

t=X //read
CAS

read

CAS(&X,t,t+1)

time

Lock-freedom to the rescue!

Lock-freedom is often used as proxy for performance

In practice, lock holders don’t die, but can be delayed
Þ Intuition: Not waiting for delayed lock holders improves performance

Lock-free queue [Michael & Scott ‘96]

Second queue approach:
Lock-freeing the two-lock queue

Sentinel Node { T val; Node* next; };

Initially:
head = tail = new Node(NULL);
head->next = NULL;

Head

Tail

“Recipe” for lock-freeing code

Replace each write w in the critical section with a CAS
Intuition: Guarantees write isn’t lost (overwritten)

Challenge: Dealing with inconsistent state of the data structure
Occurs when a thread stalls mid-operation

w1; w2 w1’; w2’

Lock-based Lock-free

w1 ???

Typical
solution:
Helping

w2; w1’; w2’

Lock-free enqueue [Michael & Scott ‘96]

Logical enqueue happens on node connection
Þ Dequeue can now see node
Physical enqueue follows

void enqueue(T v) {
Node *n = new Node(v);
while (true) {
Node *tail = Tail;
Node *next = tail->next;

if (next == NULL) {
if (CAS(&tail->next,NULL,n))
break;

} else {
CAS(&Tail, tail, next);

}
}
CAS(&Tail, tail, n); }

Head

Tail

CAS

CAS

Lock-free enqueue [Michael & Scott ‘96]

Helping:
If observe inconsistent state, fix it & retry

void enqueue(T v) {
Node *n = new Node(v);
while (true) {
Node *tail = Tail;
Next *next = tail->next;

if (next == NULL) {
if (CAS(&tail->next,NULL,n))
break;

} else {
CAS(&Tail, tail, next);

}
}
CAS(&Tail, tail, n); }

Head

Tail

CAS

Lock-free dequeue [Michael & Scott ‘96]

Make first node the new sentinel
Old sentinel can be reclaimed

T dequeue() {
while (true) {
Node* head = Head;
Node* tail = Tail;
Next* next = head->next;

if (head == tail) {
if (!next) return EMPTY;
CAS(&Tail, tail, next);
} else {
T rv = next->value;
if (CAS(&Head,head,next))
return rv;

}}}

Head

Tail

CAS

Lock-free dequeue [Michael & Scott ‘96]

Helping:
Fix up inconsistent state, if observed

T dequeue() {
while (true) {
Node* head = Head;
Node* tail = Tail;
Next* next = head->next;

if (head == tail) {
if (!next) return EMPTY;
CAS(&Tail, tail, next);
} else {
T rv = next->value;
if (CAS(&Head,head,next))
return rv;

}}}

Head

Tail

CAS

Lock-freedom to the rescue?

Why the
drop?

Why the
(sharp)
drop?

Part 2

Serialization
bottlenecks

(lock-based &
lock-free code)

Cache
coherence
dynamics

Designing fast-
lock free

algorithms

Cache coherence

The cache incoherence problem: core can read stale data

memory
read x

X=5

X=5

cache cache

write x:=55

read x

Cache coherence

The cache incoherence problem: core can read stale data

memory
X=5

cache cache

X=55

Cache coherence

The cache incoherence problem: core can read stale data
Solution: Caches use a distributed protocol to guarantee fresh data

Þ In a cache coherent system, caches are invisible
Any execution observed could also occur without caches
(Hence, our simplified model!)

MSI protocol

Common denominator of commercial protocols (e.g.: MESIF, MOESI)

Idea: Single-writer/multi-reader protocol
For any cache line, at any time, there is either a single core that may write
it (and read it), or some number of cores that may read it

A core’s cache has a state for every line:
• M(odified): core allowed to write/read
• S(hared): core allowed to read
• I(nvalid): core can’t read nor write

MSI protocol: obtaining write permission

Core attempts to write a cache line

I M
GetM

Cache sends
GetM request
to obtain
ownership

interconnect

Responses and
data arrive,
transaction
completes

Protocol
exchanges
messages

MSI protocol: obtaining write permission

Modern servers use directory-based protocols
Directory holds the state of each line & manages ownership transfers

IM
GetM

Directory
(shared last-level

cache)

SS

Invalidation

Data[Ack=3]

Inv-Ack

SII I

MSI protocol: obtaining write permission

Servers use directory-based protocols
Directory holds the state of each line & manages ownership transfers

IM
GetM

Directory

M

Fwd-GetM

Data[Ack=0]

I

Cache coherence serialization

What happens when
many cores write to a
cache line concurrently?

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

time

Cache coherence serialization

What happens when all
cores write to a cache
line concurrently?
Directory serializes
requests

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Data

time

Cache coherence serialization

What happens when all
cores write to a cache
line concurrently?
Directory serializes
requests

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Fwd-GetM

…
.

Data

time

Cache coherence serialization

What happens when all
cores write to a cache
line concurrently?
Directory serializes
requests

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Fwd-GetM

…
.

Data

time

Cache coherence serialization

What happens when all
cores write to a cache
line concurrently?
Directory serializes
requests

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Fwd-GetM

Fwd-GetM

Fw
d-G

etM

…
.

Data

time

Cache coherence serialization

What happens when all
cores write to a cache
line concurrently?
Directory serializes
requests

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Fwd-GetM

Fwd-GetM

Fw
d-G

etM

…
.

Data

Data

time

Cache coherence serialization

What happens when all
cores write to a cache
line concurrently?
Directory serializes
requests
ÞTime to acquire write

permission increases
linearly with # of
acquiring cores!
Cache line contention

C2
GetM

C3 D
GetM GetM

lat
en

cy

….

Fwd-GetM

Fwd-GetM

Fw
d-G

etM

…
.

Data

Data
time

Atomic read-modify-write instructions

No need to “lock the bus”
• Get line in M state
• Cache stalls incoming requests

for line
• Cores performs RMW

instruction (read+write)
• Cache resumes processing

incoming requests

I
GetM

interconnectM

CAS

Atomicity guaranteed if cache line isn’t invalidated between R and W

Contended atomics → cache line contention

Acquire time = N * L cycles
N = # of contending cores
L = invalidation latency

Cache line
contention

Cache line contention
outweighs parallelism

Scalable
MCS lock

???

CAS failures

A failed CAS delays all cores but doesn’t complete useful work

CAS failures

Raw CAS throughput is higher than CAS loop (queue) throughput

potential for
improvement

do { t = X;
} while CAS(&X,

t,t’));

Part 3

Serialization
bottlenecks

(lock-based &
lock-free code)

Cache
coherence
dynamics

Designing fast-
lock free

algorithms

Avoiding CAS failures

Idea: Try to replace CAS with an atomic instruction that doesn’t fail, so
that every atomic operation contributes to useful work

Will use fetch-and-add (FAA)

FAA(int *addr, int x) {
atomic {

int old = *addr;
*addr += x;
return old;

}
}

Avoiding CAS failures

Plan:

Simple but unrealistic algorithm to illustrate idea

Convert it to a practical algorithm

(Unrealistic) FAA queue

Data structure is infinite array
Head and Tail are indices (conceptually, pointers) into array

…
Head

Tail

Cell { T val; };

Initially:
Head = Tail = 0;
Q = Cell[]
All cells have value

┴ ┴ ┴ ┴

┴

(Unrealistic) FAA queue enqueue

Obtain unique cell index (contended operation)
CAS value into cell (not contended)

…
Head

Tail

enqueue(x) {
while (true) {
t = F&A(&Tail, 1)
if (CAS(&Q[t], , x))
return

}
}

┴ ┴ ┴ ┴x

FAA

┴

(Unrealistic) FAA queue dequeue

Obtain unique cell index (contended operation)
If cell not empty: return value
If cell empty:

…
Head

Tail

dequeue(x) {
while (true) {
h = F&A(&Head, 1)
if (!CAS(&Q[h], ,))
return Q[h]

if (Tail ≤ h+1) return EMPTY
}
}

┴ ┴ ┴

FAA

┴

┴

x

┴

Prevent future
enqueue from
using this cell (it
will retry)

FAA queue problems

1) Infinite arrays don’t exist

FAA queue problems

1) Infinite arrays don’t exist
2) Algorithm isn’t lock-free!

…
Head:
0

Tail:
0

┴ ┴ ┴ ┴

Dequeue

Enqueue

CAS
┴ ┴

Head:
1

Tail:
1

Head:
2

Tail:
2

FAA queue problems

1) Infinite arrays don’t exist
2) Algorithm isn’t lock-free!

…
Head:
0

Tail:
0

┴ ┴ ┴ ┴

Dequeue
Head:
1

Tail:
1

Head:
1

Tail:
1

Heuristic solution:
Dequeue waits for enqueue
to make progress
Still not formally lock-free

Next:
LCRQ algorithm, solves both problems

Cyclic ring queue (CRQ)

1) Don’t have infinite arrays →Represent queue as cyclic array

…
Head

┴ ┴ ┴ ┴

Tail

R cells

Seq #

Cells updated with
wide CAS (available
on x86)

CRQ enqueue

If cell’s seq# not
greater than mine,
deposit value and
update seq# to mine.
Otherwise, retry15

Head:
12

Tail:
15

Enque
ue

F&A
Tail:
16

15
CAS

X

£

CRQ dequeue

12

Head:
12

Tail:
15

Dequeue

Head:
13

12
CAS

12+R

£

Cell empty:
If seq# not greater
than mine, prevent
future enqueue.

CRQ dequeue

15

Head:
15

Tail:
16

Dequeue

F&AHead:
16

15
CAS

X15+R

=

Cell empty:
If seq# not greater
than mine, prevent
future enqueue.
Cell not empty:
If seq# = mine, return
value and bump seq#
to next iteration
If seq# > mine, retry

CRQ dequeue

Cell empty:
If seq# not greater
than mine, prevent
future enqueue.
Cell not empty:
If seq# = mine, return
value and bump seq#
to next iteration
If seq# > mine, retry
Otherwise: retry???

15

Head:
15+R

Dequeue

15+R
X15+R Y

Dequeue
15

Enqueue

15+R

Lost

item
Tail:
16

Head:
16

Tail:
16+R

Head:
16+R

K

Head:
K+1

Dequeue arrives before enqueue while cell is
occupied by previous iteration – no analogy
in infinite array case.

<

CRQ dequeue

Cell empty:
If seq# not greater
than mine, prevent
future enqueue.
Cell not empty:
If seq# = mine, return
value and bump seq#
to next iteration
If seq# > mine, retry
Otherwise: retry???

Solution:
Bump seq# + mark the cell as unsafe for future
enqueues (1 bit extra state)

Mark removed by later enqueue E if E detects
that the corresponding dequeue hasn’t started
yet (by checking Head ≤ E’s index)

(full details in paper:
https://www.cs.tau.ac.il/~mad/publicati
ons/ppopp2013-x86queues.pdf)

CRQ livelocks

1) Don’t have infinite arrays →Represent queue as cyclic array
2) Algorithm (still) isn’t lock-free!

DequeueEnqueue

LCRQ [Morrison and Afek PPoPP‘13]

1) Don’t have infinite arrays →Represent queue as cyclic array
2) Algorithm isn’t lock-free! → List of CRQs

Starving..

Link new CRQ initialized with element
Enqueue

X

Enqueue

CAS

CAS
Close queue

Evaluation

Conclusion & takeaways

Lock-freedom doesn’t imply being faster than locking
Þ Need to consider problem domain and workload

Contended CAS failures are very wasteful due to coherence serialization
Þ Design to avoid them

Better yet: design to avoid contention in the first place
(Probably not possible for every data structure)

