
SPTDC 2019: Lower Bounds in Distributed Computing

Solutions

1 Covering and valence in consensus algorithms

Consider an obstruction-free binary consensus algorithm using atomic read-write registers.
Let P be bivalent from Cβ, where β is a block write by some R ⊆ P . Let γ be a schedule

of some z /∈ P such that z decides in Cγ. Show that z must write to a register not covered by
R in C.

Suppose not, i.e., for some γ ∈ z∗, z decides a value v ∈ {0, 1} in Cγ writing only to registers
covered by R in C. Thus, in no process in P can distinguish Cγβα from Cβα where α is a
P -only schedule. As Cβ is bivalent, we can choose Cβα and, thus, Cγβα, to decide 1 − v—a
contradiction.

2 Space complexity of mutual exclusion

1. Show that any 2-process read-write mutual-exclusion alogirithm requires at least 2 registers.

Let p1 run its TS (trying section) until it is about to perform its first write: such a
schedule must exist, as otherwise p2 may enter its CS without noticing p1. Let α1 be
the corresponding schedule. Since α1 is indistinhguishable to p2 from an empty schedule,
there exists a schedule α ∈ p∗2 such that p2 is in its CS at the end of α1α.

If p2 only writes to the register covered by p1 in α1α, then we can wake up p1 and let it
overwrite all the traces of p2 and enter its CS—a contradiction.

Thus, p2 must write to a distinct register in α1α.

2. What about 3 processes? Can you show that 3 registers are necessary?

3. Finally, prove the general statement: n-process algorithm requires n registers.

We prove the general case, without wasting time on the 3-process scenario.

By induction, we are going to prove the following claim:

Let C be any configuration in which every process is in its remainder section
(RS). For all k = 1, . . . , n, there exists a schedule α by Pk = {p1, . . . , pk}, such
that:

• every process in Pk is about to write to a distinct register in Cα, and

• there exists a schedule α′ by Pk such that (1) every process is in the re-
mainder section in Cα′ and (2) Cα and Cα′ differ only in the local states
of processes in Pk.

1

The base case k = 1 is immediate: simply run p1 from C until it is about to perform its
first write. No other process can distinguish the resulting configuration from C.

Now suppose that the claim holds for some k = 1, . . . , n− 1. Let C0 be the configuration
after α. Let D0 = C0β0γ0 be the extension of C0 by Pk, where β0 is the block write by Pk
(on a set k distinct registers B0), such that every process in Pk is in its RS in D0. Since
the algorithm deadlock-free, such an extension exists.

Now we can reuse the induction hypothesis and get a configuration C1 = D0α0 in which
Pk cover a (possibly different from B0) set of k registers B1, etc.

So we get an infinite chain of configurations:

C
α
// C0

β0γ0// D0
α0 // C1

β1γ1// D1
α1 // C2

β2γ2//

where each Ci satisfies the claim for Pk.

Since there are only finitely many registers there must exist Ci and Cj (i < j), such that
the same set B of k registers is covered by Pk in Ci and Cj .

Now we extend Ci with steps of pk+1 until it is about to write to a register not in B. Such
an extension C ′i = Ciψ exists, as otherwise pk+1 can enters its CS and then all the traces
of its presence in the CS will be overwritten by the subsequent block write βi.

Notice that, since all steps of pk+1 are overwritten by the block write in Ciψβi, the
resulting configuration C ′j = C ′jψβiγiαi . . . βj−1γj−1αj−1 is indistintinguishable from Cj
for any process except pk+1. Thus, C ′j satisfies the claim for Pk+1 = {p1, . . . , pk+1}:
(1) every process in Pk+1 covers a distinct register in C ′j and (2) only processes in Pk can
distinguish C ′j from some configuration in which every process is in its RS.

3 RMR complexity of Peterson’s algorithm

What is the RMR total work complexity of Peterson’s n-process algorithms in the CC model?
In the DSM model, where, e.g., every process i keeps level[i] locally?

In the CC model, the complexity is Θ(n3).
To see this, consider an execution in which, for every i = 0, . . . , n − 2, process i is the last

to reach waitng rooms i, . . . , n − 2. Therefore, to leave room i, process i needs to make sure
that every process j = i+ 1, . . . , n− 1 leaves its critical section and sets level[j] to −1. There
exists an execution in which i can first see processes i+ 1, . . . , n−1 reaching room i+ 1 (setting
their level variables to i+ 1), after that—processes i+ 2, . . . , n− 1 reaching room i+ 2, after
that—processes i+ 3, . . . , n− 1 reaching room i+ 3, etc.

Thus, before leaving room i, process i may have to go through n− 2− i phases, where each
phase j = i+1, . . . , n−2 incurs n−1−j cache misses, resulting in Ω((n−i)2) RMRs that process i
must perform in this execution. The total number of RMRs is therefore Ω(

∑
i=0,...,n−2(n−i)2) =

Ω(n3).
On the other hand, as every process performs O(n) writes, there only can be O(n2) cache

misses per process, which gives O(n3) RMRs in the total work.
In the DSM model, it is not hard to see that the complexity is unbounded, regardless of the

assignment of variables. In particular, if we decide that each level[i] variable is local to process
i, the scheduler may force i to perform an unbounded number of reads of level[j], j 6= i before
reaching the critical section.

2

Typos and mistakes are possible in this draft. If you find any, please let me know:
petr.kuznetsov@telecom-paris.fr.

3

