
@martin_fmi

Elasticsearch internals

Martin Toshev

@martin_fmi

Agenda

• The ELK stack

• Elasticsearch architecture

• Extending Elasticsearch

@martin_fmi

The ELK stack

@martin_fmi

Overview

• The ELK stack is centered around Elasticsearch and includes:

– Elasticsearch
– Kibana
– Logstash
– Beats

• Elasticsearch is a full-text search engine with numerous
capabilities that drive it as a leading solution on the market

@martin_fmi

Overview

Beats Logstash Elasticsearch Kibana
data collection data aggregation

and processing
Indexing and storage analysis and

visualization

@martin_fmi

Elasticsearch

• A web server build on top of the Lucene Java library

• Another way to describe it is a document-oriented database

• Provides more functionality not provided by Lucene such as:

– Caching
– Clustering
– JSON-based REST API

@martin_fmi

Elasticsearch

• The basic data structure used by Elasticsearch is an inverted index

• Indexes are stored on disk in separate files

• Search can be performed on multiple indexes

• Documents in an index are logically grouped by type (deprecated in
7.0.0)

@martin_fmi

Elasticsearch

• In order to ensure result relevancy Elasticsearch uses a
few algorithms to calculate relevant scores

• The default one used is tf-idf (term frequency–inverse
document frequency)

@martin_fmi

Elasticsearch

• Provides faster retrieval of documents for more scenarios than
a traditional RDBMS

• A traditional RDBMS uses indexes implemented using a B-tree or
hash table structures

• The RDBMS indexes pose significant limitations on the types of
queries where they can be applied

@martin_fmi

Elasticsearch
• Documents might not have an explicit schema specified

• An explicit schema (mapping) for certain fields can be specified

• Certain fields can match a pattern that identifies their field
types (dynamic mapping)

• The same field can be indexed multiple times using different
mechanisms

@martin_fmi

Kibana
• An analytics and visualization dashboard designed to work with

Elasticsearch

• Provides a number of additional tools used to simplify
interaction with Elasticsearch

• Browser-based interface

@martin_fmi

Logstash

• Data collection engine with pipeline processing capabilities

• Provides integration with a variety of third-party data sources

• Originally targeted for log collection but for used for a variety
of use cases in practice

@martin_fmi

Logstash

• Data is processed in an input-filter-output manner

• Output data is stored typically in an Elasticsearch index

• Plug-in architecture with a large number of third-party plug-ins
available

@martin_fmi

Beats
• Beats is a collective name for a set of log shippers

• Each beat is able to collect logs from a particular third-party
source

• They are lightweight in nature and are installed separately

• Data collected from the various beats can be sent to Elasticsearch
or Logstash

@martin_fmi

Catalog of beats
Beat Use

Auditbeat Collects audit data
Filebeat Collects log files
Functionbeat Collects cloud data
Heartbeat Collects data from availability monitoring
Journalbeat Collects data from systemd journals
Metricbeat Collects system-level metrics
Packetbeat Collects network traffic
Winlogbeat Collects windows event logs

@martin_fmi

X-Pack
• X-Pack is a set of extra features for the ELK stack

• Already installed by default with Elasticsearch

• To see a list of X-Pack features installed the _xpack endpoint
can be used:
GET /_xpack

@martin_fmi

Elasticsearch architecture

@martin_fmi

Clustering

• Elasticsearch is designed with clustering in mind

• By default each node starts with 5 shards

• An Elasticsearch shard is a Lucene index

@martin_fmi

Clustering

• The more nodes are added to the cluster shards get distributed
among nodes

• By default, Elasticsearch tries to balance the number of shards
across your nodes so the load is evenly spread

• Partial results can be returned from shards that are still
available

@martin_fmi

Clustering
• The shard for a document is determined based on the following

formula:

• By default the rounting key is the document ID

• A custom routing key can be set during indexing to enable
shard routing

shard = hash(<rounting_key>) % number_of_primary_shards

@martin_fmi

Clustering
• By default, new nodes discover existing clusters via multicast

• If a cluster is discovered, the new node joins it only if it has
the same cluster name

• If a node on the same instance already runs on the specified
port Elasticsearch tries to pick the next available port

@martin_fmi

Clustering
• Two ways to discover nodes:

– multicast: automatic discovery of nodes on the network, multicast ping send by
default to 224.2.2.4:54328

– unicast: explicitly specify cluster nodes in the Elasticsearch configuration

• In unicast discovery not all nodes need to be listed

• The ones that are listed need to know of the other nodes in the
cluster

discovery.seed_hosts = ["10.0.0.3", "10.0.0.4:9300",
 "10.0.0.5[9300-9400]"]

@martin_fmi

Scaling considerations
• When planning an Elasticsearch cluster several aspects need to

be considered:

– sharding

– splitting data between indexes

– maximizing throughout

@martin_fmi

Sharding considerations

• Too small number of shards introduces a scalability bottleneck

• Too many shards introduces performance and management
overhead

• Determining the number of shards should be based on an
upfront planning

@martin_fmi

Splitting data between indexes
considerations

• Avoid putting huge amounts of data in a single index

• Index allocation strategies might be adopted such as a daily/
weekly/yearly index. For example: orders-20200106

• Aliases can be used to avoid changing the name of the index

@martin_fmi

Types of cluster nodes

• An Elasticsearch node can be of the following types:

– master
– data
– ingest

node.master = true

node.data = true

node.ingest = true

@martin_fmi

Concurrency control
• Elasticsearch uses optimistic locking for concurrency control

• When indexing a document the version attribute can be specified

• If the document already has the specified version the operation is
rejected from Elasticsearch

• Concurrency control can also be achieved using the if_seq_no and
if_primary_term parameters of an index request

@martin_fmi

High availability
• To increase availability, you can create one or more copies

(called replicas) for each of your initial shards (called
primaries)

• Once an indexing request is send to a particular shard
(determined from a hash of the document's ID)
the document being indexes is also sent to the shard's replicas

@martin_fmi

High availability

• When you perform a search request Elasticsearch distributes
the load among the shards and the replicas

• In that manner replicas are also used to improve performance
and not only provide a mechanism for fault-tolerance

@martin_fmi

High availability

• In addition to shard replication Elasticsearch provides
additional facilities for high availability in case replication is
not sufficient:

– cluster backup and restore
– cross cluster replication

@martin_fmi

Elasticsearch in production
• General guidelines:

– allocate enough heap memory for search operations (machines with 32-64GB are
preferable)

– prefer CPUs with more cores than faster CPUs, Elasticsearch utilizes the various
cores by means of the distinct thread pools it uses

– prefer faster storage systems such as SSDs if possible, no need to levarage RAID-
based mirroring and parity in favor of shard replication

– Use fast network for an Elasticsearch cluster

@martin_fmi

The Elasticsearch index
Elasticsearch index

Elasticsearch shard
(Lucene index)

Elasticsearch shard
(Lucene index)

Elasticsearch shard
(Lucene index)

Lucene
segment

Lucene
segment

Lucene
segment

Lucene
segment

primary replica replica

@martin_fmi

Coordinating
node Shard

Memory
Buffer

Transaction
log

Filesystem
Cache

Disk

Write
request

Route
request

Refresh
every

second
Commit to disk

with translog flush

Commit 5 seconds or
when full or flushed

Flush and
clear every
30 mins or
when full

Shard request processing

@martin_fmi

Coordinating
node Shard

Search
request

Search
request

Shard request processing
Shard

Shard

Search
request

Search
request

1. Query phase
2. Fetch phase

1. Query phase
2. Fetch phase

@martin_fmi

Elasticsearch modules
• Internally Elasticsearch is comprised of different modules

• Modules are loaded during Elasticsearch instance startup

• Elasticsearch uses a modified version of Google Guice for the
module bindingorg.elasticsearch.bootstrap.Elasticsearch#main(

)

org.elasticsearch.bootstrap.Bootstrap#init()

org.elasticsearch.node.Node#start()

@martin_fmi

Elasticsearch modules
// b is a Guice binder
modules.add(b -> {
 b.bind(Node.class).toInstance(this);
 b.bind(NodeService.class).toInstance(nodeService);

b.bind(NamedXContentRegistry.class).toInstance(xContentRegistry);
 b.bind(PluginsService.class).toInstance(pluginsService);
 b.bind(Client.class).toInstance(client);
 b.bind(NodeClient.class).toInstance(client);
 b.bind(Environment.class).toInstance(this.environment);
 b.bind(ThreadPool.class).toInstance(threadPool);
 b.bind(NodeEnvironment.class).toInstance(nodeEnvironment);
 …
}

@martin_fmi

Elasticsearch modules

• Some core modules are:

– Discovery and cluster formation: used for node discovery
– HTTP: for the HTTP REST API
– Plugins: for managing the Elasticsearch plug-ins
– Thread pools: thread pools used internally by Elasticsearch
– Transport: communication layer for the Elasticsearch nodes

@martin_fmi

The Elasticsearch codebase
(demo)

@martin_fmi

 Extending Elasticsearch

@martin_fmi

Elasticsearch plug-ins
• Plug-ins extend the functionality of Elasticsearch

• Located under the plugins directory

• The elasticsearch-plugin utility can be used to manage plugins

bin/elasticsearch-plugin list

bin/elasticsearch-plugin install [core_plugin_name]

bin/elasticsearch-plugin install [URL]

bin/elasticsearch-plugin remove [plugin_name]

@martin_fmi

Elasticsearch plug-ins

• Elasticsearch plug-ins are bundled in a ZIP archive along with
their dependencies

• They are loaded by a separate classloader

• Distinct security permissions can be applied per plug-in

@martin_fmi

Elasticsearch plug-ins

• Elasticsearch plug-ins must implement the
org.elasticsearch.plugins.Plugin class

• An instance of org.elasticsearch.plugins.PluginService is
responsible to load plug-ins

@martin_fmi

Writing an Elasticsearch plug-in
(demo)

@martin_fmi

Q&A

Thank you

