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Agenda

● Quick introduction to JDK Flight Recorder (JFR)

● JFR at Datadog

● Lessons learnt
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Quick Intro to the JDK Flight Recorder (JFR)

● Data Flight Recorder for the JVM
● Records information about the JVM and the application
● Low overhead
● Powerful APIs and Tooling
● Can be used to solve a range of different problems
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Availability of JFR

● OpenJDK/HotSpot

● Open sourced since JDK 11

● Backported to OpenJDK 8u262/272
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JFR Inner Workings

● Events recorded into thread buffers
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JFR Inner Workings

● Events recorded into thread buffers
● When full, copied into global buffer
● Can be configured to keep on overwriting/reusing buffer
● … or emit to disk
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Low Overhead

● High performance flight recording engine
○ Invariant TSC for time stamping
○ Thread local native buffers
○ Efficient format for low overhead event emission

● High performance data collection
○ Access to data already collected in the Java runtime 
○ Built into the JVM/JDK - skip abstractions

● Trying hard not to change runtime characteristics 
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Events Constants

Other Properties of JFR

● Self describing chunks of information
● Self contained chunks
● Chunk rotations will happen when

○ Start / Stop recording
○ Create a snapshot

Header Events Constants MetadataChunk:

Recording: Chunk Chunk Chunk 10



Quick Demo JFR
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JFR at Datadog
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JFR at Datadog

● Continuous capture offers a lot of interesting capabilities
○ Always data available when things go bad
○ Possibility to break down profiling data 

■ Time/Thread
■ Context

○ Continuous stream of data for analysis and statistics
● Is continuous capturing economically feasible?

○ What is the data rate?
○ What is the actual performance overhead?
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Continuous Profiler Architecture
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Continuous Profiler figures

● Actually works surprisingly well at incredible scale
● Datadog is intaking terabytes of JFR data per minute
● Datadog is intaking all data from every Java process

● Recording data size 5 (2 compressed) MiB per minute
● Corresponds to around 100k events
● Normally one chunk per minute
● Cpu Overhead usually < 2%
● Cost for continuously repeating the metadata ~= 0.5%
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JFR template specially crafted

● 2 flavors provided by OpenJDK

● Customize one with:
○ Allocation profiling
○ Exceptions
○ Exec Sampling 20 ->9 ms
○ Thresholds adjusted (VM operation, File IO, Monitors, 

Threads)
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Overhead assessment

● Spring petclinic application

● request processing time too short

● More difficult to assess any overhead statistically significant

● Also not representative to real workload
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Overhead assessment

● Custom Spring petclinic

● Increase processing time for 100ms per request

● Increase In-memory database entries
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Overhead measurements

● Heap & GC

● CPU from /proc/<pid>/stat 
get total cpu ticks since startup
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Lessons Learnt
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JFR at Scale

● All these observations are from using JFR at scale
● Very varying kinds of loads and applications

○ “Typical” long running Java microservices
○ Scala / Akka / high throughput messaging
○ Async / Reactive

● From casual use of the JDK Flight Recorder, you may not 
encounter any of these problems
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Exception Profiling

● Built in JFR exception profiler can be configured to capture all 
Exceptions or only Errors.

● Captures all, caught or uncaught 
(event generated on exception creation)

● Great to at least enable Errors?
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“Error is the superclass of all the 
exceptions from which ordinary programs are 

not ordinarily expected to recover.”
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Errors (And Exceptions) Outside the Ivory Tower

● One of the most popular and widely used Java Libraries:
○ JavaCC => Lucene => Elasticsearch
○ Enormous amount of errors
○ Subclass named LookAheadSuccess
○ Used for control flow in a parser

● But exception profiling is great!
-> Invent new exception profiler
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New Exception Profiler

● Get a count of exceptions per type
● Sample the first thrown exception of each type
● Subsample to try to hit a target rate

○ Use inspiration from PID controllers 
○ Evenly spread across time
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PID controller

● Control loop mechanism

● using feedback loop

● apply correction based on error with P, I D terms
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Adaptive Sampler
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Allocation Profiling in JFR

● Allocation profiling introduced in JFR
○ Introduced in 7u40 (2013)
○ Has two paths/events - New TLAB / outside TLAB
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Allocation Profiling in JFR

● Allocation profiling introduced in JFR
○ Introduced in 7u40 (2013)
○ Has two paths/events - New TLAB / outside TLAB
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The Dangers of Allocation Profiling

● Normally has quite good runtime performance and data 
production rate

● These days though...
○ 96+ core beasts
○ allocation hungry services (e.g. stream processing beasts)

● Event rate depends on factors like
○ number of threads
○ size and number of allocations
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Allocation Profiling Performance Problems
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Allocation Profiling Performance Problems

● Hashcode problem - JFR constant pool (solved)
● Still too much data to handle
● Solution -> new allocation profiler in JFR (JDK 16+)
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New Allocation Profiler

● Take the idea from the JVMTI (JDK 11+) allocation sampler
(i.e. average amount of memory between samples)

● Inspiration from PID controllers - control data production rate
● Many nice qualities:

○ Controllable data budget
○ Actual individual samples (time, thread)
○ Allocation since last sample for weighting 

(total allocation pressure)
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New Allocation Profiler
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Memory leak profiler: OldObjectSample

● Interesting for solving memory leaks
○ Allocation Stacktrace
○ Allocation Time
○ Type
○ Array size
○ Reference chain
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OldObjectSample Problems

● Allocation sample are kept into a queue
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OldObjectSample Problems

● Constants associated are kept
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OldObjectSample Problems

● When a sample is discarded (GC)
constants remain
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ConstantPool explorer
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OldObjectSample Solutions

● Having a second stacktrace repository specific for the event
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CPU Profiling

Execution Sample events
● Pros

○ Very cheap - both in memory and overhead
○ Pretty much constant overhead
○ Not safepoint biased (like AsyncProfiler)

● Cons
○ Not sampling all threads 

(e.g. JVM native threads/native library threads)
-> Compensate unaccounted CPU time using other events
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CPU Profiling

● JFR would do well with a proper CPU profiler
○ Sample taken when certain CPU time elapsed...
○ ...no matter the thread
○ Nice APIs available today... (e.g. perf_event_open) 
○ ...backed by PMU (not in containers though)
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Latency outliers vs Wall-Clock

● JFR has events for thread halts
○ Provide more than just a stacktrace
○ Provide exact wall-clock timing of the halts

● Happen too often
○ Must be limited to outliers only
○ Uses thresholding to keep volume down

● Thresholding is problematic
○ Edge cases
○ Statistical skew
○ Hard to know if you’ve missed somethings
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Best of Both Worlds?

● Subsample / Rate limit the events (PID thinking FTW)
● Add a proper wall clock profiler for JFR...

How about adding Event#commit(Thread)?

(Events might also want to add an annotation whether or not the thread state should be captured or not.)
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Wrap Up
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Summary

● JFR is more than a profiler and can be used in production

● Exception, allocation and leak profiler can increase overhead

● Solutions to this are coming to your JDK near you, soon!
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JMC 8 is Released!

● Tutorial:
https://github.com/thegreystone/jmc-tutorial
(Feel free to fork and do pull requests for the Tutorial! :))

● JShell for JMC-core (jmc-jshell):
https://github.com/thegreystone/jmc-jshell
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Q&A

63

@jpbempel


