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Who Are We

Ivan Ponomarev:

Software Engineer at KURS, tutor at MIPT
Apache Kafka Contributor
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Who Are We

John Roesler:

Software Engineer at Confluent
Apache Kafka Committer and PMC member
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Kafka Streams Testing: A Deep Dive

1. Purpose: cover testing methodologies for Kafka Streams
"Unit" Testing: TopologyTestDriver
Integration Testing: KafkaStreams

2. Start with motivating example (from Ivan’s production)
3. A flawed testing approach: unit testing doesn’t work for this example
4. Deep-dive into the testing framework
5. Correctly testing the example with integration tests
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The task

Save different source IDs in the database
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The problem

Too many writes to the database
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The solution

Let’s deduplicate using Kafka Streams!
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TopologyTestDriver
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TopologyTestDriver capabilities

What is being
sent/received

TestInputTopic methods TestOutputTopic methods

A single value pipeInput (V) V readValue ()

A key/value pair pipeInput (K, V) KeyValue<K,V>
readKeyValue()
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TopologyTestDriver capabilities

What is being
sent/received

TestInputTopic methods TestOutputTopic methods

A list of values pipeValueList (List<V>) List<V>
readValuesToList()

A list of key/value
pairs

pipeKeyValueList
(List<KeyValue<K,V>>)

List<KeyValue<K,V>>
readKeyValuesToList()

Map<K,V>
readKeyValuesToMap()
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TopologyTestDriver capabilities

What is being
sent/received

TestInputTopic methods TestOutputTopic methods

A list of Records pipeRecordList (List<?
extends TestRecord<K,
V>>)

List<TestRecord<K, V>>
readRecordsToList()
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Demo

1. Spring Boot app
2. Let’s do some test-driven development and first write a test
3. Writing a test with TTDriver
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A "Simple Solution"
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A "Simple Solution"
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A "Simple Solution"
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A "Simple Solution"
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Demo

writing the topology
TopologyTestDriver test is green
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Tests are green

buildbuild passingpassing
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Tests are green

buildbuild passingpassing

Should we run this in production?
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What we saw in production:
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Why it’s not working

Kafka Streams TopologyTestDriver

is a big data streaming framework is a fast, deterministic testing framework
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is a big data streaming framework

designed for high throughput
throughput demands batching, buffering,
caching, etc.
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Why it’s not working

Kafka Streams TopologyTestDriver

is a big data streaming framework

designed for high throughput
throughput demands batching, buffering,
caching, etc.
caching is the culprit in this example

is a fast, deterministic testing framework

designed for synchronous, immediate
results
flush cache after every update
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Why it’s not working

Caching in Kafka Streams

don’t immediately emit every aggregation result
"soak up" repeated updates to the same key’s aggregation
configure cache size: max.bytes.buffering (10MB)
configure cache flush interval: commit.interval.ms (30s)
emit latest result on flush or eviction
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Why it’s not working
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Why it’s not working
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Why it’s not working
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Why it’s not working
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Why it’s not working
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Why it’s not working
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Demo

TopologyTestDriver vs. Kafka Streams execution loop
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Kafka Streams execution loop
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Kafka Streams execution loop
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Kafka Streams execution loop
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Kafka Streams execution loop
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Kafka Streams execution loop
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Kafka Streams execution loop
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Kafka Streams execution loop
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Kafka Streams execution loop

39



TopologyTestDriver execution loop
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TopologyTestDriver execution loop
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TopologyTestDriver execution loop
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TopologyTestDriver execution loop
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TopologyTestDriver execution loop
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TopologyTestDriver execution loop
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TopologyTestDriver execution loop
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What else?

What are other problems that can’t be surfaced with TopologyTestDriver?
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TopologyTestDriver: single partition
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Kafka Streams: co-partitioning problems
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TopologyTestDriver: "Fused" subtopologies

ToplogyTestDriver

Kafka Streams
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Timing

stream-stream joins can behave differently (pipeInput order vs. timestamp order)
logic that depends on stream time (such as suppress) can behave differently
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Should we trust StackOverflow?
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Using Transformer
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Using Transformer
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Using Transformer
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Using Transformer
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Using Transformer
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Let’s run tests on real Kafka!

EmbeddedKafka
TestContainers
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EmbeddedKafka vs TestContainers

EmbeddedKafka TestContainers

Pro:
Just pull in a dependency

Contra:
Pulls in Scala
Runs in the same JVM

Pro
Runs Kafka isolated in Docker
Not only for Kafka testing

Contra
Needs Docker
Requires some time for the first start
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Demo

Writing TestContainers test
An easy part: pushing messages to Kafka
A not so easy part: how do we check the output?
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Demo

Deduplication: the correct implementation
Now the test is green, but takes 5 seconds!
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Does it have to be so slow?
List actual = new ArrayList<>(); 
 
while (true) { 
  ConsumerRecords<String, String> records = 
    KafkaTestUtils.getRecords(consumer, 5000 /* timeout in ms */); 
  if (records.isEmpty()) break; 
  for (ConsumerRecord<String, String> rec : records) { 
    actual.add(rec.value()); 
  } 
} 
 
assertEquals(List.of("A", "B"), actual);
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Awaitility
Awaitility.await().atMost(10, SECONDS).until( 
                 () -> List.of("A", "B").equals(actual));
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Awaitility
Awaitility.await().atMost(10, SECONDS).until( 
                 () -> List.of("A", "B").equals(actual));
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Things we must keep in mind

Cooperative termination
Thread-safe data structure
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Demo

Green test runs faster
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Will any extra messages appear?

We can wait for extra 5 seconds (bad choice)
We can put a 'marker record' at the end of the input and wait for it to appear in the
output (not always possible)
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Summary
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Summary

Both TopologyTestDriver and integration tests are needed
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Write unit tests with TopologyTestDriver. When it fails to surface the problem, use
integration tests.
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Summary

Both TopologyTestDriver and integration tests are needed
Write unit tests with TopologyTestDriver. When it fails to surface the problem, use
integration tests.
Know the limitations of TopologyTestDriver.
Understand the difficulties and limitations of asynchronous testing.
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KIP-655 is under discussion
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Useful links

Confluent blog: 
pro.kafka: Russian Kafka chat in Telegram: 
Confluent community Slack: 

Testing Kafka Streams – A Deep Dive
https://t.me/proKafka

https://cnfl.io/slack
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https://www.confluent.io/blog/testing-kafka-streams/
https://t.me/proKafka
https://cnfl.io/slack


Thank you!

Ivan Ponomarev

 

 

 

John Roesler

 

 

 

iponomarev@curs.ru
@inponomarev
inponomarev

john@confluent.io
vvcephei@apache.org
vvcephei
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