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The University of Rochester

! Small private research 
university

! 6800 undergraduates
! 5000 graduate students
! Set on the Genesee River in 

Western New York State, near 
the south shore of Lake Ontario

! 250km by road from Toronto; 
590km from New York City
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The Computer 
Science Dept.

! Founded in 1974
! 20 tenure-track faculty; 

70 Ph.D. students
! Specializing in AI, theory, 

HCI, and parallel and 
distributed systems

! Among the best small 
departments in the US
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! Will assume some familiarity with multithreaded programming 
(ideally in C/C++), ideally including nonblocking data structures 
and synchronization techniques

! Have a total of 3 hours; will survey material that was the 
subject of an entire class this past semester (!)

! Will emphasize cross-cutting issues and techniques
» You can look up the details of individual structures,

concrete performance results

! Please interrupt with questions!

Introduction



For parallel programming background

! See the Morgan & Claypool 
monograph, © 2013
» Especially chapters 1, 2, 3, & 8
» Likely in your library
» 2nd edition planned
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! Main memory in the 1960s was nonvolatile—
magnetic core.  DRAM took over in the 1970s.

! But DRAM density has stalled.
» Grew from ~1Kb in 1970 to ~16Gb in 2018 —

7 orders of magnitude in 45 years.
» But significant further increases are not expected:

smaller capacitors leak too much.

! DRAM is also power hungry.
» Requires refresh at ~1KHz.
» More than 25% of data center energy consumption.

The very long reign of DRAM
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! Several new technologies available or in the lab
» Designed for higher density and lower energy consumption.
» As a side effect, nonvolatile — content is retrained on power loss.

1. Could just use the same way we’ve always used DRAM
» The distinction between transient memory and persistent storage may 

just be a good idea!

2. Or we could rethink the storage hierarchy
» Keep data “in memory” across program runs and even system crashes

★ This class explores the 2nd option

Enter nonvolatile memory (NVM)
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! NVM technology and hardware architecture
! Challenges of using NVM
! Correctness criteria for persistent “in memory” data

! Persistent data structures
! Persistent run-time systems
! Persistent memory allocation
! Other issues

Class outline
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! Phase-change memory (PCM) — e.g., Intel Optane
» Amorphous vs crystalline chalcogenide — Cf. rewritable CDs

! Resistive RAM (ReRAM) — a.k.a. memristors
» Ion migration in a metal oxide to make or break conductive filaments

! Spin-transfer torque magnetic memory (STT-MRAM)
» Electron spin alignment; process-compatible with CMOS (for caches?)

! Ferro-magnetic RAM (FeRAM)
» Used in IoT for many years; speed and density slightly worse than DRAM

NVM varieties
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https://www.elinfor.com/knowledge/comparison-between-different-memoriespcm-stt-ram-sram-dram-flash-nand-hdd-p-10908

Technology tradeoffs

STT- Flash

ReRAM PCM MRAM SRAM DRAM (NAND) HDD

Cell size (F2) < 4 4–16 20–60 140 6–12 1–4 2/3
Energy per bit (pJ) 0.1–3 2–25 0.1–2.5 0.0005 0.05 0.00002 1–10⇥109

Read time (ns) < 10 10–50 10–35 0.1–0.3 10 100,000 5–8⇥106

Write time (ns) ⇠10 50–500 10–90 0.1–0.3 10 100,000 5–8⇥106

Retention years years years While voltage << 1s years years
is applied

Endurance (cycles) 1012 109 1015 1016 1016 104 104

1



MLS 13

Where to attach NVM

...

...

... PCM

?

PCM SSD HDD

cores

caches

memories

STT-MRAM, perhaps

(flash)
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! “Below” DRAM, which then serves as a cache
» Intel “memory mode” — transparent to apps

! “Alongside” DRAM, as additional memory
» Intel “app direct mode”— explicitly allocated
» Needs direct access (DAX) support in the OS

– Persistent regions embedded in the file
system name space

– Opened with special mmap that bypasses the buffer cache —
direct access with load and store instructions

How to employ NVM

...

...

...
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! As a big slow memory
» ~1/8 the price of DRAM at present: < US $5K/TB

! As a hierarchy level between DRAM and flash
» Managed by the OS, compiler, or runtime

! As a tool to optimize file systems and databases
» With or without SSD/HDD below it

★ As explicitly persistent memory — a new abstraction
» Needs to be kept consistent on a crash

How to use DAX NVM
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! NVM technology and hardware architecture
! Challenges of using NVM
! Correctness criteria for persistent “in memory” data

! Persistent data structures
! Persistent run-time systems
! Persistent memory allocation
! Other issues

Class outline



MLS 17

! Consistency is provided by the cache 
coherence protocol

! NVM lives below the cache
! Caches write back lines in arbitrary

order — typically not in program order
! Unless we do something special,

memory may be inconsistent in the 
wake of a system crash

(1) The writeback problem

...

...

...



MLS 18

p = new Node();
foo.next = p;
// cache writes foo.next back to memory, but not *p; system crashes

! If B depends on A, you generally need to persist A (write it back 
and fence it) before even performing B

A simple example

foo
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! clflush — evicts line from cache system and waits for persistence
! clflushopt — evicts line but doesn’t wait
! clwb — writes line back and doesn’t wait

» also evicts on current machines — alias for clflushopt

! sfence — waits for previous writes-back issued by this HW thread

! These aren’t cheap: ~95ns to flush and/or fence
» Handshakes with the on-chip memory controller (“ADR domain”)
» For good performance, we need to minimize fences in particular:

consecutive flushes will pipeline; flush-fence pairs will not

Forcing persistence on Intel machines
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T1: p = new Node();
persist *p;  // wb & fence
foo.next = p;
persist foo.next;

// cache writes back everything but foo.next; system crashes; memory leaks

A slightly more complex example

foo ✕ ✕

T2: q = new Node();
persist *q;  // wb & fence
foo.next.next = q;

! Writing back your own updates does not suffice: you often have 
to write back what you read, to make sure it persists before your 
subsequent updates
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! In general, intermediate states of a typical data structure 
operation are not consistent, even in transient memory

! Each complete operation transforms a structure from one 
consistent state to another; we depend on forward progress to 
get us to the end of each operation

! If a crash occurs in the middle, how do we reach consistency?
» Cf: the related problem in file systems and databases
» Typically solved with some sort of logging (more on this later)

(2) The failure atomicity problem
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Other issues (glossed over here)

! Read-write asymmetry
» Optane reads are about 3X the latency of DRAM; writes are 10X
» May want to design software to minimize writes

! Endurance
» PCM lasts for ~109 writes (Cf. flash for ~104, DRAM for ~1016)
» Wear leveling and write reduction may be needed

! Full-system recovery (resume active processes)

! Security
» We encrypt disks to protect against theft
» We need to encrypt NVM as well (built-in on Intel machines)
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! What does it mean for a persistent data structure to be correct?
» When and what must we write back and fence to ensure consistency and 

failure atomicity after a crash?
» What must we do during recovery itself?
» How do we prove we’ve done it right?

! How do we maintain correctness while minimizing costs?
» For specific data structures
» In general-purpose systems or methodologies

Key questions for this class
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! Standard safety criterion for transient objects
! Concurrent execution H is guaranteed to be equivalent (same 

invocations and responses, inc. arguments) to some single-
threaded execution S that respects

1. object semantics (legal)
2. program order within each thread
3. “real-time” order across threads (res(A) <H inv(B)  ⇒ A <S B)

! Program is linearizable iff all of its executions are
! Need an extension for persistence

Linearizability [Herlihy & Wing 1987]
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! Execution history H is durably linearizable iff
1. It’s well formed (no thread survives a crash) and
2. It’s linearizable if you elide the crashes

! Friedman et al. [PPoPP’18] suggest an equivalent definition:
H is durably linearizable iff
1. It’s well formed
2. Every operation persists before returning
3. The persist order matches the linearization order

! Note, however, that persisting is generally expensive; doing it 
before returning slows each operation down a lot

Durable Linearizability [Izraelevitz et al, DISC’16]
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! H is buffered durably linearizable iff for each inter-crash era Ei we 
can identify a consistent cut Pi of Ei’s real-time order such that 
P0... Pi-1 Ei is linearizable ∀0 ≤ i ≤ c, where c is the number of 
crashes.
» That is, we may lose something at each crash, but what's left makes 

sense.  Note that buffering may be in hardware or in software.

Buffered variant
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! Recall that the memory model determines, for a given 
architecture, which instructions are guaranteed to occur in order, 
and which writes may be “seen” by which reads

! x86 machines, for example, have total store order (TSO)
» Synchronizing instructions (e.g., mfence or CAS [cmpxchg]) are totally 

ordered wrt each other and wrt previous and subsequent instructions of 
the current thread

» Other instructions obey RW, RR, and WW order, but not necessarily WR

! How does persistence fit into this scheme?

Ensuring (B)DL
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! Formalized by Izraelevitz et al. [DISC’16]
» release consistency; pwb, pfence, and psync instructions

! Subsumes x86, on which (simplifying a bit)
» {store, clflush, clflushopt, clwb} < {sfence, mfence, lock}
» {lfence, mfence, lock} < {load}

! A load can see
1. the most recent store on some backward ordered path,
2. an unordered (racing) store, or
3. the value persisted before the most recent crash,

if there is no ordered intervening write

Memory model extensions
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st → st; pwb
st_rel → pfence; st_rel; pwb
ld_acq→ ld_acq; pwb; pfence // this is the tricky one
cas → pfence; cas; pwb; pfence
ld → ld

! If the original code is data race free and linearizable, the 
transformed code is durably linearizable

! If the original code is nonblocking, the recovery process is null
! But:

Incremental mechanical persistence

1. Extensions are required for failure atomicity, which enables 
forward progress in lock-based code

2. Optimizations are needed to eliminate unnecessary fences
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! Undo logging
» Log each previous value, so incomplete operations can be rolled back
» Requires a fence after every logging operation

! Redo logging
» Log new values as you go, so complete but uncommitted ops can roll forward
» Requires special care to read one’s own writes

! JustDo logging
» Execute operations to completion during recovery

! Periodic persistence (buffered DL)
» Checkpoint now and then (and work on a separate copy), or
» Preserve history and arrange for recovery to ignore the recent updates

Ensuring failure atomicity
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! Writes-back aren’t expensive (they pipeline): waiting for them is
» Want to perform multiple writes between fences

! Possible strategies
» Prefer redo over undo logging
» When initializing an object, write back all lines before fencing
» Avoid persisting metadata that can be reconstructed during recovery
» Consider buffered DL structures and systems, rather than strictly DL

! Each strategy requires a correctness proof

Reducing the number of fences
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! Every operation “appears to happen” at some individual 
instruction, somewhere between its call and return

! Proofs commonly leverage this formulation
» In lock-based code, L.P. could be pretty much anywhere
» In simple nonblocking operations, often at a distinguished CAS

! In general, linearization points
» may be statically known
» may be determined by each operation dynamically
» may be reasoned in retrospect to have happened
» (may be executed by another thread!)

Linearization points (review)
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! (Sufficient but not mandatory) proof-writing strategy
! Implementation is durably linearizable if

1. somewhere between linearization point and response, all stores needed 
to “capture” the operation have been written back and fenced

2. whenever M1 & M2 overlap, linearization points can be chosen s.t.
either M1’s persist point precedes M2’s linearization point, or M2’s 
linearization point precedes M1’s linearization point

! As in the mechanical transform, nonblocking persistent objects 
need helping: if an op has linearized but not yet persisted, its 
successor must be prepared to push it through to persistence

Persist points (new)



MLS 35



MLS 36

! NVM technology and hardware architecture
! Challenges of using NVM
! Correctness criteria for persistent “in memory” data

! Persistent data structures
! Persistent run-time systems
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! Other issues
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! Lots of trees
» CDDS B-tree [Venkataraman FAST 2011]

» wB+-tree [Chen VLDB 2015]

» NV-Tree [Yang FAST 2015]

» FPTree [Oukid SIGMOD 2016]

» WORT [Lee FAST 2017]

! Hash tables
» NVC-hashmap [Schwalb IMDM 2015]

» Dalí [Nawab DISC 2017]

! Queue [Friedman PPoPP 2018]

Individual data structures

» clfB-tree [Kim TOS 2018]

» F&F B+-tree [Hwang FAST 2018]

» NV RB-tree [Wang TOS 2018]

» RNTree [Liu ICPP 2019]

» B3-tree [Nam TOS 2020] 

This just scratches 
the surface
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! Use nonblocking structures to get failure atomicity without logs
! Use hardware transactional memory to reduce reliance on locks

» In particular, to update an entire cache line atomically

! Track pointers that may not have persisted [David ATC 2018]

» Link and persist — mark each newly created pointer; persist it before 
using it to create anything else that might need to be persisted

» Link caching — add non-persistent pointers to a set; when one needs to 
be persisted, write them all back and issue a single fence

Key ideas (1)
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! Don’t persist metadata that is easily reconstructed
» Tradeoff between recovery time and overhead during crash-free 

operation

! Don’t persist things that are read during a (possibly lengthy) 
traversal phase [Friedman PLDI 2020]
» Validate (and persist) final location; then perform operation
» Consider persistent version of Harris & Michael lock-free sorted list:

Key ideas (2)

Y

X ZA B ...
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! Leverage “persistent” (history-preserving) structures from 
functional programming
» Dalí hashmap [Nawab DISC 2017]

– “Periodic persistence” for buffered durable linearizability
– Periodically flush accumulated changes (or maybe everything) — notion of an epoch
– Design structure so recovery can ignore everything changed in recent epochs (tricky!)

» MOD library [Haria ASPLOS 2020]
– Create & write back new nodes; fence; install update w/ a single CAS; write-back & 

fence

Key ideas (3)
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! Prepend-only buckets (with occasional garbage collection)
! Updating thread

» locks bucket
» identifies old and new epoch number,

and old and new pointer roles
» creates new prepended record
» retargets new head to new node
» updates status indicator, atomically,

to “rotate” pointers (if necessary) and
update snapshot number

» unlocks bucket

Dalí hashmap [Nawab DISC 2017]

Committed pointer (c)
In-flight pointer (f)
Active pointer (a)
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! Challenges of using NVM
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Class outline
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! Lock-based failure-atomic sections (FASEs)
! Undo logging
! Compiler support to instrument FASE boundaries & accesses
! Programmer labels persistent data; uses special malloc+free
! Non-isolated critical sections and “naked” accesses mean a 

completed FASE may see an incomplete FASE
» System tracks dependences to embed happens-before in log
» Recovery process replays undo log in reverse order to undo both 

incomplete and inconsistent FASEs

! Program must be data-race-free, and must support GC

Locking — the Atlas system
[Chakrabarti OOPSLA 2014]
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! Designed for a machine with nonvolatile caches
! Goal is to assure the atomicity of lock-based FASEs (cf. Atlas)
! Prior to every write, log (to cache) the PC and the live registers

» Note that log is small and bounded, and requires no cleanup

! In the wake of a crash, execute the remainder of any interrupted 
FASE

! Less than an order of magnitude slowdown for FASEs (3x faster 
than Atlas), but not w/ volatile caches (2 orders of magnitude)

JUSTDO Logging [Izraelevitz ASPLOS’16]
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! Key observation: programs have idempotent regions that are 10s 
or 100s or instructions

! Key idea: do JUSTDO logging at i-region boundaries
! On recovery, complete each interrupted FASE, starting at 

beginning of interrupted i-region
! Makes JUSTDO practical even with volatile caches

iDO Logging [Liu MICRO’19]
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! Based on TinySTM [Felber PPoPP 2008]

» Speculative concurrency during crash-free operation

! Uses Intel’s STM compiler to instrument code
! Per-thread redo logs, with global timestamps for recovery ordering
! Novel “torn bit” in each word of log

so recovery can tell which entries
are complete (i.e., valid)

Transactions — Mnemosyne
[Volos ASPLOS 2011]
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! NV-Heaps [Coburn ASPLOS 2011]
» Object-based; undo logs

! REWIND [Chatzistergiou VLDB 2015]
» Write-ahead (redo + undo) logging

! SoftWrAP [Giles MSST 2015]
» DRAM as shadow memory; NVM writes in 

background

! Romulus [Correia SPAA 2018]
» 2 copies of everything in NVM; only 4 

fences per transaction

! OO Recovery [Cohen OOPSLA 2018]
» Language-based; reconstructors can do 

arbitrary work at recovery time

Other transaction systems
! Breeze [Memaripour ICCD 2018]

» Emphasis on legacy SW; LLVM-based undo 
logging

! OneFile [Ramalhete DSN 2019]
» Non-scalable, but wait-free; 2x space 

overhead

! Pisces [Gu ATC 2019]
» Object-based; snapshot isolation for fast 

reads; 2 copies of everything

! QSTM [Beadle 2020 submission]
» Lock-free; less intrusive than OneFile

And there are more!
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! First persistence system to leverage full generality of hardware TM 
! Combines undo and redo logging

» Run a transaction in HTM, building an undo log
» Before committing, traverse the undo log, undo the “real” writes, build a 

(transient) redo log, and record a Lamport timestamp in the undo log
» After committing, persist the undo log and then execute the redo log 

(perhaps with HTM)
» If the redo fails due to intervening action in another thread (detected via 

timestamp), fall back and retry using a global lock (also fall back if HTM fails)
» Persist the modified data, then mark the undo log as completed

Crafty [Genc PLDI 2020]
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! Failure-atomic msync [Kelly Queue 2019]

» DRAM as shadow copy; all updates persist atomically on sync
(and not before!)

! Pronto [Memaripour ASPLOS 2020]

» Periodic checkpointing + high level logging

! Montage [Wen 2020 (work in progress)]

» Buffered durable linearizability; less than one fence per operation
» Builds on the Ralloc allocator (more on this in a minute)

Other general-purpose models
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! Default starting point for most programmers
! Suite of tools from which to pick and choose

» Log implementation
» Failure-atomic (but not isolated) transactions
» Memory allocation
» Key-value store
» Testing
» Remote access via RDMA
» and more (and yet more under development)

Intel PMDK
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! NVM technology and hardware architecture
! Challenges of using NVM
! Correctness criteria for persistent “in memory” data

! Persistent data structures
! Persistent run-time systems
! Persistent memory allocation
! Other issues

Class outline



MLS 52

! Could simply roll into transactions
» Gives up on optimization
» Stronger semantics than required (return value of malloc doesn’t matter!)

! Preferable for allocator to be a separate abstraction
» Introduces problem of pre- and post-attachment leaks:

malloc / free

node *t = malloc(size)
t->init(...)
t->next = head

head = t

node *t = head
head = t->next

free(t)CRASH
CRASH
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! Found in nvm_malloc [Schwalb ADMS 2015], PMDK
! Allocate and attach, or detach and deallocate, atomically

! Non-standard API; hard to retrofit into existing code
! Requires write-back and fence inside each allocator call

malloc-to / free-from

persistent node *p
malloc-to(size, p)
p->init()
p->next = head
head = p

p = head
head = head->next
free-from(p)
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! Makalu [Bhandari OOPSLA 2016] provides standard API, but does 
garbage collection after a crash to recover leaked blocks
» Still requires write-back and fence in every operation

! Ralloc [Cai ISMM 2020] expands on this idea
» Nonblocking (based on LRMalloc [Leite VECPAR 2018])
» No write-back or fence required in most operations
» Position-independent data
» Filter functions to assist GC
» Exceptionally fast — rivals purely persistent allocators like JEMalloc

GC as an alternative
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! Real crashes are slow, and hard on real machines
! Several tools catch problematic idioms (e.g., write not followed by 

persist, or read & use without persist in-between)
! PMDK will enumerate possible write-back interleavings and apply 

a user-provided validation function to every memory image
» Exceptionally slow

! We’re developing a tool (PMAT) that intelligently samples from 
the space of memory images

Testing
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! Data structures that minimize writes
» For both performance and endurance

! (Non-persistent) systems that choose what to put in NVM
! File systems and databases with a traditional API, but optimized for 

implementation on NVM
! Data center architectures with disaggregated memory
» Can you satisfy a cache miss in hardware across the data center network?

! Management of persistent segments
! . . .

Other research topics
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! Hodor project [Hedayati ATC 2019] shows how to
1. Create fast protected libraries that can access memory

not visible to the main application
2. Use these libraries to safely share

state between applications

! But threads of different applications
can fail independently
» Ideal use case for nonblocking structures

as originally envisioned by members of
the theory community

! See tomorrow’s talk at Hydra!

Cross-application sharing

App 1 App 2

Lib a Lib b

(nonblocking?)
shared structures
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