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Who Am I?

Cliff Click
Leader, Founder
Cratus, Rocket School, Neurensic, 
H2O.ai, Azul, Sun
cliffc@acm.org

45 yrs coding
40 yrs building compilers
35 yrs distributed computation
30 yrs OS, device drivers, HPC, HotSpot 
15 yrs Low-latency GC, custom java hardware,

  NonBlockingHashMap
10 yrs ML tool building, ML applications
20+ patents, dozens of papers
100s of public talks

PhD Computer Science
1995 Rice University
HotSpot JVM Server Compiler
“showed the world JITing is possible”



What is H2O?
● Machine Learning on Big Data, Big Math
● Parallel, Tightly Coupled In-Memory Computing
● Fast Machine Learning

– e.g. Logistic Regression on 7Tb in 90sec
– 10x faster than Spark, 100x faster than Hadoop...

● Lots of need for cross-node communication
● Sometimes for throughput: Big Data being moved
● Often for control: ordering operations
● Need for both speed and exact consistency



H2O Coding For Big Math

● Data in a (distributed) large 2-D array
● Coding like a single-threaded Java machine:

– for( int i=0; i<N; i++ )
A[i] = B[i]*C[i];

– “N” can be trillions++
– Auto-parallel, auto-scale-out

● With many Tb memory and 1000’s of cores

– Most simple Java “just works”
● Cluster behaves like a large shared-memory

– Up to the limits of the JMM… 



Tightly Coupled Cluster

● Most simple single-threaded Java “just works”!
– And most math code written by mathematicians
– But lots of edge cases
– And special algorithms (e.g. distributed sort)

● Very hard to code to true distributed memory
– Even for distributed systems engineers

● Want the Java Memory Model, but Distributed
– Exact (up to the JMM)
– Bulk speed: reliably hit Memory Bandwidth
– Much faster than the network...



Bulk Speed on Big Data

● Big Data: performance a driving concern
● In-memory compute hits Memory Bandwidth

– ~50G/sec on modern node, ~30sec for a Tb
● When data not local must use network

– So want to hit network bandwidth limits
– And feed the data from NIO buffers direct to CPU

● Actual data movement uses custom serialization
– gen’d class to write instances in/out of NIO buffers
– plus aggressive compression
– Fast as kryo when last tested, without setup costs



The JMM, Distributed

● Volatile read/write well defined in Java
– Strong ordering requirements

● Non-volatile also well defined…
– And mostly “anything goes”

● We can find lots of engineers 
who understand the JMM
– Not so many to design a distributed JMM

● So I go about making “The JMM, Distributed”
– Long talks with Kevin Normoyle 

(lead cache designer Azul Systems, Sun)



“The JMM, Distributed”

● Now two layers of Memory Model
– The “normal” one: loads/stores ordered by JMM
– But only within a single JVM address space

● And a Distributed JMM:
– loads/stores replaced with get/put
– In a global (cluster-wide) address space

● And with bulk operators for Big Data

● This becomes a classic
Distributed Key Value Store

● But with the JMM ordering: exact semantics



Distributed Key / Value Store

● "put(key,value)" on one node
● "value = get(key)" on another
● Follows Java Memory Model
● Keys used externally to point to

– Datasets, ML Models, Results
● Keys used internally to hold almost all state

– Big Data, temps during model building, ML models, 
scored data, cached results of all kinds



DKV is Fast

● Hardware-style cache-coherency - MOSI
● All values cache locally

– Cache-hitting GETs take ~150ns
● PUTs to different Keys can overlap

– Or not; user choice (i.e. volatile vs non-volatile)
– Limits of network bandwidth not latency
– Local PUTs same as cache-hits, ~150ns

● PUTs to same Key must order (network latency)
● Keys pseudo-randomly placed

– No “hot blocks”; good average behavior



Distributed Keys

● Keys have a home node
– Pseudo-random (except for Big Data)
– Big Data: round-robin with mini-batching

● Round-robin: uniform sharing of Big Data across nodes
● Mini-Batching: most edge cases do not cross node edges

● Fully peer-to-peer, no master Key directory
● Home has ultimate “truth” for GETs
● Home breaks ties for racing PUTs

– Same as JMM on racing stores: “eventually” one wins
● “Eventually”: speed of network

– Atomically executes transactions



Values

● Values track coherency
● Track which nodes have a replica Value
● Invalidates replicas to preserve JMM

– Very similar to hardware caching protocols
● Force write ordering from same Node same Key
● Values hold: 

– a reader/writer lock
– Count of outstanding GETs, or else a PUT
– Concurrent bitset of caching nodes



Example: Some ML...

● 4-node cluster
● New ML Model stored local to Node A
● Other nodes told to go compute error metrics

– Nodes B,C,D will need the Model
● Later, Node C produces a New Better Model

– Writes to Node A
– Nodes B & D need to be informed

● Here we go...



Example: initial conditions

● 4-Node cluster; single Key K1 (the Model name)

● Node A (a single JVM) holds Value V1 (the Model)

● Quiescent: no GETs in flight 
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Example

● 4-Node cluster; single Key K1
● Node A (a single JVM) holds Value V1
● Quiescent: no GETs in flight 

Bitset of Nodes 
with replicas

● 4-Node cluster; single Key K1 (the model name)
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● Quiescent: no GETs in flight 



Example

● Actually a 4-node cluster
● Other nodes not caching K1 yet



Example: B misses locally

● Node B needs Model, does GET(K1)
– Misses in B's local K/V store
– Hashes K1 to get K1’s home: A

● Fetch K1 from A
– Minimum 2 UDP packets – one send, one receive
– Use UDP if V1 is small for lowest latency
– Use TCP if V1 is big for congestion control
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– Misses in B's local K/V store, fetch from A



Example: B misses locally

● Node B does GET(K1)
– Misses in B's local K/V store, fetch from A

GET(K1)
...which misses locally.

Must wait at least a 
send & recv UDP



Example: B misses locally

● Node B does GET(K1)
– Misses in B's local K/V store, fetch from A

B knows K1’s home is A
… so sends packet to A



Example: B misses locally

● Node B does GET(K1)
– Misses in B's local K/V store, fetch from A

A updates 
GET count, 

replicas

B waiting



Example: B misses locally

● Node B does GET(K1)
– Misses in B's local K/V store, fetch from A

A sends V1.
Small: UDP
Large: TCP

B receiving



Example: B misses locally

● Node B does GET(K1)
– Misses in B's local K/V store, fetch from A

A waiting 
for ACK

B recording locally; 
data available now



Example: B misses locally

● Node B does GET(K1)
– Misses in B's local K/V store, fetch from A

A updates 
GET count

B sends ACKACK
in parallel with using V1



Example: Overlapping GETs

● Node C & D do GET(K1)
– Overlapping

● Data available on ACK
– (no stalling for ACKACK)

● Reader-lock unlocked 
on last ACKACK

● K1 / V1 fully cached
● All future GETs 150ns
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● Data available on ACK
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● Reader-lock unlocked 
on last ACKACK

● K1 / V1 fully cached
● All future GETs 150ns



Example: PUT new Model

● Node C does PUT(K1, V2)
– Cache local, write to A

● Caching local: GET after PUT is fast
● Write to A: Cluster “eventually” hears about PUT
● If non-volatile then non-blocking on C

– No need for C to hear back from A
● If volatile then C will block until A responds

– And A needs to do a cluster-wide invalidate



Example: PUT new Model

● Node C does PUT(K1, V2)
– Cache local, write to A

● A maps K1 to V2 (up from V1)
– atomic update in NonBlockingHashMap
– Locks V1 against GETs
– Sends invalidates to B & D
– Awaits invalidate ACKs
– ACKs back to C

● C's PUT completes
– further ACKACKs are lazy
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Example: PUT

● Node C does PUT(K1, V2)

C writes new Model
C Puts(K1,V2) local

V2 marked as pending



Example: PUT

● Node C does PUT(K1, V2)
– Cache local, write to A

C sends V2 to A
Small: UDP
Large: TCP



Example: PUT

● Node C does PUT(K1, V2)
– Cache local, write to A

● A maps K1 to V2
– atomic update in NonBlockingHashMap

A installs V2 local
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– Locks V1 against GETs

Lock V1
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Example: PUT

● Node C does PUT(K1, V2)
– Cache local, write to A

● A maps K1 to V2
– atomic update in NonBlockingHashMap
– Locks V1 against GETs
– Sends invalidates to B & D
– Awaits invalidate ACKs
– ACKs back to C

● C's PUT completes
– further ACKACKs are lazy

Every ACK gets 
an ACKACK



Key (yes pun) Takeaways

● All Keys can cache locally:
– 150ns  for repeated access
– Cache invalidated on a Write
– Forever good & correct until invalidated

● Bulk cluster-wide reads of a single Key
– Happen in any order
– Do not block each other
– Limits of network bandwidth, not latency
– No blocking once data is received

● ACKACKs happen in parallel 



Key (yes pun) Takeaways

● PUTs do not stall writer unless volatile
● Writer can always read just-PUT key
● Bulk PUTs to unrelated Keys all in parallel

– Fast to bulk-transfer Big Data
– Limits of network bandwidth, not latency

● Repeated writes same key are ordered
– Home key breaks ties, determines order

● Never inconsistent
– Racing writes locally see their own write for awhile
– But this is not inconsistent, since racing writes



Key (yes pun) Takeaways

● All missed GETs wait for round-trip to Home
● Volatile PUTs wait for round-trip to Home

– Further wait for outstanding GETs to settle
● Worst case:

Send from writer to Home,
Home finishes large GET to 3rd party
Home sends invalidates to all caching nodes
Home waits on invalidate-ACKs
Home sends ACK to writer.

– Price paid only when rapidly both 
reading & writing same Key



Key (yes pun) Takeaways

● Cost Model:
– Repeated reads same Key cache: 150ns
– Bulk reads: network bandwidth not latency
– Bulk writes: network bandwidth not latency
– Racing reader/writer: same as Bulk + Caching
– Volatile reader: same as normal reader
– Volatile writer: round-trip + cluster invalidate

● Data always available upon receipt
– But maybe ACKs and ACKACKs run in background



Single-Key Atomic Transactions

● Home can execute Atomic Transactions
– Code shipped to Home
– Transaction executes on Home
– Atomic update-or-fail on single Key

● (really putIfMatch on NonBlockingHashMap)

– Local retry on fail
– Same ordering as volatile GET/PUT



H2O is -

● Clustered In-Memory Computing
● Clustered Data – Columnar Compressed
● Fine-grained data parallelism via Map / Reduce

– Single-threaded code running parallel and 
distributed

● High Speed Exact Consistency Java Memory Model
● Tight integration into R, Python, Scala, Java, Web
● Best-of-Breed Math – done distributed
● A Systems' Platform Builder's Delight!



 

Q & A

 

Cliff Click
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