
The World needs
Full-stack Craftsmen

Anton Keks
@antonkeks

Tallinn, Estonia - the IT capital of EU

2

http://www.youtube.com/watch?v=MVMupLXNh0k

3

Founded in 2010

33 craftsmen, almost no other roles

Most biggest Estonian companies are our customers

Foreign customers as well, including Russia, Japan, USA, Norway, ...

Incredible efficiency thanks to craftsmanship

I am going to share our secrets, don’t tell anyone!

A reminder:
IT exists only because we support

businesses, governments, etc
Despite that we constantly fight each other

4

In the past, there
were only full-stack
craftsmen

They were just called
“Programmers”

5

Most were actually (crafts)women

6

You even had to deal with hardware a lot more

Then, everything has changed 7

8

Introduction to

Conflicts and toxicity in IT

9

10

Admins vs Developers

IT became bigger and roles started to appear

Internet and Servers - somebody had to take care of them

Admins hate changes, but devs’ job is to change things

“Giving admin rights to devs will result in
chaos!” - I heard this in 2019!!!

11

2000s: DB vs App devs

Back in the days, Oracle has invented a new profession - DBA

Also the phrase “data assets”

Different mindsets:
Logic inside or outside?

DB devs stayed conservative

Other extreme - let’s ditch RDBMS
and re-implement everything
manually with NoSQL solutions 12

Separate isolated communities
Static vs dynamic languages

Open source vs proprietary

e.g. Ruby, Python, .NET, Java EE

Ruby/Node devs reinvented a lot, now they start to
value multithreading and backwards compatibility

Game devs, working in “studios”

Those who still program in C or C++ vs Go, Rust 13

2010s - Rise of Frontend vs Backend devs

New trends in web UIs brought lots of complexity

Clearer UI/backend separation was needed, different technologies

Young devs started to specialize
in UI, and reinventing stuff

Ever-changing frameworks
Transpilation, Unit testing, etc

Backend devs now reduced to
“API developers” 14

15

16

In 2007
“The full Safari engine is inside of iPhone. And so, you can
write amazing Web 2.0 and Ajax apps that look exactly
and behave exactly like apps on the iPhone.”

Then Jailbreak was followed by AppStore

Many mobile apps are actually unnecessary,
but we have to deal with more specialization now

17

Split communities of
iOS vs Android vs Windows Phone vs ...

Even Android devs reinvent what “backend” devs did for years

Testing, languages, build tools

Nowadays, companies reimplement the same UI at least 3x
By separate teams, producing different bugs...

Plus there are backend devs (or even microservice teams)

What a waste!
18

Kotlin vs Swift

How incredibly similar they are!
But compare checked exceptions 19

I am function-x developer
And you are function-y

 we are different
20

21

Overspecialization
Inflated teams

Low truck factor
Slow and expensive projects 22

Overengineering
We need to seek simplicity instead

23

Full-stack developer
comes to the rescue 24

Broad-minded

Experienced in many fields/stacks

Can choose the right tool for the job

No need for finger pointing

Can learn new technologies quickly

25

A more rare kind in bigger markets/companies

Big = can afford being inefficient

The less important you become

26

27

Being a full-stack developer

XP: collective code ownership

You build/learn all aspects of your project

You can contribute in any area

You don’t leave anything to others

You are in control

Power = Responsibility
28

Becoming a full-stack developer

“Full-stack” refers to the collection of technologies needed to
complete your project

“Polyglot” developer

You learn the essence and can apply it in any language/technology

You still learn most needed parts deeply as you gain experience

Structuring, design, security, logging, auto testing, simplicity, etc

Also deployment - you don’t want to be called during the night
29

Why me?

Technologies and specialization areas come and go

AI and automation is coming

You need to be flexible, never stop learning

Multidisciplinary teams have more “chemistry”

Full-stack developers are more useful, therefore earn more

Some do startups or business

30

Big picture

You understand where the actual problem is,
and where to apply the fix

Instead of creating workarounds, and later fixing them again

Easier not to overengineer

Brings deep understanding of how stuff works

Efficiency - less useless work, fewer mistakes

31

Your project is most likely doomed without a single Full-stack member

32
Architect? Not if they overspecialize and stop coding!

Side effects

You are more pragmatic

You don’t jump for every fresh and sexy thing (framework),
only for it to be abandoned a year later

E.g. many webapps are better-off being server-side rendered

You know the costs of implementing things in one stack or another

You care about long-term maintainability

You avoid more invasive frameworks (that control you)
33

Having a team of multidisciplinary people means for a company
that can adapt quickly, branching out to your team when a new
opportunity appears

It is also something that helps create chemistry within a team.
The developers work together longer.

Even if a project starts with the construction of an API, then
moves to mobile and web clients, the same people can make that
trip together

34

Do you know how to build your current project
from scratch?

Including storytelling (requirements)?

Could you do it by yourself?

Would it be better than now?

35

36

Communication problems

37

Devs vs Testers, Analysts, PM's

Swedbank in 2010: only 50 devs out of 700 IT personnel

Many “supporting roles” just because devs are not able to do their
job properly

Necessity of analysts reduces devs to code monkeys

38

Allows not to develop communication skills, reducing efficiency

Lots of finger pointing, blaming, and “broken phone”

Chinese whispers / Broken phone game

39

Talking to customers through a middleman
(proxy) makes negotiations impossible

40

Hoping for testers to find your bugs?

They should be the last line of defense
41

42

Of course, we still earn good money,
despite producing wrong results, inefficiently

Poor customers accept that they get bugs and
wrong stuff from IT

I am sorry for those who can't get time to market of
1-2 days

43

44

Downfall of Agile

Nowadays everyone says they do some kind of Agile
Usually meaning top-bottom Scrum

Where is excellence?

Ken Schwaber left Scrum alliance

It became a management buzzword

A religion that nobody knows how to
practice

45

46

47

48

49

Craftsmen
Craftsmen
Craftsmen

Craftswomen

Software craftsman should be able to
● Talk to customer directly
● Understand the underlying problem,

not how customer proposes to solve it
● Propose solutions
● Break the problem into small chunks,

write down as user-centric stories
● Design UI flow
● Write working code
● Write automated tests to avoid regressions
● Deploy the system to the end users (“DevOps”)
● Evolve the system design/architecture by refactoring

Old-fashioned software developer

50

It’s also more creative and fun that way
51

Codeborne and Digital Prescriptions

52

And what if solution is not only in the IT? It happens quite often

Startup people should do full-stack craftsmanship to survive

Everyone should try as well!
53

But nowadays, too much money
(and spending not your own)

makes also startups inefficient 54

55

56

Underengineering

The other extreme

Very common in startups, and elsewhere

You don’t have time to write bad code
because it slows you down

Lack of basic practices

e.g. lack of Continuous Integration
always leads to a broken project

57

Extreme Programming (XP) practices

58

59

At the 3rd level of professionalism

1. You are very good at doing it
2. You are so good, so you can innovate
3. You are so good, so you can teach others to innovate,

too

(then your innovation becomes the new norm)

60

Project routine in Codeborne
● Before start: make sure we have business and tech contacts
● Kick-off meeting with them

○ Storytelling
● Iterations (1 week)

○ Stand-up meetings (mostly over video)
○ Developers focus on user stories
○ Continuous integration server builds and tests every change
○ Continuous delivery to a demo server

● Iteration planning
○ Demo
○ Prioritization & storytelling

● Until agreed deadline or can finish anytime for any reason
61

Advice

If you think you are good enough technically - try low level,
drivers, assembler, etc

But also learn to explain technical concepts to normal people

Differentiate important from not-so-important

Do you have pet projects? GitHub account?

Next level: start a business

62

Pair Programming

Allows to transfer skills more quickly

You are never left alone with a problem

A pair with different “specialization” compliments each other

Extreme code review - catches mistakes

Your produce better quality because “someone is watching”

And it’s fun!

63

Good developer can be 5x more productive

Craftsman can be 5x even more efficient by knowing
what not to do

We not only write code, but solve problems

Surely you want to be one

64

Wasamuseet, Stockholm

65

Perfection is achieved, not when there is
nothing more to add, but when there is nothing
left to take away

Antoine de Saint-Exupery

66

67

Anton Keks
@antonkeks

