
Kafka Streams Testing
A Deep Dive

Ivan Ponomarev, John Roesler

1

Who Are We

Ivan Ponomarev:

Software Engineer at KURS, tutor at MIPT
Apache Kafka Contributor

2

Who Are We

John Roesler:

Software Engineer at Confluent
Apache Kafka Committer and PMC member

3

Kafka Streams Testing: A Deep Dive

1. Purpose: cover testing methodologies for Kafka Streams
"Unit" Testing: TopologyTestDriver
Integration Testing: KafkaStreams

2. Start with motivating example (from Ivan’s production)
3. A flawed testing approach: unit testing doesn’t work for this example
4. Deep-dive into the testing framework
5. Correctly testing the example with integration tests

4

The task

Save different source IDs in the database

5

The problem

Too many writes to the database

6

The solution

Let’s deduplicate using Kafka Streams!

7

TopologyTestDriver

8

TopologyTestDriver capabilities

What is being
sent/received

TestInputTopic methods TestOutputTopic methods

A single value pipeInput (V) V readValue ()

A key/value pair pipeInput (K, V) KeyValue<K,V>
readKeyValue()

9

TopologyTestDriver capabilities

What is being
sent/received

TestInputTopic methods TestOutputTopic methods

A list of values pipeValueList (List<V>) List<V>
readValuesToList()

A list of key/value
pairs

pipeKeyValueList
(List<KeyValue<K,V>>)

List<KeyValue<K,V>>
readKeyValuesToList()

Map<K,V>
readKeyValuesToMap()

10

TopologyTestDriver capabilities

What is being
sent/received

TestInputTopic methods TestOutputTopic methods

A list of Records pipeRecordList (List<?
extends TestRecord<K,
V>>)

List<TestRecord<K, V>>
readRecordsToList()

11

Demo

1. Spring Boot app
2. Let’s do some test-driven development and first write a test
3. Writing a test with TTDriver

12

A "Simple Solution"

13

A "Simple Solution"

14

A "Simple Solution"

15

A "Simple Solution"

16

A "Simple Solution"

17

Demo

writing the topology
TopologyTestDriver test is green

18

Tests are green

buildbuild passingpassing

19

Tests are green

buildbuild passingpassing

Should we run this in production?

19

What we saw in production:

20

Why it’s not working

Kafka Streams TopologyTestDriver

is a big data streaming framework is a fast, deterministic testing framework

21

Why it’s not working

Kafka Streams TopologyTestDriver

is a big data streaming framework

designed for high throughput
throughput demands batching, buffering,
caching, etc.
caching is the culprit in this example

is a fast, deterministic testing framework

22

Why it’s not working

Kafka Streams TopologyTestDriver

is a big data streaming framework

designed for high throughput
throughput demands batching, buffering,
caching, etc.
caching is the culprit in this example

is a fast, deterministic testing framework

designed for synchronous, immediate
results
flush cache after every update

23

Why it’s not working

Caching in Kafka Streams

don’t immediately emit every aggregation result
"soak up" repeated updates to the same key’s aggregation
configure cache size: max.bytes.buffering (10MB)
configure cache flush interval: commit.interval.ms (30s)
emit latest result on flush or eviction

24

Why it’s not working

25

Why it’s not working

26

Why it’s not working

27

Why it’s not working

28

Why it’s not working

29

Why it’s not working

30

Demo

TopologyTestDriver vs. Kafka Streams execution loop

31

Kafka Streams execution loop

32

Kafka Streams execution loop

33

Kafka Streams execution loop

34

Kafka Streams execution loop

35

Kafka Streams execution loop

36

Kafka Streams execution loop

37

Kafka Streams execution loop

38

Kafka Streams execution loop

39

TopologyTestDriver execution loop

40

TopologyTestDriver execution loop

41

TopologyTestDriver execution loop

42

TopologyTestDriver execution loop

43

TopologyTestDriver execution loop

44

TopologyTestDriver execution loop

45

TopologyTestDriver execution loop

46

What else?

What are other problems that can’t be surfaced with TopologyTestDriver?

47

TopologyTestDriver: single partition

48

Kafka Streams: co-partitioning problems

49

TopologyTestDriver: "Fused" subtopologies

ToplogyTestDriver

Kafka Streams

50

Timing

stream-stream joins can behave differently (pipeInput order vs. timestamp order)
logic that depends on stream time (such as suppress) can behave differently

51

Should we trust StackOverflow?

52

Using Transformer

53

Using Transformer

54

Using Transformer

55

Using Transformer

56

Using Transformer

57

Let’s run tests on real Kafka!

EmbeddedKafka
TestContainers

58

EmbeddedKafka vs TestContainers

EmbeddedKafka TestContainers

Pro:
Just pull in a dependency

Contra:
Pulls in Scala
Runs in the same JVM

Pro
Runs Kafka isolated in Docker
Not only for Kafka testing

Contra
Needs Docker
Requires some time for the first start

59

Demo

Writing TestContainers test
An easy part: pushing messages to Kafka
A not so easy part: how do we check the output?

60

Demo

Deduplication: the correct implementation
Now the test is green, but takes 5 seconds!

61

Does it have to be so slow?
List actual = new ArrayList<>();

while (true) {
 ConsumerRecords<String, String> records =
 KafkaTestUtils.getRecords(consumer, 5000 /* timeout in ms */);
 if (records.isEmpty()) break;
 for (ConsumerRecord<String, String> rec : records) {
 actual.add(rec.value());
 }
}

assertEquals(List.of("A", "B"), actual);

62

Awaitility
Awaitility.await().atMost(10, SECONDS).until(
 () -> List.of("A", "B").equals(actual));

63

Awaitility
Awaitility.await().atMost(10, SECONDS).until(
 () -> List.of("A", "B").equals(actual));

64

Things we must keep in mind

Cooperative termination
Thread-safe data structure

65

Demo

Green test runs faster

66

Will any extra messages appear?

We can wait for extra 5 seconds (bad choice)
We can put a 'marker record' at the end of the input and wait for it to appear in the
output (not always possible)

67

Summary

68

Summary

Both TopologyTestDriver and integration tests are needed

68

Summary

Both TopologyTestDriver and integration tests are needed
Write unit tests with TopologyTestDriver. When it fails to surface the problem, use
integration tests.

68

Summary

Both TopologyTestDriver and integration tests are needed
Write unit tests with TopologyTestDriver. When it fails to surface the problem, use
integration tests.
Know the limitations of TopologyTestDriver.

68

Summary

Both TopologyTestDriver and integration tests are needed
Write unit tests with TopologyTestDriver. When it fails to surface the problem, use
integration tests.
Know the limitations of TopologyTestDriver.
Understand the difficulties and limitations of asynchronous testing.

68

KIP-655 is under discussion

69

Useful links

Confluent blog:
pro.kafka: Russian Kafka chat in Telegram:
Confluent community Slack:

Testing Kafka Streams – A Deep Dive
https://t.me/proKafka

https://cnfl.io/slack

70

https://www.confluent.io/blog/testing-kafka-streams/
https://t.me/proKafka
https://cnfl.io/slack

Thank you!

Ivan Ponomarev

John Roesler

iponomarev@curs.ru
@inponomarev
inponomarev

john@confluent.io
vvcephei@apache.org
vvcephei

71

mailto:iponomarev@curs.ru
https://twitter.com/inponomarev
https://github.com/inponomarev
mailto:john@confluent.io
mailto:vvcephei@apache.org
https://github.com/vvcephei

