
HOTSPOT INTERNALS:
SAFEPOINTS, NULLPOINTERS AND

STACKOVERFLOWS
Volker Simonis [Фолькер Симонис], SAP / volker.simonis@gmail.com

http://www.sunstategearbox.com.au/wp-content/uploads/2014/09/gearbox.jpg

mailto:volker.simonis@gmail.com
http://www.sunstategearbox.com.au/wp-content/uploads/2014/09/gearbox.jpg


SIGNALS
Asynchronous notifications sent to a process/thread
Originate from 1970s Bell Labs Unix - now POSIX
Quite heavy-weight operations
Interferes with other programming models (e.g. C++ exceptions, threads)
Nevertheless reliable, cross-platform (POSIX), useful..
On Windows there's a similar mechanism called
Structured/Vectored Exception Handling (SEH/VEH)



 

SIGNALS
Many programmers are scared by signals
Ever saw SIGSEGV, SIGILL, SIGBUS,.. ?
They are usually associated with crashes and core files
But they can be useful :-)

DEMO





NULL-POINTER CHECKS - C/C++



NULL-POINTER CHECKS - C/C++
Unmanaged languages (e.g. C/C++) don't have Null-Pointer checks:



NULL-POINTER CHECKS - HOTSPOT
Managed languages like Java guarantee Null-Pointer checks!



NULL-POINTER CHECKS - HOTSPOT
Managed languages like Java guarantee Null-Pointer checks!



NULL-POINTER CHECKS - HOTSPOT



NULL-POINTER CHECKS - HOTSPOT



NULL-POINTER CHECKS - HOTSPOT

DEMO





NULL-POINTER CHECKS & COMPRESSED OOPS
On 64-bit platforms pointers are 8-byte aligned

The three least-significant bits are redundant (i.e. zero)
We can actually encode 32G within 32-bit..

..by shifting right/left for encoding/decoding
If (Java-heap < 4G && max_heap_Addr < 4G) ==> Unscaled mode

No encoding/decoding - oops fit into 32 bit
If (Java-heap < 32G && max_heap_Addr < 32G) ==> Zero-Based mode

Shifting for encoding/decoding
If (Java-heap < 32G) ==> Heap-Based mode

Shifting plus base subtraction/addition for encoding/decoding
See https://wiki.openjdk.java.net/display/HotSpot/CompressedOops

https://wiki.openjdk.java.net/display/HotSpot/CompressedOops


NULL-POINTER CHECKS & COMPRESSED OOPS



NULL-POINTER CHECKS & COMPRESSED OOPS

DEMO





NULL-POINTER CHECKS - SUMMARY
Null-pointer checks are done implicitly (if possible):

Not on all platforms (i.e. AIX can read from 0x0000)
Not all field offsets (usually within `getconf PAGESIZE`)

If there are too many NPE (controlled by PerBytecodeTrapLimit)
Methods are made "not-entrant" and..
..recompiled with explicit checks instead

Work together with Compressed Oops



But where's the
benchmark?

https://github.com/shipilev/article-compress-
me/blob/master/src/main/java/net/shipilev/ImplicitNullChecks.java

https://github.com/shipilev/article-compress-me/blob/master/src/main/java/net/shipilev/ImplicitNullChecks.java


SAFEPOINTS

HotSpot uses a cooperative suspension model
All threads need to come to a safepoint quickly if required

Running interpreted: change interpreter dispatch table
Running JIT-compiled: read global safepoint polling page
Running in native (JNI): no need to stop
- native code accesses oops trough handles
- block when returning from JNI or when calling to Java



SAFEPOINTS

DEMO





ARRAY-OUT-OF-BOUNDS CHECKS

DEMO




