Real World JFR

Experiences building and deploying a continuous profiler at scale
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Quick Intro to the JDK Flight Recorder (JFR)

Data Flight Recorder for the JVM

Records information about the JVM and the application
_ow overhead

Powerful APls and Tooling

Can be used to solve a range of different problems
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Availability of JFR

e OpendDK/HotSpot
e Open sourced since JDK 11

e Backported to OpenJDK 8u262/272
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JFR Inner Workings

e Events recorded into thread buffers
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JFR Inner Workings

e Events recorded into thread buffers
e When full, copied into global buffer
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JFR Inner Workings

e Events recorded into thread buffers
e When full, copied into global buffer
e Can be configured to keep on overwriting/reusing buffer
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JFR Inner Workings

e Events recorded into thread buffers
e When full, copied into global buffer
e Can be configured to keep on overwriting/reusing buffer
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Low Overhead

e High performance flight recording engine
o Invariant TSC for time stamping
o Thread local native buffers
o Efficient format for low overhead event emission
e High performance data collection
o Access to data already collected in the Java runtime
o Built into the JVM/JDK - skip abstractions
e Trying hard not to change runtime characteristics
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Other Properties of JFR

e Self describing chunks of information
e Self contained chunks
e Chunk rotations will happen when

o Start / Stop recording

o Create a snapshot
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Quick Demo JFR



JFR at Datadog
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JFR at Datadog

e Continuous capture offers a lot of interesting capabilities
o Always data available when things go bad

o Possibility to break down profiling data
m Time/Thread
m Context

o Continuous stream of data for analysis and statistics
e |s continuous capturing economically feasible?

o What is the data rate?

o What is the actual performance overhead?
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Continuous Profiler Architecture
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Continuous Profiler Architecture
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Continuous Profiler Architecture

¥ bATADOG

16



Continuous Profiler Architecture
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Continuous Profiler Architecture
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Continuous Profiler Architecture
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Continuous Profiler Architecture
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Continuous Profiler Architecture
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Continuous Profiler Architecture
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Continuous Profiler figures

e Actually works surprisingly well at incredible scale
e Datadog is intaking terabytes of JFR data per minute
e Datadog is intaking all data from every Java process
Recording data size 5 (2 compressed) MiB per minute
Corresponds to around 100k events
Normally one chunk per minute
Cpu Overhead usually < 2%
Cost for continuously repeating the metadata ~= 0.5%
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JFR template specially crafted

e 2 flavors provided by OpenJDK

e Customize one with:
o Allocation profiling
o Exceptions
o Exec Sampling 20 ->9 ms
o Thresholds adjusted (VM operation, File 10, Monitors,
Threads)
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Overhead assessment

e Spring petclinic application

e request processing time too short

e More difficult to assess any overhead statistically significant

e Also not representative to real workload
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Overhead assessment

e Custom Spring petclinic

e Increase processing time for 100ms per request

e Increase In-memory database entries
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Overhead measurements

e Heap & GC

e CPUfrom /proc/<pid>/stat
get total cpu ticks since startup
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Lessons Learnt
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JFR at Scale

e All these observations are from using JFR at scale
e Very varying kinds of loads and applications

o “Typical” long running Java microservices

o Scala / Akka / high throughput messaging

o Async / Reactive

e From casual use of the JDK Flight Recorder, you may not
encounter any of these problems
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Exception Profiling

e Built in JFR exception profiler can be configured to capture all
Exceptions or only Errors.

e Captures all, caught or uncaught
(event generated on exception creation)

e Great to at least enable Errors?

¥ bATADOG
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“Error 1s the superclass of all the
exceptions from which ordinary programs are
not ordinarily expected to recover.”

¥ bATADOG
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Errors (And Exceptions) Outside the Ivory Tower

e One of the most popular and widely used Java Libraries:
o JavaCC => Lucene => Elasticsearch
Enormous amount of errors

O
o Subclass named LookAheadSuccess
o Used for control flow in a parser

e But exception profiling is great!
-> Invent new exception profiler
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New Exception Profiler

e Get a count of exceptions per type

e Sample the first thrown exception of each type

e Subsample to try to hit a target rate

o Use inspiration from PID controllers

o Evenly spread across time
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PID controller
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e Control loop mechanism +

e using feedback loop

e apply correction based on error with P I D terms
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Adaptive Sampler
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Adaptive Sampler

Sample
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Adaptive Sampler

Sample

# samples
# tests
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Adaptive Sampler

Sample
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Adaptive Sampler

Sample
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Allocation Profiling in JFR

e Allocation profiling introduced in JFR

o Introduced in 7u40 (2013)
o Has two paths/events - New TLAB / outside TLAB

allocated

¥ bATADOG

41



Allocation Profiling in JFR

e Allocation profiling introduced in JFR

o Introduced in 7u40 (2013)
o Has two paths/events - New TLAB / outside TLAB
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Allocation Profiling in JFR

e Allocation profiling introduced in JFR

o Introduced in 7u40 (2013)
o Has two paths/events - New TLAB / outside TLAB

AllocatelnsideNewTLAB event
allocated /’

4 N Y ) N

New TLAB
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The Dangers of Allocation Profiling

e Normally has quite good runtime performance and data
production rate
e These days though...
o 96+ core beasts
o allocation hungry services (e.g. stream processing beasts)
e Event rate depends on factors like
o number of threads
o size and number of allocations

¥ bATADOG
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Allocation Profiling Performance Problems

¥ bATADOG

Jfr summary recording.jfr

Version: 2.1

Chunks: 2

Start: 2020-07-22 07:23:25 (UTC)
Duration: 60 s

Event Type

.ObjectAllocationInNewTLAB
.ZThreadPhase
.ThreadPark
.ExecutionSample
.ObjectAllocationOutsideTLAB
datadog.ExceptionSample
jdk . JavaMonitorWait
jdk.NativeMethodSample
jdk.ThreadSleep
jdk.ClassLoaderStatistics
jdk .BooleanFlag
jdk.ThreadAllocationStatistics
jdk . ThreadCPULoad

437808
25780
18614
13509
10620

9421
5199
4293
3244
1468
1236

809

619

Size (bytes)

10011153
1142331
802953
233323
231453
348824
171686
75900
68124
43716
43028
13859
13449
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Allocation Profiling Performance Problems

e Hashcode problem - JFR constant pool (solved)
e Still too much data to handle

e Solution -> new allocation profiler in JFR (JDK 16+)

¥ bATADOG
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New Allocation Profiler

e Take the idea from the JVMTI (JDK 11+) allocation sampler

(i.e. average amount of memory between samples)
e Inspiration from PID controllers - control data production rate
e Many nice qualities:

o Controllable data budget

o Actual individual samples (time, thread)

o Allocation since last sample for weighting

(total allocation pressure)

¥ bATADOG
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New Allocation Profiler

allocated

Adaptive Sampler

—» ObjectAllocationSample event

New TLAB
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Memory leak profiler: OldObjectSample

e Interesting for solving memory leaks
o Allocation Stacktrace

Allocation Time

Type

Array size

O
O
O
o Reference chain

¥ bATADOG
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OldObjectSample Problems

e Allocation sample are kept into a queue

weak;':ref \
C) JfrStackTrace
allocated Repository

4 N Y | )

New TLAB

g N ) /
) TLAB ]
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OldObjectSample Problems

e Constants associated are kept

allocated

weak;':ref

Symbols

Methods

O

N

JfrStackTrace
Repository

Classes

e

\ (

New TLAB

~
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A

TLAB
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OldObjectSample Problems

e When a sample is discarded (GC)
constants remain

Symbols

Methods

JfrStackTrace
Repository

allocated

Classes

——

New TLAB

N\ N /
) TLAB
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ConstantPool explorer

HJDK Mission Control
File Edit Navigate Window Help

%8 )VM Browser 5= Outline
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ae prof-analyzer-01.jfr

» Constant Pools

Search the table

Constant Pool Name Count” Size Total Size (%)
jdk.types.Symbol 13272 688 KiB . 17.2 %
jdk.types.StackTrace 10066 28amie Y %
jdk.types.Method 5757 151 KiB I 3.77 %
java.lang.Class 2480 145 KiB | 363%
java.lang.Thread 1272 61.1 KiB l 1.53%
jdk.types.Package 364 9.88 KiB 0.247 %
jdk.types.Bytecode 239 2.55 KiB 0.0638 %
jdk.types.OldObject 169 1.82 KiB 0.0456 %
lambda

Constant Value

com.datadog.profiling.analyzer.stages.DownloadStage$$Lambda$1030+0x0000000801354b80/1978813004
com.datadog.profiling.aggregation.parser.JfrSampleDefinitions$$Lambda$1744+0x00000008015716d0/851710768
software.amazon.awssdk.core.internal.http.pipeline.stages.MakeAsyncHttpRequestStage$$Lambda$386+0x0000000801006710/81445899
lambda$finalizeSdkHttpFullRequest$0

lambda$wrappedWith$4

lambda$wrappedWith$5
software.amazon.awssdk.http.nio.netty.internal.ResponseHandler$PublisherAdapter$1$$Lambda$716+0x0000000801219630/2023670220
lambda$dolnOrder$4

= Stack Trace & Flame View

Stack Trace Count Percentage

v =D §
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OldObjectSample Solutions

e Having a second stacktrace repository specific for the event

OldObjectSample
JfrStackTrace
Repository

l

JFR Chunk

JfrStackTrace
Repository
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CPU Profiling

Execution Sample events

e Pros
o Very cheap - both in memory and overhead
o Pretty much constant overhead
o Not safepoint biased (like AsyncProfiler)
e Cons
o Not sampling all threads
(e.g. JVM native threads/native library threads)

-> Compensate unaccounted CPU time using other events
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CPU Profiling

e JFR would do well with a proper CPU profiler

o Sample taken when certain CPU time elapsed...
...no matter the thread

O
o Nice APIs available today... (e.g. perf_event_open)
o ...backed by PMU (not in containers though)

¥ bATADOG
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Latency outliers vs Wall-Clock

o JF
O
O

e Ha

R has events for thread halts
Provide more than just a stacktrace
Provide exact wall-clock timing of the halts

ppen too often

o Must be limited to outliers only
o Uses thresholding to keep volume down
e Thresholding is problematic
o Edge cases
o Statistical skew
o Hard to know if you've missed somethings
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Best of Both Worlds?

e Subsample / Rate limit the events (PID thinking FTW)
e Add a proper wall clock profiler for JFR...

How about adding Event#commit(Thread)?

(Events might also want to add an annotation whether or not the thread state should be captured or not.)

¥ bATADOG
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Wrap Up
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Summary

e JFR is more than a profiler and can be used in production
e Exception, allocation and leak profiler can increase overhead

e Solutions to this are coming to your JDK near you, soon!
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JMC 8 is Released!

e Tutorial:

https://qithub.com/thegreystone/imc-tutorial
(Feel free to fork and do pull requests for the Tutorial! :))

e JShell for JMC-core (jmc-jshell):
https://qithub.com/thegreystone/imc-jshell

¥ bATADOG
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https://github.com/thegreystone/jmc-tutorial
https://github.com/thegreystone/jmc-jshell
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