
Experiences building and deploying a continuous profiler at scale
Real World JFR

Jean-Philippe Bempel
 @jpbempel 1

Agenda

● Quick introduction to JDK Flight Recorder (JFR)

● JFR at Datadog

● Lessons learnt

2

Quick Intro to the JDK Flight Recorder (JFR)

● Data Flight Recorder for the JVM
● Records information about the JVM and the application
● Low overhead
● Powerful APIs and Tooling
● Can be used to solve a range of different problems

3

Availability of JFR

● OpenJDK/HotSpot

● Open sourced since JDK 11

● Backported to OpenJDK 8u262/272

4

JFR Inner Workings

● Events recorded into thread buffers

5

JFR Inner Workings

● Events recorded into thread buffers
● When full, copied into global buffer

6

JFR Inner Workings

● Events recorded into thread buffers
● When full, copied into global buffer
● Can be configured to keep on overwriting/reusing buffer

7

JFR Inner Workings

● Events recorded into thread buffers
● When full, copied into global buffer
● Can be configured to keep on overwriting/reusing buffer
● … or emit to disk

8

Low Overhead

● High performance flight recording engine
○ Invariant TSC for time stamping
○ Thread local native buffers
○ Efficient format for low overhead event emission

● High performance data collection
○ Access to data already collected in the Java runtime
○ Built into the JVM/JDK - skip abstractions

● Trying hard not to change runtime characteristics

9

Events Constants

Other Properties of JFR

● Self describing chunks of information
● Self contained chunks
● Chunk rotations will happen when

○ Start / Stop recording
○ Create a snapshot

Header Events Constants MetadataChunk:

Recording: Chunk Chunk Chunk 10

Quick Demo JFR

11

JFR at Datadog

12

JFR at Datadog

● Continuous capture offers a lot of interesting capabilities
○ Always data available when things go bad
○ Possibility to break down profiling data

■ Time/Thread
■ Context

○ Continuous stream of data for analysis and statistics
● Is continuous capturing economically feasible?

○ What is the data rate?
○ What is the actual performance overhead?

13

Continuous Profiler Architecture

14

Continuous Profiler Architecture

15

Continuous Profiler Architecture

16

Continuous Profiler Architecture

17

Continuous Profiler Architecture

18

Continuous Profiler Architecture

19

JFR
profiles

Continuous Profiler Architecture

20

JFR
profiles

Continuous Profiler Architecture

21

JFR
profiles

Continuous Profiler Architecture

22

JFR
profiles

Continuous Profiler Architecture

23

JFR
profiles

Continuous Profiler figures

● Actually works surprisingly well at incredible scale
● Datadog is intaking terabytes of JFR data per minute
● Datadog is intaking all data from every Java process

● Recording data size 5 (2 compressed) MiB per minute
● Corresponds to around 100k events
● Normally one chunk per minute
● Cpu Overhead usually < 2%
● Cost for continuously repeating the metadata ~= 0.5%

24

JFR template specially crafted

● 2 flavors provided by OpenJDK

● Customize one with:
○ Allocation profiling
○ Exceptions
○ Exec Sampling 20 ->9 ms
○ Thresholds adjusted (VM operation, File IO, Monitors,

Threads)

25

Overhead assessment

● Spring petclinic application

● request processing time too short

● More difficult to assess any overhead statistically significant

● Also not representative to real workload

26

Overhead assessment

● Custom Spring petclinic

● Increase processing time for 100ms per request

● Increase In-memory database entries

27

Overhead measurements

● Heap & GC

● CPU from /proc/<pid>/stat
get total cpu ticks since startup

28

Lessons Learnt

29

JFR at Scale

● All these observations are from using JFR at scale
● Very varying kinds of loads and applications

○ “Typical” long running Java microservices
○ Scala / Akka / high throughput messaging
○ Async / Reactive

● From casual use of the JDK Flight Recorder, you may not
encounter any of these problems

30

Exception Profiling

● Built in JFR exception profiler can be configured to capture all
Exceptions or only Errors.

● Captures all, caught or uncaught
(event generated on exception creation)

● Great to at least enable Errors?

31

“Error is the superclass of all the
exceptions from which ordinary programs are

not ordinarily expected to recover.”

32

Errors (And Exceptions) Outside the Ivory Tower

● One of the most popular and widely used Java Libraries:
○ JavaCC => Lucene => Elasticsearch
○ Enormous amount of errors
○ Subclass named LookAheadSuccess
○ Used for control flow in a parser

● But exception profiling is great!
-> Invent new exception profiler

33

New Exception Profiler

● Get a count of exceptions per type
● Sample the first thrown exception of each type
● Subsample to try to hit a target rate

○ Use inspiration from PID controllers
○ Evenly spread across time

34

PID controller

● Control loop mechanism

● using feedback loop

● apply correction based on error with P, I D terms

35

Adaptive Sampler

36

Sample proba
bility

Adaptive Sampler

37

Sample proba
bility

drop

Adaptive Sampler

38

Sample proba
bility

drop

samples
tests

Adaptive Sampler

39

Sample proba
bility

drop

samples
tests

Roll
Window
Task

Adaptive Sampler

40

Sample proba
bility

drop

samples
tests

EMA

Roll
Window
Task

Allocation Profiling in JFR

● Allocation profiling introduced in JFR
○ Introduced in 7u40 (2013)
○ Has two paths/events - New TLAB / outside TLAB

41

TLAB

allocated

Allocation Profiling in JFR

● Allocation profiling introduced in JFR
○ Introduced in 7u40 (2013)
○ Has two paths/events - New TLAB / outside TLAB

42

TLAB

allocated

New TLAB

Allocation Profiling in JFR

● Allocation profiling introduced in JFR
○ Introduced in 7u40 (2013)
○ Has two paths/events - New TLAB / outside TLAB

43

TLAB

allocated

New TLAB

AllocateInsideNewTLAB event

The Dangers of Allocation Profiling

● Normally has quite good runtime performance and data
production rate

● These days though...
○ 96+ core beasts
○ allocation hungry services (e.g. stream processing beasts)

● Event rate depends on factors like
○ number of threads
○ size and number of allocations

44

Allocation Profiling Performance Problems

45

jfr summary recording.jfr

Allocation Profiling Performance Problems

● Hashcode problem - JFR constant pool (solved)
● Still too much data to handle
● Solution -> new allocation profiler in JFR (JDK 16+)

46

New Allocation Profiler

● Take the idea from the JVMTI (JDK 11+) allocation sampler
(i.e. average amount of memory between samples)

● Inspiration from PID controllers - control data production rate
● Many nice qualities:

○ Controllable data budget
○ Actual individual samples (time, thread)
○ Allocation since last sample for weighting

(total allocation pressure)

47

New Allocation Profiler

48

TLAB

allocated

New TLAB

Adaptive Sampler ObjectAllocationSample event

Memory leak profiler: OldObjectSample

● Interesting for solving memory leaks
○ Allocation Stacktrace
○ Allocation Time
○ Type
○ Array size
○ Reference chain

49

OldObjectSample Problems

● Allocation sample are kept into a queue

50

TLAB

allocated

New TLAB

JfrStackTrace
Repository

weak ref

OldObjectSample Problems

● Constants associated are kept

51

TLAB

allocated

New TLAB

JfrStackTrace
Repository

weak ref

Symbols

Methods

Classes

OldObjectSample Problems

● When a sample is discarded (GC)
constants remain

52

TLAB

allocated

New TLAB

JfrStackTrace
Repository

Symbols

Methods

Classes

JFR Chunk

ConstantPool explorer

53

OldObjectSample Solutions

● Having a second stacktrace repository specific for the event

54

OldObjectSample
JfrStackTrace

Repository

JfrStackTrace
Repository

JFR Chunk

CPU Profiling

Execution Sample events
● Pros

○ Very cheap - both in memory and overhead
○ Pretty much constant overhead
○ Not safepoint biased (like AsyncProfiler)

● Cons
○ Not sampling all threads

(e.g. JVM native threads/native library threads)
-> Compensate unaccounted CPU time using other events

55

CPU Profiling

● JFR would do well with a proper CPU profiler
○ Sample taken when certain CPU time elapsed...
○ ...no matter the thread
○ Nice APIs available today... (e.g. perf_event_open)
○ ...backed by PMU (not in containers though)

56

Latency outliers vs Wall-Clock

● JFR has events for thread halts
○ Provide more than just a stacktrace
○ Provide exact wall-clock timing of the halts

● Happen too often
○ Must be limited to outliers only
○ Uses thresholding to keep volume down

● Thresholding is problematic
○ Edge cases
○ Statistical skew
○ Hard to know if you’ve missed somethings

57

Best of Both Worlds?

● Subsample / Rate limit the events (PID thinking FTW)
● Add a proper wall clock profiler for JFR...

How about adding Event#commit(Thread)?

(Events might also want to add an annotation whether or not the thread state should be captured or not.)

58

Wrap Up

59

Summary

● JFR is more than a profiler and can be used in production

● Exception, allocation and leak profiler can increase overhead

● Solutions to this are coming to your JDK near you, soon!

60

JMC 8 is Released!

● Tutorial:
https://github.com/thegreystone/jmc-tutorial
(Feel free to fork and do pull requests for the Tutorial! :))

● JShell for JMC-core (jmc-jshell):
https://github.com/thegreystone/jmc-jshell

61

https://github.com/thegreystone/jmc-tutorial
https://github.com/thegreystone/jmc-jshell

References

● JDK Mission Control GitHub Repo

● Marcus Hirt’s Blog

● Continuous Profiling Blog

● Improved JFR Allocation profiling in JDK 16

● Adaptive Sampler: Java impl & JFR impl

● OldObjectSample PR

62

https://github.com/openjdk/jmc
http://hirt.se/blog
https://foojay.io/today/continuous-production-profiling-and-diagnostics/
https://withent.blogspot.com/2021/01/improved-jfr-allocation-profiling-in.html
https://github.com/DataDog/dd-trace-java/blob/master/internal-api/internal-api-8/src/main/java/datadog/trace/api/sampling/AdaptiveSampler.java
https://github.com/openjdk/jdk/blob/master/src/hotspot/share/jfr/support/jfrAdaptiveSampler.cpp
https://github.com/openjdk/jdk/pull/2645

Q&A

63

@jpbempel

