Real World JFR

Experiences building and deploying a continuous profiler at scale

Jean-Philippe Bempel gﬂ

Agenda

e Quick introduction to JDK Flight Recorder (JFR)
e JFR at Datadog

e | essons learnt

¥ bATADOG

Quick Intro to the JDK Flight Recorder (JFR)

Data Flight Recorder for the JVM

Records information about the JVM and the application
_ow overhead

Powerful APls and Tooling

Can be used to solve a range of different problems

¥ bATADOG

Availability of JFR

e OpendDK/HotSpot
e Open sourced since JDK 11

e Backported to OpenJDK 8u262/272

¥ bATADOG

JFR Inner Workings

e Events recorded into thread buffers

¥ bATADOG

Java API|
Events

]

F

1

Thread Buffer

JVM Events

JFR Inner Workings

e Events recorded into thread buffers
e When full, copied into global buffer

Java API
Events Copied into

z

JVM Events

Global
Buffer

T
Thread Buffer

¥ bATADOG

JFR Inner Workings

e Events recorded into thread buffers
e When full, copied into global buffer
e Can be configured to keep on overwriting/reusing buffer

Java API
Events Copied into

N 1 Global Global Global
R Buffer Buffer Buffer

Global Global
Buffer Buffer
JVM Events

T
Thread Buffer

Global Global
Buffer Buffer

¥ bATADOG

JFR Inner Workings

e Events recorded into thread buffers
e When full, copied into global buffer
e Can be configured to keep on overwriting/reusing buffer
e ..oremittodisk
= Fi
g - 4
H g =
JVM Events

Global Global Global
Buffer Buffer Buffer

¥ bATADOG

Low Overhead

e High performance flight recording engine
o Invariant TSC for time stamping
o Thread local native buffers
o Efficient format for low overhead event emission
e High performance data collection
o Access to data already collected in the Java runtime
o Built into the JVM/JDK - skip abstractions
e Trying hard not to change runtime characteristics

¥ bATADOG

Other Properties of JFR

e Self describing chunks of information
e Self contained chunks
e Chunk rotations will happen when

o Start / Stop recording

o Create a snapshot

Chunk: Header Events Constants Events

\

a DATADOG Recording: O 0

(olsls e Metadata

10

Quick Demo JFR

JFR at Datadog

&

DATADOG

JFR at Datadog

e Continuous capture offers a lot of interesting capabilities
o Always data available when things go bad

o Possibility to break down profiling data
m Time/Thread
m Context

o Continuous stream of data for analysis and statistics
e |s continuous capturing economically feasible?

o What is the data rate?

o What is the actual performance overhead?

¥ bATADOG

13

Continuous Profiler Architecture

S, Java

—

€

>Java

¥ bATADOG

Continuous Profiler Architecture

((%

>Java

B

<—> JdvVa

¥ bATADOG

Continuous Profiler Architecture

¥ bATADOG

16

Continuous Profiler Architecture

¥ bATADOG

DATADOG

Continuous Profiler Architecture

¥ bATADOG

DATADOG

Continuous Profiler Architecture

~

JFR

profiles

S

S

DATADOG

¥ bATADOG

19

Continuous Profiler Architecture

/ DATADOG
|

JFR
profiles |-

S

&

¥ bATADOG

Continuous Profiler Architecture

/ DATADOG

JFR
profiles |-

S

&

¥ bATADOG

Continuous Profiler Architecture

/ DATADOG
|

JFR
profiles |-

S

&

¥ bATADOG

Continuous Profiler Architecture

DATADOG

T Senis Taos | Qe envsaghy WO | oM U2 e

Continuous Profler b i il

e GUTne . oo | O Vet

7 hgregaton
gyregati . - 0 Pefierusingecn. e

—
I e S | ..o

o | = [ttt |
} lm PP
o e] y
e o D T,

s+ 40

{

0 Sstonpudesinint.
Bsagng

JFR

0 Mecions ey sies B

J— axn
. sy o
| | sncein L

rO I e S mantyqury Paraleethlocton 319ms

|| st [T | TR

- I mca -m}.l‘ 8 rhaessigaiens. 5 B

[JER———
dering e

0 aspmergeose 0. 3

iyl
[JEEmr——

© Vein 0 Ryt 32rs

e 0 urgtectpevasig... 32ms B

¥ bATADOG

Continuous Profiler figures

e Actually works surprisingly well at incredible scale
e Datadog is intaking terabytes of JFR data per minute
e Datadog is intaking all data from every Java process
Recording data size 5 (2 compressed) MiB per minute
Corresponds to around 100k events
Normally one chunk per minute
Cpu Overhead usually < 2%
Cost for continuously repeating the metadata ~= 0.5%

¥ bATADOG 24

JFR template specially crafted

e 2 flavors provided by OpenJDK

e Customize one with:
o Allocation profiling
o Exceptions
o Exec Sampling 20 ->9 ms
o Thresholds adjusted (VM operation, File 10, Monitors,
Threads)

¥ bATADOG

25

Overhead assessment

e Spring petclinic application

e request processing time too short

e More difficult to assess any overhead statistically significant

e Also not representative to real workload

¥ bATADOG 26

Overhead assessment

e Custom Spring petclinic

e Increase processing time for 100ms per request

e Increase In-memory database entries

¥ bATADOG

27

Overhead measurements

e Heap & GC

e CPUfrom /proc/<pid>/stat
get total cpu ticks since startup

¥ bATADOG

28

Lessons Learnt

&

DATADOG

JFR at Scale

e All these observations are from using JFR at scale
e Very varying kinds of loads and applications

o “Typical” long running Java microservices

o Scala / Akka / high throughput messaging

o Async / Reactive

e From casual use of the JDK Flight Recorder, you may not
encounter any of these problems

¥ bATADOG

30

Exception Profiling

e Built in JFR exception profiler can be configured to capture all
Exceptions or only Errors.

e Captures all, caught or uncaught
(event generated on exception creation)

e Great to at least enable Errors?

¥ bATADOG

31

“Error 1s the superclass of all the
exceptions from which ordinary programs are
not ordinarily expected to recover.”

¥ bATADOG

32

Errors (And Exceptions) Outside the Ivory Tower

e One of the most popular and widely used Java Libraries:
o JavaCC => Lucene => Elasticsearch
Enormous amount of errors

O
o Subclass named LookAheadSuccess
o Used for control flow in a parser

e But exception profiling is great!
-> Invent new exception profiler

¥ bATADOG

33

New Exception Profiler

e Get a count of exceptions per type

e Sample the first thrown exception of each type

e Subsample to try to hit a target rate

o Use inspiration from PID controllers

o Evenly spread across time

¥ bATADOG

Services Traces Profiles

Continuous Profiler h

™ Overview Aggregation

5] Show Controls Type Thrown Exceptions 216+ limit to [1000 profiles

earch | Q. Serviceslogs-indexing X Search by tas,for example,service:webapy

05 0 xcepions) metho cr + Serol 0 50m)

Past 1 Hour

 Options

aa

- «d

Thrown Type +

gated 1000 pofies

]

|
i

—
) e

Epoliven..

ForiinPoolsWorkQuee.. T

E|E
L

£

Malboxprocesshatbox | Abs

acoraroundReceive(pa.

EEEEEE

TradngCallacionystintercep{nt.

‘Aactor ambdasaroundiec.

Tradnginerceptornercepinter...

all

O HErRraa
I3

neimerceptor merceptinerce.

e
w»qmumm
Nkuu (byte(l, int, int)

.exhausted()
ol
[soeomprestiont |

g

VersonConfictEnginebxception <nio{Streaminput)

cuewivirooiann) STt
o ey - g menomcs s |
b

run{)

[N

LN NN NN N

aaQ

]

java.nio.channels.ClosedChannelk.
Java.net SocketTimeoutexception
fo.grpcnettyshaded. o nety utR..
java.nio channels. CancelledeyExce
com ddlogs shaded clastcsearche.
Javalang Numberformatsception
com ddlogs shaded elastcsearche.
Java.utl concuren. Completontc.
com fsmaticrpe Statusxception
org apache kafka.common protoco.
comddlogs shaded clastcsearch.

com.dd.logs.shaded.elasicsearch?.

comdd.logs shaded elssicsearcht...

0.grpc.netty.shaded.io.netty handl.
comda.logs shaded elasticsearchy.

comddogs.shaded elasicsearch7.

34

o b

PID controller

Plant I y(t)
Pr?:ré e/ss >

e Control loop mechanism +

e using feedback loop

e apply correction based on error with P I D terms

¥ bATADOG 35

Adaptive Sampler

proba
Sample bility

¥ bATADOG

Adaptive Sampler

Sample

¥ bATADOG

Adaptive Sampler

Sample

samples
tests

¥ bATADOG

Adaptive Sampler

Sample

¥ bATADOG

O

Window
Task
samples
tests
proba T
bility
|
drop

39

Adaptive Sampler

Sample

¥ bATADOG

Roll
Window
Task

samples
tests

40

Allocation Profiling in JFR

e Allocation profiling introduced in JFR

o Introduced in 7u40 (2013)
o Has two paths/events - New TLAB / outside TLAB

allocated

¥ bATADOG

41

Allocation Profiling in JFR

e Allocation profiling introduced in JFR

o Introduced in 7u40 (2013)
o Has two paths/events - New TLAB / outside TLAB

allocated

New TLAB

¥ bATADOG

Allocation Profiling in JFR

e Allocation profiling introduced in JFR

o Introduced in 7u40 (2013)
o Has two paths/events - New TLAB / outside TLAB

AllocatelnsideNewTLAB event
allocated /’

4 N Y) N

New TLAB

¥ bATADOG

The Dangers of Allocation Profiling

e Normally has quite good runtime performance and data
production rate
e These days though...
o 96+ core beasts
o allocation hungry services (e.g. stream processing beasts)
e Event rate depends on factors like
o number of threads
o size and number of allocations

¥ bATADOG

44

Allocation Profiling Performance Problems

¥ bATADOG

Jfr summary recording.jfr

Version: 2.1

Chunks: 2

Start: 2020-07-22 07:23:25 (UTC)
Duration: 60 s

Event Type

.ObjectAllocationInNewTLAB
.ZThreadPhase
.ThreadPark
.ExecutionSample
.ObjectAllocationOutsideTLAB
datadog.ExceptionSample
jdk . JavaMonitorWait
jdk.NativeMethodSample
jdk.ThreadSleep
jdk.ClassLoaderStatistics
jdk .BooleanFlag
jdk.ThreadAllocationStatistics
jdk . ThreadCPULoad

437808
25780
18614
13509
10620

9421
5199
4293
3244
1468
1236

809

619

Size (bytes)

10011153
1142331
802953
233323
231453
348824
171686
75900
68124
43716
43028
13859
13449

45

Allocation Profiling Performance Problems

e Hashcode problem - JFR constant pool (solved)
e Still too much data to handle

e Solution -> new allocation profiler in JFR (JDK 16+)

¥ bATADOG

46

New Allocation Profiler

e Take the idea from the JVMTI (JDK 11+) allocation sampler

(i.e. average amount of memory between samples)
e Inspiration from PID controllers - control data production rate
e Many nice qualities:

o Controllable data budget

o Actual individual samples (time, thread)

o Allocation since last sample for weighting

(total allocation pressure)

¥ bATADOG

47

New Allocation Profiler

allocated

Adaptive Sampler

—» ObjectAllocationSample event

New TLAB

¥ bATADOG

48

Memory leak profiler: OldObjectSample

e Interesting for solving memory leaks
o Allocation Stacktrace

Allocation Time

Type

Array size

O
O
O
o Reference chain

¥ bATADOG

49

OldObjectSample Problems

e Allocation sample are kept into a queue

weak;':ref \
C) JfrStackTrace
allocated Repository

4 N Y |)

New TLAB

g N) /
) TLAB]

¥ bATADOG

OldObjectSample Problems

e Constants associated are kept

allocated

weak;':ref

Symbols

Methods

O

N

JfrStackTrace
Repository

Classes

e

\ (

New TLAB

~

(U

A

TLAB

¥ bATADOG

OldObjectSample Problems

e When a sample is discarded (GC)
constants remain

Symbols

Methods

JfrStackTrace
Repository

allocated

Classes

——

New TLAB

N\ N /
) TLAB

¥ bATADOG

JFR Chunk

52

ConstantPool explorer

HJDK Mission Control
File Edit Navigate Window Help

%8)VM Browser 5= Outline

& Lock Instances
£ File /O

& Socket I/0

@ Method Profiling
%1 Exceptions

& Thread Dumps

v & JVM Internals

[Garbage Collections
[/GC Configuration

> G Compilations

v &

@ Class Loading
&2 VM Operations
% TLAB Allocations
Environment

L& Processes

Environment Variables

<6> System Properties
% Native Libraries

v B Recording

& Constant Pools

3% Event Browser

£ Properties ao Results s
Field Value
0 events

¥ bATADOG

A

as <

)

ae prof-analyzer-01.jfr

» Constant Pools

Search the table

Constant Pool Name Count” Size Total Size (%)
jdk.types.Symbol 13272 688 KiB . 17.2 %
jdk.types.StackTrace 10066 28amie Y %
jdk.types.Method 5757 151 KiB I 3.77 %
java.lang.Class 2480 145 KiB | 363%
java.lang.Thread 1272 61.1 KiB l 1.53%
jdk.types.Package 364 9.88 KiB 0.247 %
jdk.types.Bytecode 239 2.55 KiB 0.0638 %
jdk.types.OldObject 169 1.82 KiB 0.0456 %
lambda

Constant Value

com.datadog.profiling.analyzer.stages.DownloadStage$$Lambda$1030+0x0000000801354b80/1978813004
com.datadog.profiling.aggregation.parser.JfrSampleDefinitions$$Lambda$1744+0x00000008015716d0/851710768
software.amazon.awssdk.core.internal.http.pipeline.stages.MakeAsyncHttpRequestStage$$Lambda$386+0x0000000801006710/81445899
lambda$finalizeSdkHttpFullRequest$0

lambda$wrappedWith$4

lambda$wrappedWith$5
software.amazon.awssdk.http.nio.netty.internal.ResponseHandler$PublisherAdapter$1$$Lambda$716+0x0000000801219630/2023670220
lambda$dolnOrder$4

= Stack Trace & Flame View

Stack Trace Count Percentage

v =D §

53

OldObjectSample Solutions

e Having a second stacktrace repository specific for the event

OldObjectSample
JfrStackTrace
Repository

l

JFR Chunk

JfrStackTrace
Repository

¥ bATADOG

54

CPU Profiling

Execution Sample events

e Pros
o Very cheap - both in memory and overhead
o Pretty much constant overhead
o Not safepoint biased (like AsyncProfiler)
e Cons
o Not sampling all threads
(e.g. JVM native threads/native library threads)

-> Compensate unaccounted CPU time using other events

¥ bATADOG 55

CPU Profiling

e JFR would do well with a proper CPU profiler

o Sample taken when certain CPU time elapsed...
...no matter the thread

O
o Nice APIs available today... (e.g. perf_event_open)
o ...backed by PMU (not in containers though)

¥ bATADOG

56

Latency outliers vs Wall-Clock

o JF
O
O

e Ha

R has events for thread halts
Provide more than just a stacktrace
Provide exact wall-clock timing of the halts

ppen too often

o Must be limited to outliers only
o Uses thresholding to keep volume down
e Thresholding is problematic
o Edge cases
o Statistical skew
o Hard to know if you've missed somethings

¥ bATADOG

57

Best of Both Worlds?

e Subsample / Rate limit the events (PID thinking FTW)
e Add a proper wall clock profiler for JFR...

How about adding Event#commit(Thread)?

(Events might also want to add an annotation whether or not the thread state should be captured or not.)

¥ bATADOG

58

Wrap Up

DATADOG

Summary

e JFR is more than a profiler and can be used in production
e Exception, allocation and leak profiler can increase overhead

e Solutions to this are coming to your JDK near you, soon!

¥ bATADOG

60

JMC 8 is Released!

e Tutorial:

https://qithub.com/thegreystone/imc-tutorial
(Feel free to fork and do pull requests for the Tutorial! :))

e JShell for JMC-core (jmc-jshell):
https://qithub.com/thegreystone/imc-jshell

¥ bATADOG

61

https://github.com/thegreystone/jmc-tutorial
https://github.com/thegreystone/jmc-jshell

References

e JDK Mission Control GitHub Repo

e Marcus Hirt's Blog

e Continuous Profiling Blog

e |Improved JFR Allocation profiling in JDK 16

e Adaptive Sampler: Java impl & JER imp!

e 0OldObjectSample PR

¥ bATADOG

62

https://github.com/openjdk/jmc
http://hirt.se/blog
https://foojay.io/today/continuous-production-profiling-and-diagnostics/
https://withent.blogspot.com/2021/01/improved-jfr-allocation-profiling-in.html
https://github.com/DataDog/dd-trace-java/blob/master/internal-api/internal-api-8/src/main/java/datadog/trace/api/sampling/AdaptiveSampler.java
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/jfr/support/jfrAdaptiveSampler.cpp
https://github.com/openjdk/jdk/pull/2645

